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 ABSTRACT 

 Auxetic cellular solids in the forms of honeycombs and foams have great potential in a diverse 
range of applications, including as core material in curved sandwich panel composite components, 
radome applications, directional pass band filters, adaptive and deployable structures, filters and 
sieves, seat cushion material, energy absorption components, viscoelastic damping materials and 
fastening devices etc. In this paper, the characteristic of wave propagation in sandwich panel with 
auxetic core is analyzed. A three-layer sandwich panel is considered which is discretized in the 
thickness direction by using semi-analytical finite element method. Wave propagation equations 
are obtained through some algebraic manipulation and applying standard finite element 
assembling procedures. The mechanical properties of auxetic core can be described by the 
geometric parameters of the unit cell and mechanical properties of the virgin core material. The 
characteristics of wave propagation in sandwich panel with conventional hexagonal honeycomb 
core and re-entrant auxetic core are discussed, and effects of panel thickness, geometric properties 
of unit cell on dispersive curves are also discussed. Variations of Poisson’s ratio and core density 
with inclined angle are presented. 

        © 2010 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 HE Poisson’s ratio of a material is defined as the ratio of the lateral contractile strain to the longitudinal tensile 
strain for a material undergoing tension in the longitudinal direction. Most materials have positive Poisson’s 

ratio, which means the materials contract transversely under unaxial extension, and expand laterally when 
compressed in one direction. Materials with negative Poisson’s ratio exhibit the unusual property of becoming fatter 
when stretched and thinner when compressed. Therefore, the negative Poisson’s ratio has been treated as an 
abnormally elastic parameter for a long time. Evans etc. [1] termed materials and structures with negative Poisson’s 
ratio as auxetics or auxetic materials. 

Compared with other conventional materials, auxetic materials exhibit various enhanced physical and 
mechanical characteristics from increased indentation, impact and failure resistance to improved acoustic damping 
properties, and have attracted considerable attention in both functional and structural materials applications in recent 
years. Alderson and Alderson [2] presented a review covered aspects of auxetic materials that are considered most 
relevant to aerospace engineering applications, and discussed the potential of auxetics as strain amplifiers, 
piezoelectric devices, and structural health monitoring components. Hadjigeorgiou and Stavroulakis [3] introduced 
auxetic materials into the design of smart structure, and the problem of the shape control of sandwich beams is 
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analyzed under loading conditions by using auxetic materials as core and piezoelectric actuators as face layers to 
provide control forces. Yu and Cleghorn [4] investigated the free flexural vibration problem of symmetric 
rectangular honeycomb panels with simple support boundary conditions by using three different plate theories, in 
which the honeycomb core of hexagonal cells is modeled as a thick layer of orthotropic material. Remillat et al. [5] 
analyzed the problem of Lamb wave propagation in cross-ply laminate composites with through-the-thickness 
negative Poisson’s ratio by using classical laminate theory. Tee et al. [6] investigated the flexural wave propagation 
properties of a novel class of negative Poisson’s ratio honeycombs with tetrachiral topology numerically and 
experimentally.  

Wan et al. [7] developed a theoretical approach to predict negative Poisson’s ratios of auxetic honeycombs based 
on the large deflection model, which is also suitable to small flexure and elastic buckling. They found that the 
Poisson’s ratio of auxetic honeycombs are not a constant at large deformation and vary significantly with the strain. 
Scarpa and Tomlinson [8] analyzed vibration of sandwich plates with in-plane negative Poisson’s ratio values based 
on the first order sandwich plate theory, in which the anisotropic mechanical properties are described by using the 
cellular material theory. They found that the dynamic performance of a sandwich structure could be significantly 
improved with a proper design of the unit cell shape of the honeycomb. Ruzzene et al [9, 10], Ruzzene and Scarpa 
[11] studied the wave propagation problem in sandwich beam and plate with auxetic core, and two dimensional 
cellular structures. Their results presented some valuable application of auxetic materials. For auxetic honeycombs 
based on the deformation of the honeycomb cells influenced by flexure, stretching and hinging, the theoretical 
model has been developed to predict the elastic constants of honeycombs and derive expressions for the tensile 
moduli, shear moduli [12] and Poisson’s ratios.  

This paper discusses elastic wave propagation characteristics in sandwich panel comprised top and bottom outer 
skin layers bonded to an internal core material by adhesive interface layer. And both conventional hexagonal 
honeycomb with positive Poisson’s ratio and re-entrant auxetic honeycomb with negative Poisson’s ratio are 
considered to be the core materials. Effects of configuration of unit cell to dispersive property are discussed. 

2    SANDWICH PANEL MODEL 

A typical component used in aerospace applications-the sandwich panel composite, is considered, which comprises 
top and bottom outer skin layers bonded to an internal core material by adhesive interface layer. The outer skins are 
typically made out of aluminum or fibre-reinforced composite laminate material and provide in-plane strength and 
stiffness as well as protection to the internal materials. The core material provides out-of-plane strength and stiffness 
for low weight, which is typically a foam or a honeycomb, and can be metal, polymer, fibre-reinforced polymer etc. 
[2]. An infinite sandwich panel is considered in this paper, as shown in Fig.1 which includes top and bottom outer 
skin and internal core material. The bottom outer skin thickness is 1H , internal honeycomb core material thickness is 

2H  and top outer skin thickness is 3H , and the total thickness of the sandwich panel is 1 2 3H H H H   . 

The displacement, stress and strain fields are 
 

[ ]u v wu
T

=  (1)
 

x y z yz xz xy     σ
Té ù= ê úë û   (2) 

 

 

 

 
 
 
Fig. 1 
Model of sandwich panel with auxetic core. 
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x y z yz xz xy     ε
Té ù= ê úë û   (3) 

 
where , ,u v w  are displacement components in , ,x y z  directions, ij  is the stress components and ij  is the strain 

components. The constitutive relations of the material are 
 

σ Cε=  (4)
 

 
where C  is the stiffness matrix. According to Hamilton principle [13], 
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where   is the strain energy, K  is the kinetic energy and 
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Substituting the expressions of strain energy and kinetic energy in to the Hamilton equation 
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3     SEMI-ANALYTICAL FINITE ELEMENT METHOD 

Assuming the elastic wave propagation along the x-direction, the discretization procedure is performed in the panel 
thickness direction z by a set of one-dimensional finite elements with quadratic shape functions and three nodes, 
with three degrees of freedom per node, as shown in Fig.2 where 1 2 3, ,z z z  are coordinates of nodes 1, 2, 3 along z-

direction. The displacement vector can be approximated over the element domain as [14] 
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Fig. 2 
Discretization of sandwich panel. 
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where ( )jN z  is the shape functions, , ,xj yj zjU U U are the unknown nodal displacements in the 1 2 3, ,x x x  directions, k  

is wave vector component in x-direction,   is the circular frequency and 
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The strain vector in the element can be represented as a function of the nodal displacements [14] 
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By considering the total elements in the thickness, Hamilton formulation becomes to 
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where ( )eC  and ( ) e  are the element stiffness matrix and mass density, respectively. By substituting Eqs. (8) and 

(11) into Eq. (6) and some algebraic manipulation, the element strain energy and kinetic energy can be expressed as 
follow 
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Then, substituting Eqs. (14)-(15) into Eq. (13) yields 
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Applying standard finite element assembling procedures to Eq. (16) 
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where U  is the global vector of unknown nodal displacements and 
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Due to the arbitrariness of U in Eq. (18), the following wave equation is obtained 
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where U  is the global vector of nodal displacement components. When the waves propagate in the panel, there are 
the non-zero solutions of nodal displacement in Eq. (20) which needs the determinations of the coefficients matrices 
of Eq. (20) .equal to zero 
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1 2 3det i 0k k + + - =K K K M  (21)

 

 
The eigenvalue problem in Eq. (21) relates the wavenumber k  to the frequency  , one of them being given and 

the other being the eigenvalue to be solved. If k  is given, Eq. (21) is a eigenvalue problem with m  real eigenvalues 
2 .  If instead   is given, Eq. (21) is a eigenvalue problem with 2m  eigenvalues .k  The relation between wave 

length and wave number is 2 .k =  

4    HONEYCOMB CORE MATERIALS 

Two different honeycomb core materials, as shown in Fig.3 are introduced in this paper, the conventional hexagonal 
honeycomb with positive Poisson’s ratio and re-entrant auxetic honeycomb with negative Poisson’s ratio. The 
deformation configurations of the two materials under unaxial extension are also presented. The two honeycomb 
materials belong to cellular structure. According to Cellular Material Theory [16], mechanical property of cellular 
structure can be determined by geometric property of unit cell and mechanical behavior of origin material. Unit cells 
of two core materials discussed in the paper are shown in Fig.4 where l  is the length of the inclined cell rib, h  is 
the length of the vertical cell rib,   is the thickness of the cell rib,   is the inclined angle,   and   define the 

relative cell wall length and the wall’s slenderness ratio, respectively, which are important parameters in honeycomb 
property. Formulas in reference [16] are adopted for calculation of honeycomb core material property. 
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Fig. 3 
The honeycomb core in the sandwich plate (a) The conventional 
hexagonal honeycomb model (b) The re-entrant hexagonal 
honeycomb model. 

  

 

 

 
 
 
Fig. 4 
Geometric of the cell of honeycomb core. 
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where symbol “c” represents core material, E, G and   are Young’s moduli, shear moduli and mass density of the 

origin material. As Gibson and Ashby [16] pointed out each cell face of the sheared honeycombs subjected to a non-
uniform deformation, in which the initially plane honeycomb may not remain plane during loading. So, the 
transverse shear modulus c

yzG  of the core material is one important mechanical parameter in sandwich constructions, 

which can be evaluated from theorems of minimum potential and complementary strain energy by upper Voigt and 
lower Reuss bounds according to procedure in [15, 16]. 
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The actual value of the transverse shear modulus is dependent on the gauge thickness to length ratio H l  of the 

honeycomb itself. By considering the anisotropic property of honeycomb core material exhibited, stiffness matrix 
C  of internal core is obtained through the relation between stiffness matrix and Young’s moduli, shear modulus, 
Poisson’s ratio in reference [17]. 

5    NUMERICAL CALCULATION 

Considering the top and bottom outer skins are isotropic aluminium material, thickness of both outer skins is 

1 3 1 mmH H= = , and material parameters are: Young’s moduli is 69 GPa,E =  shear moduli is 26 GPaG = , 

Poisson’s ratio is 0.33= , density is 32700 kg/m= . The internal core is produced as honeycomb structure by using 

the same aluminum material, the thickness of the core is 2 3 mmH = . The relevant material property can be obtained 

from reference [16]. Figs. 5-6 plotted the effects of inclined angle   of the unit cell to Poisson’s ratio and density of 
the honeycomb structure with different values of   and 0.0138571 = . It can be seen that accompany with 

inclined angle turn to be negative values gradually, the Poisson’s ratio also come with negative values. And density 
of auxetic honeycomb can be much higher than conventional hexagonal honeycomb with lower   value. 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
Fig. 5 
Poisson’s ratio vs. cell inclined angle with different cell aspect ratio .  

  
  
  

Fig. 6 
Density vs. cell inclined angle with different cell aspect ratio .  
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Fig. 7 presented the dispersive curves of wave in sandwich panel with conventional honeycomb core material 
( 30 ) = and auxetic core material ( 30 ). =-  It can be seen that the curves located in two main zones, where 
both curves are close to each other in one lower zone and curves of regular hexagonal core are much higher than 
auxetic core in another zone. Fig. 8 presented effects of sandwich panel gauge thickness ( 3 mm, 5 mm, 7 mm)H=  to 

dispersive curves, which indicated the significant dependence of frequency over the gauge thickness ratio .H l  It 

can be seen that the curves move upwards with the decrease of gauge thickness .H  Fig. 9 presented effects of 
inclined angle   to dispersive curves. Considering results in Fig.7, it can be seen that the dispersive curves move 
upwards the curves with the increase of inclined angle   from negative values to positive values. And with the 
increase of negative inclined angle ,  the curves move to the lower zone.  

Fig.10 presented effects of length ratio   of vertical rib and inclined rib to dispersive curves with 30 =-  and 
0.0138571. =  According to the results of 1,2,3 =  it can be seen that   showed relatively significant effect on 

dispersive curves. And with the increase of ,  the curves move upwards. 
 
 

 

 
Fig. 7 
Dispersive curves of the sandwich panel with auxetic and regular 
honeycomb cores. 

  
  

 
Fig. 8 
Effects of sandwich thickness to the spectrum. 

  
  

 
Fig. 9 
Effects of inclined angle to the spectrum of the sandwich panel. 



Wave Propagation in Sandwich Panel with Auxetic Core                  401 

© 2010 IAU, Arak Branch 

 
Fig. 10 
Effects of cell aspect ratio to the spectrum of the sandwich panel. 

6    CONCLUSIONS 

Auxetic materials have exhibited great potential in aerospace engineering because of their negative Poisson’s ratio. 
Based on semi-analytical finite element method and cellular material theory, elastic wave propagation in sandwich 
panel with honeycomb core material has been analyzed in this paper. Both conventional hexagonal honeycomb with 
positive Poisson’s ratio and re-entrant auxetic honeycomb with negative Poisson’s ratio are chosen to be the core 
materials. Effects of geometric property of unit cell to dispersive characteristic are discussed. The numerical results 
showed that sandwich panel gauge thickness, length ratio of horizontal rib to inclined rib, and inclined angle of unit 
cell have much more effects on dispersive property. 

ACKNOWLEDGMENTS 

This work is supported by the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 
20060699001) and the Project of New Century Excellent Talents of China (Grant No. NCET-04-0965) and National 
Aerospace Science Foundation of China (04I53072). The authors thank the anonymous reviewers for their helpful 
suggestions. 

REFERENCES 

[1] Evans K.E., Nkansah M.A., Hutchinson I.J., Rogers S.C., 1991, Molecular network design, Nature 353: 12-125. 
[2] Alderson A., Alderson K.L., 2007, Auxetic materials, Proceeding of Institute of Mechanical Engineers, Part G: 

Journal of Aerospace Engineering 221: 565-575. 
[3] Hadjigeorgiou E.P., Stavroulakis G.E., 2004, The use of auxetic materials in smart structures, Computational Methods 

in Science and Technology 10(2): 147-160. 
[4] Yu S.D., Cleghorn W.L., 2005, Free flexural vibration analysis of symmetric honeycomb panels, Journal of Sound and 

Vibration 284: 189-204. 
[5] Remillat C., Wilcox P., Scarpa F., 2008, Lamb wave propagation in negative Poisson’s ratio composites, Proceedings 

of SPIE 6935. 
[6] Tee K.F., Spadoni A., Scarpa F., Ruzzene M., 2010, Wave propagation in auxetic tetrachiral honeycombs, Journal of 

Vibration and Acoustics 132: 031007. 
[7] Wan H., Ohtaki H., Kotosaka S., Hu G.M., 2004, A study of negative Poisson’s ratios in auxetic honeycombs based on 

a large deflection model, European Journal of Mechanics A/Solids 23: 95-106. 
[8] Scarpa F., Tomlinson G., 2000, Theoretical characteristics of the vibration of sandwich plates with in-plane negative 

Poisson’s ratio values, Journal of Sound and Vibration 230(1): 45-67. 
[9] Ruzzene M., Mazzarella L., Tsopelas P., Scarpa F. 2002, Wave propagation in sandwich plates with periodic auxetic 

core, Journal of Intelligent Material Systems and Structures 13(9): 587-597. 
[10] Ruzzene M., Scarpa F., 2003, Control of wave propagation in sandwich beams with auxetic core, Journal of Intelligent 

Materials Systems and Structures 1(7): 448-468. 
[11] Ruzzene M., Scarpa F., Soranna, F. 2003, Wave beaming effects in two dimensional cellular structures, Smart 

Materials and Structures 12(3): 363-372. 
[12] Lira C., Innocenti P., Scarpa F. 2009, Transverse elastic shear of auxetic multi-reentrant honeycombs, Composite 

Structures 90(3): 314-322. 



402                   D. Qing-Tian and Y. Zhi-Chu 

© 2010 IAU, Arak Branch 

[13] Reddy J.N., 2002, Energy Principle and Variational Methods in Applied Mechanics, Second Edition, John Wiley, New 
York. 

[14] Cook R.D., 2001, Concepts and Applications of Finite Element Analysis, John Wiley, New York. 
[15] Scarpa F., Tomlin P.J. 2000, On the transverse shear modulus of negative Poisson’s ratio honeycomb structures, 

Fatigue and Fracture Engineering Materials and Structures 23: 717-720. 
[16] Gibson L.J., Ashby M.F., 1997, Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge, 

UK, Second Edition. 
[17] Decolon C., 2002, Analysis of Composite Structures, Hermes Penton Science, London. 


