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 ABSTRACT 

 In this paper, edge crack problems under mechanical loads have been analysed using 
extended finite element method (XFEM) as it has proved to be a competent method for 
handling problems with discontinuities. The XFEM provides a versatile technique to 
model discontinuities in the solution domain without re-meshing or conformal mesh. The 
stress intensity factors (SIF) have been calculated by domain based interaction integral 
method. The effect of crack orientation and interaction under mechanical loading has been 
studied. Analytical solutions, which are available for two dimensional displacement fields 
in linear elastic fracture mechanics, have been used for crack tip enrichment. From the 
present analysis, it has been observed that there is monotonous decrease in the SIF-1 value 
with the increase in inclination, while SIF-II values first increases then it also decreases. 
Next study was performed for first edge crack in the presence of second crack on opposite 
edge. The results were obtained by changing the distance between the crack tips as well as 
by changing the orientation of second crack. SIFs values decrease with increase in 
distances between the crack tips for collinear cracks. In next study, for the first crack in 
presence of inclined second edge crack and it was found that SIFs increase initially with 
the increase in inclination and decrease after that. It emphasizes the fact that cracks at 
larger distances act more or less independently. In next study, with the use of level set 
method crack growth path is evaluated without remeshing for plate with hole, soft 
inclusion & hard inclusion under mode-I loading and compare with available published 
results.                                       

            © 2014 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 ANY structural systems, which are comprised of piping systems, can be found in nuclear power plants, off-
shore drilling platforms, fossil power generation plants, gas pipelines and others. The unavoidable existence of 

cracks in some components may lead to increased safety concerns about the loss of structural strength and possibly 
failure of these structural systems. In assessing the integrity of structures containing such cracks, it is important to 
quantify the relevant crack driving force so that its load-carrying capacity can be predicted. As opposed to earlier FE 
approaches, in recent years the X-FEM has proven to be a very efficient tool for the numerical modeling of cracks. 
In comparison to the standard FEM, the X-FEM provides significant benefits in the numerical modeling of crack 
propagation. The main advantages are that the finite element mesh need not to conform to the crack boundaries 
(crack faces) to account for the geometric discontinuity, and furthermore, mesh regeneration is not needed in crack 
growth simulations. Therefore, only a single mesh, which is often easily generated, can be used for any crack length 
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and orientation. The X-FEM is based on the introduction of additional degrees of freedom (DOFs), which are 
associated with the nodes of the elements intersected by the crack geometry. In this method, both discontinuous 
displacement fields along the crack faces and the leading singular crack tip asymptotic displacement fields are added 
to the displacement based FEM approximation for crack modeling through the partition of unity approach. This 
enables the method for accurate modeling of the crack.  

2    REVIEW OF EARLIER WORK 

Numerical methods, especially the finite element (FE) method, have been widely used in computational fracture 
mechanics. However, modeling of multiple crack configurations, crack growth and cracks intersecting with other 
discontinuities is still a laborious task since the crack topology is generally complicated and difficult to be explicitly 
modeled by the FE. Moreover, the crack tip singularity needs to be accurately represented by the approximation. 
Belytschko and Black [1] introduced a method for solving crack problems in the FE framework which is 
independent of the mesh. In this method, the meshing task is reduced by enriching the elements near the crack tip 
and along the crack faces with the leading singular crack tip asymptotic displacement fields using the partition of 
unity (PU) method [2, 3] to account for the presence of the crack. When multiple crack segments are needed to be 
enriched with the near tip fields, a mapping algorithm introduced by Fleming et al. [4] is used to align the 
discontinuity with the crack geometry. They also proved that the use of discontinuous displacements along the crack 
produces a solution with zero traction along the crack faces. Moës et al. [5] introduced a much more elegant and 
straightforward procedure to introduce a discontinuous field across the crack faces away from the crack tip by 
adapting the generalized Heaviside function, and developed simple rules for the introduction of the discontinuous 
and crack tip enrichments. Later, Daux et al. [6] introduced the junction function concept to account for multiple 
branched cracks and named their method the extended Finite Element Method (XFEM). They have employed this 
method for modeling complicated geometries such as multiple branched cracks, voids and cracks emanating from 
holes without the need for the geometric entities to be meshed. Sukumar et al. [7] studied planar mode I cracks in 
three dimensions with the XFEM. Dolbow et al. [8] studied fracture in Mindlin–Reissner plates, and 2D crack 
growth under three different interfacial constitutive laws on the crack faces: perfect contact and unilateral contact 
with or without friction [9]. Areias and Belytschko [10] have applied the XFEM to study the crack initiation and 
propagation in 3-D space. A formulation based on viscosity-regularized continuum damage constitutive model has 
been coupled with the XFEM formulation. Nagashima et al. [11] explored the application of XFEM for the stress 
analyses of structures having interface cracks between dissimilar materials. Liu et al. [12] improved XFEM by 
enriching the FEM approximation with the higher order terms of crack tip asymptotic field using a partition of unity.  
The crack faces behind the tip were modeled independently by displacement jump functions. Sukumar et al. [13] 
have described and presented the modelling of holes and inclusions by level sets in XFEM. Alves and Rossi [14] 
have presented a method to combine the element free Galerkin method with the extended partition of unity finite 
element method. Afterwards, more investigations have been carried out by researchers such as Sukumar and Prévost 
[15] and Sukumar et al. [16] for modeling quasi-static crack growth, Zi and Belytschko [17] and Mergheim et al. 
[18] for modeling cohesive cracks and Sukumar and Hunag [19] for modeling bimaterial interface cracks. 

3    REVIEW OF XFEM 

Numerical methods, in XFEM, an n-dimensional domain, ΩЄRn is considered, which is discretized by n elements 
numbered from 1 to n while I is the set of all nodes in the domain. Then the enriched displacement trial and test 
approximation for the vector function uh with the partition of unity enrichment takes the general form:  
 

       
4

1 1
r

A

n
h

I I I I
I I n

I n

u N u H a b



 



 
 
   
 
 
  

 x x x x




 

 
  

(1) 

 
 



Crack Interaction Studies Using XFEM Technique                    412 

© 2014 IAU, Arak Branch 

where NI(x) is element shape function associated with node I satisfying the partition of unity criterion. uI is the nodal 
displacement vector associated with the continuous part of the finite element solution, aI is the nodal enriched 
degree of freedom associated with the Heaviside (discontinuous) function H(x) for elements through which the crack 
passes. bI

 is the nodal enriched degree of freedom vector associated with the elastic asymptotic crack tip functions. 
In the above equation, n is the set of all nodes in the mesh; nr is the set of nodes whose shape function is cut by the 
crack face and na is the set of nodes whose shape function support is cut by the crack tip. 

The standard displacements do not correspond to the displacements computed by XFEM. Thus, a shifted 
enrichment is used. If xi is the node of interest then Eq. (1) can be written as: 
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In Eq. (2), the difference between the values of the enrichment function at the evaluation point (Gauss point in 

the present simulations) and nodal point is considered. This modification also preserves the partition of unity 
property of the shape function. 

3.1 Discontinuous enrichment for crack face 

The discontinuity in the displacement due to the presence of a crack is modeled by a generalized Heaviside function 
H(x). The discontinuous enrichment or Heaviside function for the purpose of computation can be abbreviated as: 
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where ψ(x)  is the level set function. 

3.2 Asymptotic enrichment for crack tip 

To model the crack front and also to improve the representation of crack tip fields in computations, crack tip 
enrichment functions are used in elements which contain a crack tip. The enrichment consists of functions which 
incorporate the radial and angular behavior of the two dimensional asymptotic crack tip displacement field. These 
functions are given as: 
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In the above expression, r and θ are the local coordinates of the crack tip.  

3.3 Level set method 

Level set is defined by a scalar function within the domain, where a zero level is interpreted as the discontinuity. As 
a consequence, the domain    is divided into two sub-domains   and   on either side of the discontinuity 
where the level set function is positive or negative respectively. Two dimensional domain with the circular 
discontinuity of radius (0,0)r , is described. Then, the discontinuity may be defined by the level set 

function    2 2, x y rx y    , where 0   on the circle. Also, the signed distance function is used as a 

particular level set function and is depicted as under: 
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A single crack in two dimensions is considered as a strong discontinuity. Let c  be the interior of the crack 

(crack faces) and  1 2i i 
x  be the crack tips. The definition of the signed-distance function   to the curve c  is 

given by: 
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where,  ., .d  is the usual Euclidean distance on 2 , *x  the point closest to x  on the crack c  with cx  any point 

on c . The function   is schematically represented in the Fig. 1. While the function   is sufficient to describe a 
closed or unbounded contour in a two dimensional space, additional information is required to describe the geometry 
of an open segment in a two dimensional space. To describe the location of each crack tip i , additional signed 
distance functions i  are introduced. These functions are designated by the signed distance function to the line 
going through the tip and normal to the crack, as shown in Fig. 1. 
 
 

 

 
 
 
 
 
 
 
 
 
Fig. 1  
Definition of the two level set functions representing 
crack in 2D. 

 
The basic purpose of enrichment is to increase the order of completeness that can be achieved. Computationally, 

it may target higher accuracy of the approximation by including the information obtained from analytical solution. 
The crack is modeled by enriching the nodes whose nodal shape function support intersects the interior of the crack 
by the discontinuous/Heaviside function H . The nodes whose nodal shape function support contains the crack tips 
are enriched by the two-dimensional asymptotic crack-tip fields. The level set description of cracks permits a natural 
selection of the enriched nodes. Also, the values of the functions   and    are computed at the nodes of the fixed 
mesh. To determine the location of a point x relative to the crack, it is sufficient to know the value of   at that 

point. If   0 x  , then x  is below the crack, if   0 x , then x  is above the crack. Similarly, due to the 

orthogonal nature of the zero level sets of   and   at the crack tips, the computation of the branch functions, 
present in the asymptotic enrichment, in the domain is simplified. A natural local coordinate system, centered at the 
crack tip, may be created from the two level set functions   and   taken jointly. Consequently, the values of r  
and   needed for the computation of the near-tip fields can be simply obtained by: 
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The selection of enriched nodes is also simplified by the use of the level set functions   and  . Let, min  and 

max  (correspondingly, min and max ) be the respective minimum and maximum values of   (correspondingly of 
 ) at the nodes of a given element. For an element to contain the crack tip, the necessary and sufficient conditions 

are min max 0    and min max 0   . Also, the necessary condition for the crack to completely intercept an 
element is if and only if the value of function   at the nodes of the element is both positive and negative i.e. 

min max 0    and the function   is negative i.e. 0   at all of its nodes.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 2 
Enriched model of a discontinuity and modelling cracks using 
XFEM. 

3.4 XFEM formulation for a crack 

By substituting the trial and test functions in the discrete weak form of the equation for linear elasto-statics and 
using the arbitrariness of the nodal variations, a following set of discrete equations is obtained as: 
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where, d is the vector of nodal unknowns, K and f are the global stiffness matrix and external force respectively. The 
stiffness matrix and force vector are computed on element level and are assembled into global counterparts through 
usual finite element assembly procedure. The additional degrees of freedom arise due to the enrichment are handled 
by considering fictitious nodes. The elemental contribution of K and f  are as follows: 
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The sub-matrices and vectors that appear in the foregoing equations are given as under: 
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where, Ni are finite element shape function, Bi
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b and Bi
b are the matrices of shape function derivatives given 

by: 
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The formulations for holes and inclusions are similar as for the cracks. Enrichment may be seen as adding extra 

degrees of freedom to the enriched nodes. An enriched node gains one extra degree of freedom per enrichment 
function per dimension. In 2D, a node for which the displacement fields are enriched with the four crack tip 
asymptotic enrichment functions, for instance, has two conventional degrees of freedom (its displacements in both 
directions) and 2*4=8 enrichment degrees of freedom. 

4    RESULTS AND DISCUSSION 
4.1 Inclined edge crack 

A rectangular domain 200 mm X 100 mm with edge crack ao=40 mm with θc degree inclination from horizontal is 
taken for the analysis. The material of the plate is assumed as homogeneous and isotropic with E = 200GPa and 
Poisson ratio 0.3. Stress 100 MPa is applied at the top edge of the plate. Analysis is performed in plane stress 
condition. A uniform mesh of 25 by 50 nodes is used for this analysis. Fig. 3 shows that the KI decreases with an 
increase in the inclination, while KII first increases and then it also decreases after 45° degree. Fig. 3 shows contour 
plot of sigma σyy at 40° inclination. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 
Specimen geometry, contour plot at 40 degree inclination and K-I & K-II variation with change in inclination. 
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4.2 Edge crack on opposite face  

The dimensions, applied stress and material property for plate are taken same as case 1. Two edge crack at opposite 
faces has been taken and stress intensity factor variation due to change in offset distance is analyzed. The crack on 
the left edge has been fixed, while the location of right edge crack has been changed. As shown in Fig. 4 there is 
monotonous increase in KI values while KII first increase upto a distance of 20 mm, then it decreases with increase in 
offset distance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 
Specimen geometry, contour plot at 20 mm offset distance and K-I & K-II variation with change in inclination. 

4.3 Edge cracks on opposite face with inclination  

The dimensions, applied stress and material property for plate are taken same as case 1. Two edge crack at opposite 
faces has been taken and right edge crack orientation effect on stress intensity factor evaluated at the left crack has 
been investigated. Fig. 5 shows similar pattern as that of offset result regarding the variation of KI  and KII.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5 
Specimen geometry, contour plot at 40 degree inclination and K-I & K-II variation with change in inclination. 

4.4 Edge cracks on opposite face with inclusion 

The dimensions, applied stress and material property for plate are taken as shown is Fig. 6(a). In case of soft 
inclusion (E=20GPa) and for hard inclusion (E=2000GPa) has taken. Stress intensity factor at the crack tip is 
calculated with hole, soft inclusion and hard inclusion. It has found that maximum for hole and minimum for hard 
inclusion. Effect of inclusion on crack growth path is shown in Figs. 6 (b,c and d). Effect of inclusion on stress 
distribution is shown in Fig.7.   
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Fig. 6 
Specimen geometry, (a) crack growth with hole. (b) with soft inclusion. (c) with hard inclusion. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Fig. 7 
Stress distribution (a) crack with hole. (b) with soft 
inclusion. (c) with hard inclusion. 
 

4.5 Plate with multiple holes 

The dimensions, applied stress and material property for plate are taken as same as case 1. The holes of arbitary 
sizes are randomly populated in the plate as shown in Fig. 8. Fig. 8 shows the comparison of FEM and XFEM X-
direction and Y-direction displacement along the top edge of the plate. It shows the similar displacement prediction 
by both methods.   
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Fig. 8 
Plate with multiple holes. 
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 (a) (b) 
Fig. 9 
(a,b) Comparison of Y & X displacement of top edge of the plate with multiple holes. 

4.6 Edge crack with holes 

The dimensions, applied stress and material property for plate are taken same as case 1. The holes of arbitrary sizes 
are randomnly populated in the plate as shown in Fig. 10, and their number is gradually increased from 10 to 60 in a 
step of 10. The SIFs values are evaluated at the tip of the major edge crack. These simulations are complied five 
times for each set of data to get an average value of SIFs. The deviation in SIF values is also evaluated, and is 
tabulated in Table 1. Fig.10 shows the stress contour plot of yy  for this case. The percentage increase in equivalent 

mode-I SIF and its range for each set of data is shown in Table 1. Due to the presence of holes, the maximum % 
increase in equivalent mode-I SIFs is found to be 9.32%. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 10 
Edge crack with holes and stress distribution. 

 
Table 1 
SIF variation with the number of crack. 

S.No. Number of Holes Equivalent mode-I SIF( MPa mm ) % increase in equivalent mode-I SIF

1 Plate without holes 2358.58 …. 
2 10 holes 2405.28 1.96 
3 20 holes 2432.05 3.08 
4 30 holes 2471.90 4.79 
5 40 holes 2529.78 7.24 
6 50 holes 2557.08 8.37 
7 60 holes 2579.08 9.32 

4.7 Edge crack with minor cracks 

The dimensions, applied stress and material property for plate are taken same as case 1. The orientation and position 
of arbitrary sizes minor cracks are random inside the plate as shown in Fig. 11. The simulations are performed for 
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20, 40, 60, 75, 90, 105 minor cracks. The equivalent mode-I SIF and SIF range for various set of data are presented 
in Table 2. The stress contour plot of yy  is shown in Fig. 11 for plate with 90 minor cracks.  From the results 

presented in Table 2. , it can be seen that the maximum % increase in the equivalent mode-I SIF due to the presence 
of minor cracks is found to be 7.33%. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 11 
Edge crack with holes and stress distribution. 

 

Table 2  
SIF variation with the number of crack. 

S.No. Number of Minor crack Equivalent mode-I SIF( MPa mm ) % increase in equivalent mode-I SIF

1 Plate withoutt minor cracks 2358.58 …. 
2 20 cracks 2376.98 0.77 
3 40 cracks 2405.38 2.00 
4 60 cracks 2438.88 3.39 
5 75 cracks 2464.80 4.49 
6 90 cracks 2502.30 6.10 
7 105 cracks 2531.68 7.33 

4.8 Edge crack with holes and minor cracks 

The dimensions, applied stress and material property for plate are taken same as case 1. The holes are increased in a 
step of 5 starting from 5 to 30, and minor cracks are added in a step of 10 starting from 10 to 60. The diameters of 
holes are chosen arbitrary in a given range, and are randomly located in the plate as shown in Figure 12. The stress 

contour plot of yy  for the last set of data corresponds to Figure 12 is shown in Figure 12. The SIF range and 

averaged equivalent mode-I SIF for each set of data is given in Table 3. The maximum % increase in the equivalent 
SIF due to the presence of holes and minor cracks is found to be 10.92%. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Fig. 12 
Edge crack with holes and minor crack and stress 
distribution. 
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Table 3  
SIF variation with the number of  crack and hole. 
S.No. Number of Minor crack and hole Equivalent mode-I SIF( MPa mm ) % increase in equivalent mode-I SIF 

1 Plate without holes and cracks 2358.58 …. 
2 5 holes and 10  cracks 2426.18 2.87 
3 10 holes and 20 cracks 2463.60 4.45 
4 15 holes and 30 cracks 2490.68 5.60 
5 20 holes and 40 cracks 2526.05 7.10 
6 25 holes and 50 cracks 2570.38 8.98 
7 30 holes and 60 cracks 2616.08 10.92 

5    CONCLUSIONS 

In the present study, XFEM has been used to simulate the 2-D fracture mechanics problems under mechanical load. 
The inclination of crack with the edge, interaction of cracks lying on the opposite edges, crack in the interior of the 
domain, edge crack interaction with hole, soft inclusion and hard inclusion has been studied and analyzed in detail.  

On the basis of present simulation, it has been observed that there is a significant change in the values of stress 
intensity factors due to the presence of auxiliary (second) crack. The presence of second crack generates a finite 
value of mode-II stress intensity factor, even though the loading is purely in mode-I. On the basis of present 
analysis, it has been noticed that the extended finite element method has facilitated the modeling of various crack 
configurations, without a need to re-mesh or generate a conformal mesh. The results have been found to be accurate 
even with a coarse mesh. It is also observed that hard inclusion gives minimum stress intensity factor and hole gives 
maximum. On the basis of these simulations, it was found that the presence of multiple discontinuities (holes and 
minor cracks) significantly affect the stress intensity factors (SIFs) of the material. Moreover, the values of 
equivalent mode-I SIF increase with the increase in number of discontinuities. The effect of holes is more severe as 
compared to inclusions and cracks.   

REFERENCES 

[1] Belytschko T., Black T., 1999, Elastic crack growth in finite elements with minimal remeshing, International Journal 
for Numerical Methods in Engineering 45: 601-620. 

[2] Melenk J. M., Babuska I., 1996, The partition of unity finite element method: basic theory and applications, Computer 
Methods in Applied Mechanics and Engineering 139: 289-314. 

[3] Babuska I., Melenk J. M., 1997, The partition of unity method, International Journal for Numerical Methods in 
Engineering 40: 727-758. 

[4] Fleming M., Chu Y. A., Moran B., Belytschko T., 1997, Enriched element-free Galerkin methods for crack-tip fields, 
International Journal for Numerical Methods in Engineering 40 : 1483-1504. 

[5] Moës N., Dolbow J., Belytschko T., 1999, A finite element method for crack growth without remeshing, International 
Journal for Numerical Methods in Engineering 46: 131-150. 

[6] Daux C., Moës N., Dolbow J., Sukumar N., Belytschko T., 2000, Arbitrary branched and intersecting cracks with the 
extended finite element method, International Journal for Numerical Methods in Engineering  48: 1741-1760. 

[7] Sukumar N., Moës N., Moran B., Belytschko T., 2000, Extended finite element method for three-dimensional crack 
modelling, International Journal for Numerical Methods in Engineering 48: 1549-1570. 

[8] Dolbow J., Moës N., Belytschko T., 2000, Modelling fracture in Mindlin–Reissner plates with the extended finite 
element method, International Journal of Solids and Structures 37: 7161-7183. 

[9] Dolbow J., Moës N., Belytschko T., 2001, An extended finite element method for modeling crack growth with 
frictional contact, Computer Methods in Applied Mechanics and Engineering 190: 6825-6846. 

[10] Areias P., Belytschko T., 2005, Analysis of three-dimensional crack initiation and propagation using exteneded finite 
element method, International Journal for Numerical Methods in Engineering 63: 760-788. 

[11] Nagashima T., Omoto Y., Tani S., 2003, Stress intensity factor analysis of interface cracks using X-FEM, International 
Journal of Numerical Methods in Engineering 56: 1151-1173. 

[12] Liu X. Y., Xiao Q. Z., Karihaloo B. L., 2004, XFEM for direct evaluation of mixed mode SIFs in homogeneous and bi-
materials, International Journal of Numerical Methods in Engineering 59: 1113-1118. 

[13] Sukumar N., Chopp D. , Moes N., Belytschko T., 2001, Modelling holes and inclusions by level sets in the extended 
finite element method, Computer Methods in Applied Mechanics and Engineering 190: 6183-6200. 



421                    K. Sharma 

© 2014 IAU, Arak Branch 

[14] Alves M., Rossi R., 2003, A modidied element-free galerkin method with essential boundary conditions enforced by an 
extended partition of unity finite element weight function, International Journal for Numerical Methods in Engineering  
57 : 1523-1552. 

[15] Sukumar N., Prévost J. H., 2003, Modelling quasi-static crack growth with the extended finite element method Part I: 
Computer implementation, International Journal of Solids and Structures 40: 7513-7537. 

[16] Huang R., Sukumar N., Prévost J. H. , 2003, Modeling quasi-static crack growth with the extended finite element 
method Part II: Numerical applications, International Journal of Solids and Structures 40: 7539-7552. 

[17] Zi G., Belytschko T., 2003, New crack-tip elements for XFEM and applications to cohesive cracks, International 
Journal for Numerical Methods in Engineering  57: 2221-2240. 

[18] Mergheim J., Kuhl E., Steinmann P., 2005, A finite element method for the computational modelling of cohesive 
cracks, International Journal for Numerical Methods in Engineering 63: 276-289. 

[19] Sukumar N., Huang Z. Y., Prévost J. H., Suo Z., 2004, Partition of unity enrichment for bimaterial interface cracks, 
International Journal for Numerical Methods in Engineering  59: 1075-1102. 


