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 ABSTRACT 

 In this paper, static and free vibrations behaviors of the orthotropic functionally graded 

material (FGM) plates resting on the two-parameter elastic foundation are analyzed by 

the a mesh-free method based on the first order shear deformation plate theory (FSDT). 

The mesh-free method is based on moving least squares (MLS) shape functions and 

essential boundary conditions are imposed by transfer function method. The orthotropic 

FGM plates are made of two orthotropic materials and their volume fractions are varied 

smoothly along the plate thickness. The convergence of the method is demonstrated and 

to validate the results, comparisons are made with finite element method (FEM) and the 

others available solutions for both homogeneous and FGM plates then numerical 

examples are provided to investigate the effects of material distributions, elastic 

foundation coefficients, geometrical dimensions, applied force and boundary conditions 

on the static and vibrational characteristics of the orthotropic FGM plates.                       

     © 2017 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 UNCTIONALLY graded materials are classified as novel composite materials with gradient compositional 

variation. This effect can be alleviated by functionally grading the material to have a smooth spatial variation of 

material composition, with ceramic-rich material and metal-rich material in regions where mechanical properties, 

such as toughness, need to be high. Therefore FGMs have a non-uniform microstructure and a continuously variable 

macrostructure. FGMs are widely used in many structural applications such as aerospace, energy conversion, 

nuclear, civil, heat generators and automotive because of their high performance of heat resistant [1]. They may also 

be supported by an elastic foundation. These kinds of plates are mainly used in concrete roads, raft, and mat 

foundations of buildings and reinforced concrete pavements of airport runways. To describe the interaction between 

plate and foundation, various kinds of foundation models have been proposed. The simple stone is Winkler or one-

parameter model which regards the foundation as a series of separated spring without coupling effects between each 

other. This model was improved by Pasternak by adding a shear spring to simulate the interactions between the 

separated springs in the Winkler model. The Pasternak or two-parameter model is widely used to describe the 

mechanical behavior of structure-foundation interactions [2].  

Several numerical and analytical solutions have been presented for the analysis of FG plates. The classical plate 

theory (CPT), which neglects the transverse shear deformation effect, provides reasonable results for thin plate. It 
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underestimates deflections and overestimates frequencies as well as buckling loads of moderately thick plate [3]. So, 

many shear deformation plate theories which account for the transverse shear deformation effect have been 

developed for overcoming on the limitation of CPT. The Reissner [4] and Mindlin [5] theories are known as first 

order shear deformation plate theory. FSDT provides a sufficiently accurate description of response for thin to 

moderately thick plate [6]. The performance of the FSDT is strongly dependent on shear correction factors which 

are sensitive not only to the material and geometric properties but to the loading and boundary conditions. To avoid 

the use of shear correction factor and to include the actual cross-section warping of the plate, higher-order shear 

deformation theories (HSDTs) have been extensively developed, considering the higher-order variation of in-plane 

displacement through the thickness [7]. Matsunaga [8] presented natural frequencies and buckling stresses of FGM 

plates by taking into account the effects of transverse shear and normal deformations and rotatory inertia based on 

two-dimensional (2-D) higher-order theory. 

Malekzadeh [9] studied free vibration analysis of thick FG plates supported on two-parameter elastic foundations 

by using Differential Quadrature (DQ) method and based on the three-dimensional elasticity theory. Elasticity 

solution for free vibrations analysis of functionally graded fiber reinforced plates on elastic foundation was studied 

by Yas and Sobhani [10]. Ferreira et al. [11] presented static deformations and free vibrations of shear flexible 

isotropic and laminated composite plates with a FSDT theory based on a high order collocation method. They also 

analyzed isotropic and laminated plates by Kansa’s non-symmetric radial basis function collocation method based 

on a HSDT [12]. Nie and Batra [13] presented static deformations of FG polar-orthotropic cylinders with elliptical 

inner and circular outer surfaces. Zhang et al. [14] presented nonlinear dynamics and chaos of a simply supported 

orthotropic FGM rectangular plate in thermal environment and subjected to parametric and external excitations 

based on the Reddy’s third-order shear deformation plate theory and Galerkin procedure. The free vibration analysis 

of initially stressed thick simply supported functionally graded curved panel resting on two-parameter elastic 

foundation, subjected in thermal environment is studied using the three-dimensional elasticity formulation by Farid 

et al. [15]. Thai and Choi [2,6] developed a refined plate theory for free vibration and buckling analyses of FGM 

plates resting on elastic foundation. Zhu et al. [16] studied on bending and free vibration analyses of thin-to-

moderately thick functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plates using the FEM 

based on the FSDT plate theory. Jam et al. [17] focused on free vibration characteristics of rectangular FGM plates 

resting on Pasternak foundation based on the three-dimensional elasticity theory and by means of the generalized 

DQM. Alibeigloo and Liew [18] presented bending behavior of FG-CNTRC rectangular plate with simply supported 

edges subjected to thermo-mechanical loads based on three-dimensional theory of elasticity. Asemi and Shariyat 

[19] developed a highly accurate nonlinear three-dimensional energy-based finite element elasticity formulation for 

buckling investigation of anisotropic FGM plates with arbitrary orthotropy directions. They used a full compatible 

Hermitian element with 168 degrees of freedom, which satisfies continuity of the strain and stress components at the 

mutual edges and nodes of the element a priori to achieve most accurate results. Mansouri and Shariyat [20] 

investigated on the thermal buckling of the orthotropic FGM plates. They considered the effects of the bending-

extension-shear coupling and pre-buckling by using a DQ method. They also presented thermo-mechanical buckling 

analysis of the orthotropic auxetic plates (with negative Poisson ratios) in the hygrothermal environments and 

resting on an elastic foundation [21]. Shariyat and Asemi [22] used a non-linear FEM and three-dimensional 

elasticity theory to investigate shear buckling of the orthotropic heterogeneous FGM plates resting on Winkler 

elastic foundation. Sofiyev et al. [23] presented analytical formulations and solutions for the stability analysis of 

heterogeneous orthotropic truncated conical shell subjected to external (lateral and hydrostatic) pressures with mixed 

boundary conditions using the Donnell shell theory. Moradi-Dastjerdi et al. [24] studied on the free vibration 

analysis of FG-CNTRC sandwich plates resting on two-parameter elastic foundation by a refined plate theory and 

Navier’s method. 

Some forms of mesh-free method were also used to analysis of FGM structures. Static, free vibration, dynamic 

and stress wave propagation analysis of FGM cylinders are presented by the same mesh-free method which used in 

this paper [25-27]. But in these work, structures are isotropic and axisymmetric cylinders. Moradi-Dastjerdi et al. 

[28] studied free vibration analysis of orthotropic FGM cylinders by the same mesh-free method. Dinis et al. [29] 

presented a three-dimensional shell-like approach for the analysis of isotropic and orthotropic thin plates and shells 

using natural neighbour radial point interpolation method which is a kind of mesh-free method based on radial basis 

function. Rezaei Mojdehi et al. [30] presented three dimensional (3D) static and dynamic analysis of thick isotropic 

FGM plates based on the Meshless Local Petrov–Galerkin (MLPG) which is used 3D-MLS shape functions. Lei et 

al. [31-32] studied buckling and free vibration analyses of FG-CNTRC plates, using the element-free kp-Ritz 

method based on FSDT. But in an absorbing work, Yaghoubshahi and Alinia [33] developed Element Free Galerkin 

(EFG) method based on HSDT to eliminate transverse shear locking in analysis of laminated composite plates and 

compared their results with those obtained by EFG procedure based on FSDT. Finally in two near works, Zhang et 
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al. [34-35] proposed an element-free based improved moving least squares-Ritz (IMLS-Ritz) method and FSDT to 

study the buckling behavior of FG-CNTRC plates resting on Winkler foundations and nonlinear bending of these 

plates resting on two-parameter elastic foundation.  

It can be seen that static and free vibration analyses of the orthotropic FGM plates (made of two orthotropic 

materials) have not been investigated in past studies. So, in this paper, based on the first order shear deformation 

plate theory, a mesh-free method is developed to investigate static and free vibration characteristics of the 

orthotropic FGM plates resting on two-parameter elastic foundation. In the mesh-free method, MLS shape functions 

are used for approximation of displacement field in the weak form of motion equation and the transformation 

method is used for imposition of essential boundary conditions. This mesh-free method does not increase the 

calculations against EFG [28]. The orthotropic FGM plates are assumed to be composed of two orthotropic materials 

and their volume fractions are varied smoothly along the plate thickness. The influences of Pasternak’s elastic 

foundation coefficients on the static and free vibrational behaviors of the orthotropic FGM plates are examined. The 

effects of material distributions, plate thickness-to-width ratio, plate aspect ratio, applied force and boundary 

conditions are also examined. 

2    MATERIAL PROPERTIES IN ORTHOTROPIC FGM PLATES  

Consider an orthotropic plate of length a, width b, thickness h, with an arbitrary combination of boundary conditions 

along the four edges, as shown in Fig. 1. Material properties of the plate are assumed to be graded along the 

thickness. The profile of this variation has important effects on the plate behavior. Several models have been 

proposed for variation of material properties. Among these models, volume fraction model is used more than other 

models. In this model, material properties of plate are varied as follows [2]: 
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where P is an indicator for material properties of plate that is used instead of modulus elasticity, E, Poisson's ratio, 
 , and density,  . Also, the subscripts b and t represent the bottom and top constituents, respectively; and n is the 

volume fraction exponent. The value of n equal to zero represents a homogeneous plate made of top constituents, 

whereas infinite n indicates a homogeneous plate made of bottom constituents. 

 

 

 

 

 

 

 

 

 

 

Fig.1 

Schematic of FGM plate resting on two-parameter elastic 

foundation. 

3    GOVERNING EQUATIONS 

Based on the FSDT, the displacement components can be defined as [35]: 
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where u, v and w are displacements in the x, y, z directions, respectively. 0 0,u v  and 0w denote midplane 

displacements, x and y rotations of normal to the midplane about y-axis and x-axis, respectively. The kinematic 

relations can be obtained as follows [35]:  

 

0 0ε , γ
T T

xx yy xy yz xzzk              
 

(3) 

 

where: 

 

0
0

0 0 0

0
0 0

ε , , γ

x
y

y

x

x y

u x x
w yv z w y

v y k y
u z w x w x

u y v x y x







 

     
               

              
                           

 

 

 

(4) 

 

The linear constitutive relations of a FG plate can be written as [36]: 
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In which   denotes the transverse shear correction coefficient, which is suggested as 5 / 6  for homogeneous 

materials and 12 125 / (6 ( ( ) ( ) ( ) ( )))t t b bz V z z V z      for FGMs where (1/ 2 / )n
tV z h  and 1b tV V   

denote volume fraction of materials [36]. Also where: 
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Also by considering of the Pasternak foundation model, total energy of the plate is as [2]:  
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(7) 

 

where q is the applied load, wk and sk  are coefficients of Winkler and Pasternak foundation. If the foundation is 

modeled as the linear Winkler foundation, the coefficient sk  in Eq. (7) is zero. 

4    MESH-FREE NUMERICAL ANALYSIS 

In these analyses moving least square shape functions introduced by Lancaster and Salkauskas [37] is used for  
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approximation of displacement vector in the weak form of motion equation. Displacement vector u can be 

approximated by MLS shape functions as follows [26]: 
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where N is the total number of nodes, d̂ is virtual nodal values vector and i  is MLS shape function of node located 

at ( , ) iX x y X and they are defined as follows: 
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In the above equation, W is cubic Spline weight function, P is base vector and H is moment matrix and are 

defined as follows: 
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By using of the MLS shape function, Eq. (3) can be written as:  
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In which [30]: 
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For elastic foundation, φw  and Bp  can be also defined as following: 
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Substitution of Eqs.(5) and (13) in Eq. (7) leads to: 
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In which the components of the extensional stiffness A, bending-extensional coupling stiffness B , bending 

stiffness D, transverse shear stiffness As  and also Gi  and M  are introduced for mass matrix and they are defined 

as [32]:  
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where 0 1,I I  and 2I  are the normal, coupled normal-rotary and rotary inertial coefficients, respectively and defined 

by: 
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It can be noticed that the arrays of bending-extensional coupling stiffness matrix, B , are zero for symmetric 

laminated composites. Finally, by a derivative with respect to displacement vector, d̂ , the Eq. (16) can be expressed 

as:  
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In which, M, K and F are mass matrix, stiffness matrix and force vector, respectively and are defined as: 
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In which, ,m bK K  and sK  are stiffness matrixes of extensional, bending-extensional and bending, respectively and 

also, wK  and pK are stiffness matrixes that represented the Winkler and Pasternak elastic foundations. They are 

defined as: 
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For numerical integration, problem domain is discretized to a set of background cells with gauss points inside 

each cell. Then global stiffness matrix K is obtained numerically by sweeping all gauss points.  

Imposition of essential boundary conditions in the system of Eq. (20) is not possible. Because MLS shape 

functions do not satisfy the Kronecker delta property. In this work transformation method is used for imposition of 

essential boundary conditions. For this purpose transformation matrix is formed by establishing relation between 

nodal displacement vector d and virtual displacement vector d̂ . 
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T is the transformation matrix that is a (5N×5N) matrix and for each node is defined as [26]: 
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By using Eq. (26), system of linear Eq. (20) can be rearranged to: 
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where, 
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Now the essential B. Cs. can be enforced to the modified equations system (28) easily like the finite element 

method.  

For static problem, the mass matrix is eliminated and Eq. (28) is changed to:  

 

ˆ ˆKd F  (30) 

 

So, the stress and displacement fields of the plate can be derived by solving this equations system. In the absence 

of external forces, Eq. (28) is also simplified as follows: 

 

ˆ ˆMd Kd 0   (31) 

 

So, natural frequencies and mode shapes of the plate are determined by solving this eigenvalue problem. 

5    RESULTS AND DISCUSSIONS  

In this section, the static and free vibration analyses are presented to investigate the mechanical characteristics of the 

orthotropic FGM plates by several numerical examples. The plates are assumed resting on two-parameter elastic 

foundation and the developed mesh-free method is used. At first, convergence and accuracy of the mesh-free 
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method on static and vibrational behaviours of the plates are examined by a comparison between the results and 

reported results in literatures. Then, new mesh-free results on the static and free vibration characteristics of the 

orthotropic FGM plates on the elastic foundation are reported. In the following simulations, material properties of 

the orthotropic FGM plates are assumed to vary from Glass-Epoxy at bottom to Graphite-Epoxy at top of the plate 

according to the Eq. (1). The material properties of Glass-Epoxy and Graphite-Epoxy are reported in Table 1. In all 

examples of orthotropic plates, the foundation parameters are also presented in the non-dimensional form of 
4 /w wK k a D  and 2 / ,s sK k a D  in which 3 2

1 12/12(1 )D E h   is a reference bending rigidity of the plate 

and is based on the mechanical properties of Graphite-Epoxy. The non-dimensional deflection and natural frequency 

of the orthotropic FGM plates are also based on the mechanical properties of Graphite-Epoxy and Glass-Epoxy, 

respectively and defined as [11]: 

 
3 4

1 010w E h w q a  (32) 

 

1
ˆ h E    (33) 

 

In which, 0q  is the value of applied (concentrated or uniformly distributed) load and w is central deflection.  

 
Table 1 

Mechanical properties of the applied orthotropic materials [38]. 

Materials E1 

(GPa) 
E2 

(GPa) 
E3 

(GPa) 

υ23 υ31 υ12 G23 

(GPa) 
G31 

(GPa) 
G12 

(GPa) 

ρ 

(kg/m3) 

Graphite-Epoxy 155 12.1 12.1 0.458 0.248 0.248 3.2   4.4 4.4 1500 

Glass-Epoxy 50   15.2 15.2 0.428 0.254 0.254 3.28 4.7 4.7 1800 

5.1 Validation of models 

In the first example, consider a simply supported homogeneous square plate under uniformly distributed load, 0q . In 

this example, the non-dimensional deflection of the plate is defined as 2 3 4
0ˆ 10w Eh w q a . The convergence of the 

developed mesh-free method in central non-dimensional deflection of the plate with / 0.02h a   is shown in Fig. 2. 

It can be seen that the applied mesh-free method has very good convergence and agreement with exact results that 

are reported by Akhras et al. [39] in the bending analysis of plate. The deflections of this plate for various values of 

 / 0.1,  0.05,  0.02 and 0.01h a  are also listed in Table 2. The accuracy of the applied method is evident by 

comparison with the exact [39] and the other reported results [11,12,40]. The figure and table results show that, by 

using of only 11×11 node arrangement, the applied method has more accuracy than FEM. 
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Fig.2 

Convergence of the central non-dimensional deflection, ŵ , 

for different number of node in each direction. 

 

In the second example of validation, consider a simply supported FGM square plate as Thai and Choi [2]. The 

convergence of the applied mesh-free method in non-dimensional fundamental frequency of the plates resting on 

Winkler-Pasternak elastic foundation with / 0.2, 100, 100w sh a K K    and for two values of volume fraction 

exponent, 0 and 1n n  , are shown in Figs. 3 and 4, respectively. This figure shows that, by using of only 5×5 
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node arrangement, the applied method has a very good accuracy and agreement with reported results by Thai and 

Choi [2] in homogenous ( 0n  ) and FGM ( 1n  ) plates. Also, the non-dimensional fundamental frequency of this 

plate are presented in Table 3. for various values of  / 0.05,  0.1 and 0.2h a  and elastic foundation coefficients. 

This table reveals that the applied method has very good accuracy and agreement with the reported results especially 

in thinner plates.  

 
Table 2 

Comparison of the central non-dimensional deflections, ŵ , in simply supported square plates subjected to uniformly distributed 

load. 

Non-dimensional Deflection Method h/a 

4.7864 Present 0.1 
4.791 Exact (Akhras et al. [39]) 

4.7866 Ferreira et al. 2003 

4.7912 Ferreira et al. 2009 

4.770 FEM (Reddy [40]) 

4.6274 Present 0.05 

4.625 Exact (Akhras et al. [39]) 

4.6132 Ferreira et al. 2003 

4.6254 Ferreira et al. 2009 

4.570 FEM (Reddy [40]) 

4.5829 Present 0.02 

4.579 Exact (Akhras et al. [39]) 

4.5753 Ferreira et al. 2003 

4.5788 Ferreira et al. 2009 

4.496 FEM (Reddy [40]) 

4.5765 Present 0.01 

4.572 Exact (Akhras et al. [39]) 

4.5737 Ferreira et al. 2003 

4.5716 Ferreira et al. 2009 

4.482 FEM (Reddy [40]) 
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Fig.3 

Convergence of the non-dimensional fundamental frequency, 

̂ , of the FGM plate with n=0, h/a=0.2, Kw=100, Ks=100 

for different number of node in each direction. 
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Fig.4 

Convergence of the non-dimensional fundamental frequency, 

̂ , of the FGM plate with n=1, h/a=0.2, Kw=100, Ks=100 

for different number of node in each direction. 
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5.2 Static analysis of orthotropic FGM plates 

At first, clamped square orthotropic FGM plates are considered. These plates are assumed under uniformly 

distributed load, 0q , and concentrated force, 0f , at the centre of plates with the same values. The central 

(maximum) non-dimensional deflections, w , of the orthotropic FGM plates are listed in Table 4. for various values 

of volume fraction exponents, 0,  0.1,  1,  10 and 100n  , elastic foundation coefficients, wK  and 0sK  and 100, 

and ratio of thickness to length of plate, / 0.1 and 0.2h a  . This table reveals that, the concentrated forced is 

caused more deflection than uniformly distributed load. The elastic foundation decreases the deflection and the 

effect of Pasternak coefficient, sK , on the deflection of plate is more than Winkler coefficient, wK . Increasing of 

the thickness plate increases the non-dimensional deflections because of the w  definition but the deflection is 

decreased by increasing of the thickness. But, the volume fraction exponent has an inverse manner in / 0.1h a  and 

0.2. In / 0.1h a  , increasing of n increases the deflection parameter (except in 0n  for concentrated force), but in 

/ 0.2h a  , this increasing, decreases (except in 100n  ) the deflection parameter. So, the minimum deflections are 

occurred at 0.1n   (for plates resting on elastic foundation) and 10n   for the plates subjected the concentrated 

force with / 0.1h a  and 0.2, respectively. For the orthotropic FGM plates under uniformly distributed load and 

with / 0.1h a  , minimum and maximum values of deflections are occurred at 10n   (homogeneous plates made of 

fully Graphite-Epoxy) and 100n  , respectively. 

 
Table 3  

Comparison of the non-dimensional fundamental frequency, ̂ , in simply supported square FGM plates. 

Kw Ks h/a Method n=0 n=1 

0 0 0.05 Present 0.0291 0.0222 

Baferani et al. 2011 0.0291 0.0227 

Thai & Choi, 2011 0.0291 0.0222 

0.1 Present 0.1135 0.0869 

Baferani et al. 2011 0.1134 0.0891 

Thai & Choi, 2011 0.1135 0.0869 

0.2 Present 0.4167 0.3216 

Baferani et al. 2011 0.4154 0.3299 

Thai & Choi, 2011 0.4154 0.3207 

100 100 0.05 Present 0.0411 0.0384 

Baferani et al. 2011 0.0411 0.0388 

Thai & Choi, 2011 0.0411 0.0384 

0.1 Present 0.1618 0.1519 

Baferani et al. 2011 0.1619 0.1542 

Thai & Choi, 2011 0.1619 0.1520 

0.2 Present 0.6167 0.5857 
Baferani et al. 2011 0.6162 0.5978 

Thai & Choi, 2011 0.6162 0.5855 

 

Table 4  

The central non-dimensional deflections, w , in clamped square orthotropic FGM plates on elastic foundation. 

Force kind h/a Kw Ks n 

0 0.1 1 10 100 

f0 0.1 0 0   7.7010   7.7165   7.9937   8.2829   8.6221 

100   1.0707   1.0705   1.0712   1.0716   1.0736 

100 0   6.7835   6.7808   6.8895   6.9996   7.1542 

100   1.0605   1.0602   1.0608   1.0610   1.0628 

0.2 0 0 24.3850   24.2975 24.1432 24.0635 24.2839 

100   1.2106   1.2104   1.2098   1.2093   1.2096 

100 0 20.5518 20.4827 20.2699 20.0917 20.1324 

100   1.1990   1.1988   1.1982   1.1976   1.1979 

q0 0.1 0 0   0.7842   0.7959   0.8880   0.9798   1.0686 

100   0.0746   0.0747   0.0753   0.0758   0.0762 

100 0   0.5197   0.5254   0.5674   0.6064   0.6412 

100   0.0711   0.0711   0.0717   0.0722   0.0726 
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Fig.5 

The central non-dimensional deflection, w , versus Winkler 

coefficient for different Pasternak coefficient values. 

 

 
To investigate the effect of elastic foundation coefficients, simply supported orthotropic FGM plates under 

uniformly distributed load are considered with / 1, / 0.1 and 1a b h a n   . The plates are resting on two-

parameter elastic foundation. Fig. 5 shows the central non-dimensional deflection, w , of the plates versus Winkler 

(linear) coefficient, wK , for various values of Pasternak (shear) coefficient, sK ,. It can be seen that, the deflection 

of the plates is decreased by increasing of each coefficients of elastic foundation, especially for their values that are 

more than one.  For values of 1wK  , variation of sK also has a big effect on the deflection of plates, but for 

100sK  , the variation of wK  has not an important effect on the deflection.  

Consider clamped orthotropic FGM plates under uniformly distributed load resting on two-parameter elastic 

foundation to investigated stress distribution along the thickness. The plates are square and with 

/ 0.1, 10wh a K  and 100sK  . Figs. 6 show the stress distributions of, , , ,xx yy xy xz    and yz , along the 

thickness for various values of volume fraction exponent, 0,  0.1,  1n  and 10 at central point of the plate. These 

figures reveal that the values of normal stresses are so more than the values of shear stresses and the value of volume 

fraction exponent has significant effect on stress distributions. 
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Fig.6 

Stress distributions of, a) xx  b) yy  c) xy  d) xz  e) yz , along the thickness at central point of the clamped orthotropic 

FGM plates under uniformly distributed load  resting on the elastic foundation. 

5.3 Free vibration analysis of orthotropic FGM plates 

In the first example, the effects of elastic foundation coefficients, plate thickness and materials distribution are 

investigated on the vibrational behaviours of square orthotropic FGM plates. The non-dimensional fundamental 

frequencies of these square clamed plates are presented in Table 5. for various values of elastic foundation 

coefficients, wK  and 0sK  and 100, ratio of plate thickness, / 0.05,  0.1h a  and 0.2, and volume fraction 

exponent, 0,  0.1,  1,  10n  and 100. This table shows that increasing of the thickness plate increases the frequency 

parameter in the all cases. In most cases, increasing of the volume fraction exponent decreases the frequency 

parameter. Increasing in the values of elastic foundation coefficients also leads to increasing in frequency parameter 

in while Pasternak coefficient, sK , has a bigger effect than the other one on the vibrational behaviours of the 

orthotropic FGM plates. 

In the second example, the effects of boundary conditions and aspect ratio, /a b , are investigated on the 

vibrational behaviours of orthotropic FGM plates. Table 6. shows the non-dimensional fundamental frequencies, ̂ , 

for orthotropic FGM plates with / 0.1, 100, 10, / 1w sh b K K a b     and 3, various kinds of boundary conditions 

(C for Clamed, F for Free and S for simply supported edge)and for various values of n. It is evident that the 

frequency parameter is dramatically decreased by increasing in the ratio of /a b from 1 to 3 because the plate 

manners were nearing to beam manners. The clamped plate and free plate in all edges also have the biggest and the 

lowest values of frequency parameter, respectively. It can be seen that, CSCS and SSSS square plates almost have 

the same frequency parameter but in rectangular plate, the CSCS plate has higher frequency parameter values. 

Finally, increasing of the volume fraction exponent decreases the frequency parameter in the all cases because the 

fully Graphite-Epoxy plate is change to fully Glass-Epoxy plate.  

 
Table 5  
Non-dimensional fundamental frequency, ̂ , in clamped orthotropic FGM plates with a/b=1. 

h/a Kw Ks n 

0 0.1 1 10 100 

0.05 0 0 0.0285 0.0277 0.0239 0.0212 0.0198 

100 0.0713 0.0705 0.0669 0.0639 0.0631 

100 0 0.0319 0.0312 0.0276 0.0250 0.0237 

100 0.0727 0.0719 0.0682 0.0653 0.0644 

0.1 0 0 0.0850 0.0837 0.0767 0.0707 0.0675 

100 0.2166 0.2166 0.2167 0.2169 0.2169 

100 0 0.1025 0.1011 0.0941 0.0882 0.0853 

100 0.2166 0.2166 0.2167 0.2169 0.2169 

0.2 0 0 0.2122 0.2106 0.2016 0.1930 0.1888 

100 0.4331 0.4331 0.4333 0.4337 0.4337 

100 0 0.3119 0.3093 0.2969 0.2854 0.2816 

100 0.4331 0.4331 0.4333 0.4337 0.4337 
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Table 6 

Non-dimensional fundamental frequency, ̂ , in orthotropic FGM plates with h/b=0.1, Kw=100, Ks=10. 

B.Cs. a/b n 

0 0.1 1 10 100 

CCCC 1 0.1316 0.1301 0.1228 0.1166 0.1142 

3 0.0444 0.0443 0.0432 0.0422 0.0422 

CCCS 1 0.1244 0.1230 0.1161 0.1105 0.1086 

3 0.0435 0.0434 0.0426 0.0418 0.0418 

CCSS 1 0.1217 0.1202 0.1133 0.1077 0.1057 

3 0.0358 0.0357 0.0348 0.0340 0.0340 

CSCS 1 0.1021 0.1015 0.0990 0.0968 0.0964 

3 0.0429 0.0429 0.0422 0.0414 0.0415 

CCSF 1 0.0939 0.0931 0.0894 0.0862 0.0855 

3 0.0335 0.0334 0.0329 0.0323 0.0324 

SSSS 1 0.1021 0.1015 0.0990 0.0968 0.0964 

3 0.0286 0.0285 0.0278 0.0271 0.0270 

SSFF 1 0.0646 0.0642 0.0626 0.0612 0.0609 

3 0.0124 0.0123 0.0118 0.0114 0.0113 

FFFF 1 0.0575 0.0570 0.0548 0.0529 0.0525 

3 0.0064 0.0063 0.0061 0.0059 0.0058 

6    CONCLUSIONS 

In this paper, static and free vibrations behaviors of the orthotropic FGM plates resting on the two-parameter elastic 

foundation were analyzed by the developed mesh-free method based on the first order shear deformation plate 

theory. The mesh-free method was based on MLS shape functions and essential boundary conditions were imposed 

by transfer function method. The orthotropic FGM plates were made of two orthotropic materials and their volume 

fractions were varied smoothly along the plate thickness.Numerical examples were provided to investigate the static 

and vibrational characteristics of the orthotropic FGM plates with different material distributions, elastic foundation 

coefficients, geometrical dimensions, applied force and boundary conditions. It is concluded that: 

 The mesh-free method has a good convergence and accuracy in static and vibrational analyses of the 

orthotropic FGM plates and the method has more accuracy than FEM. 

 The elastic foundation decreases deflection and increases fundamental frequency and also, the effect of shear 

coefficient is more than normal one. 

 For high values of sK , the variation of wK has not an important effect on the deflection. 

 Increasing of the plate thickness decreases deflection, but increases frequency of the plates. 

 The volume fraction exponent has an inverse manner on the bending behaviour of the plates with various 

thicknesses but in most cases, increasing of the volume fraction exponent decreases the frequency 

parameter. 

 The values of normal stresses are so more than the values of shear stresses and the value of volume fraction 

exponent has significant effect on stress distributions. 

 The frequency parameter is dramatically decreased by increasing in the aspect ratio because the plate 

manners were nearing to beam manners. 

 The essential boundary conditions have significant effect on the vibrational behaviors of the orthotropic 

FGM plate as the clamped plate and free plate in all edges have the biggest and the lowest values of 

frequency parameter, respectively. 
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