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ABSTRACT
In the presented paper, the governing equations of a vibratory beam with moderately large
deflection are derived using the first order shear deformation theory. The beam is
homogenous, isotropic and it is subjected to the dynamic transverse and axial loads. The
kinematic of the problem is according to the Von-Karman strain-displacement relations and
the Hook's law is used as the constitutive equation. These equations which are a system of
nonlinear partial differential equations with constant coefficients are derived by using the
Hamilton’s principle. The eigenfunction expansion method and the perturbation technique
are applied to obtain the response. The results are compared with the finite elements
method.
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1 INTRODUCTION

EAMS with linear or nonlinear behavior have numerous applications in the mechanical structures. Lee [1]

investigated the large deflection of cantilever beams made of Ludwick type material subjected to a combined
loading consisting of a uniformly distributed load and one vertical concentrated load at the free end using fifth order
Runge-Kutta method. Banerjee et al. [2] used the non-linear shooting and Adomian decomposition methods to
determine the large deflection of a cantilever beam under arbitrary loading conditions. Chen [3] proposed the
moment integral approach, which can applied to problems of complex load and varying beam properties, to solve the
large deflection cantilever beam problems. Vega-Posada et al. [4] developed the large-deflection analysis and post-
buckling behavior of laterally braced or unbraced slender beam- columns of symmetrical cross section subjected to
end loads with elliptical integrals and Taylor expansion. Wang et al. [5] studied the large deflection problems of
beam with special boundary conditions using both the elliptic integral method and the shooting-optimization
technique. Li [6] presented the large deflection of the fluid-saturated poroelastic beams which is geometrically non-
linear using the numerical methods. Dado [7] studied the very large deflection behavior of prismatic and non-
prismatic cantilever beams subjected to various types of loadings. The formulation is based on representing the
angle of rotation of the beam by a polynomial on the position variable along the deflected beam axis. The
coefficients of the polynomial are obtained by minimizing the integral of the residual error of the governing
differential equation and by applying the beam boundary conditions. Su and Ma [8] applied two analytical
approaches, Laplace transform and normal mode methods, to investigate the dynamic transient response of a
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cantilever Timoshenko beam subjected to impact forces. Explicit solutions for the normal mode method and the
Laplace transform method were presented. The Durbin method is used to perform the Laplace inverse
transformation, and numerical results based on these two approaches were compared.

In the most papers, the beam equations have been derived with the assumption of the small deflection which

leads to linear equations. The papers that derived the nonlinear equations, usually have used the numerical method
for solving the equations. In the presented work, the response of a nonlinear beam subjected to axial load and
transverse excitation are calculated analytically using the first-order shear deformation theory (FSDT). The
governing equations, which are a system of partial differential equations, are solved analytically with applying the
perturbation technique and the eigenfunction expansion method. The results are compared with the FE method too.

2 GOVERNING EQUATIONS

Consider an isotropic, homogenous uniform beam with the length I, width b, thickness &, density p, cross-sectional
area A.

ERRERREE
— r Fig. 1

l ! | Beam geometry.

I I

The displacement field, based on the first order shear deformation theory (FSDT), is assumed as:
u(x,z,t)=uy (x,1)+zu (x.7) , v(x,z,t)=0 , w(x,z,1)=wy (x.1)+zw (x.7) 9]

where x is along the axial direction, y is along the width, z is through the thickness, ¢ denotes the time, u(x,z,f) and
w(x,z 1) are the approximated axial and transverse displacements, respectively. uo, wo, u1, wi are unknown functions.
The strain components according to Von-Karman relations are [9] :

ou 1(awj2 ov 1(ow ? ow 1 (6w)2
e =—+—|—|, &, =—+—| —| , &, =—+—|—| ,
ox 2\ ox ooy 20 oy oz 2\ 0z )
Oou Ov oOwow ov Ow oOwow ou oOw Ow ow
Yy =t —t——) Vpm ettt ————, Y= —t—t——
Oy Ox Ox Oy 0z 0Oy 0z Oy 0z Ox Ox Oz
From Egs. (1,2) we obtain
2
0 0 ow, 0
x:ﬂ-i-zﬂ—kl Do M , gzzwl+lw12, g, =0,
Ox ox 2\ ox Ox 2 3)
Wy ow
Vi = +(1+Wl)(g+zgjs yxy :yyz =0
For an isotropic, homogeneous, linear elastic material, the stress-strain relations are:
o, =Ae, +/‘L(8y +8Z),Txy =uy,, . o,=As, +A(s.+5,),1,. = uy,. . @

o, = Ae, +/1(5x +5y),rxz = Uy,
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where A and u are Lame’ coefficients and A= A +2 u .The strain energy is given by:

1
UZ? J‘J-J.(UJC((JX +O—zgz +TZ)C7/ZX yV (5)

where dV is the shell volume element, dV=dxdydz, 0 < x < 1,-b/2 <y < b/2 and —-h/2 < 7 < h/2. Taking the
variation of Eq.(5) and using Egs.(3,4) we have:

0 ow, ow ow, ow, ow
SU =I NSO LN _swy 20 o N _swy ot | M, 20 p Dy (1+w) [6—+
x ox ’ ox T ox ox X ©)
ow, ow ow, ou
N —24M —LiN_(1+w) |6 =2+ N_Su; + M 6 —L+(w +1)N.ow, |dx
( X o X Ox xz( 1)] o Xz 1 X o ( 1 ) z 1
where the stress resultants are:
n2 W2 e,
N, = I_h/zcxdz, M, = I—h/z 70,4z, F= .[_h/zz 0z,
W2 2 2 @)
N, =J. o,dz, N, = K"[ r.dz, M, = K‘J‘ zr, dz
~h/2 ~h/2 ~h/2

k is the shear correction factor which depends on geometry and material properties and is assumed w%/12 for
rectangular cross section [10]. The kinetic energy is defined as:

! 2 2 3 2 3 2
T :Lbj h % +h % +h_ % +h_ % dx (8)
2 Jo ot ot 12\ ot 12\ ot

The external work due to axial force P which acts at x=[is [11]:

P 1(ow Y
dWP:P(ds—dx) , ds =dx\1+y" =dx |1+—| — 9)
2\ ox
The virtual-work is:
!, 0w, O oW, Lo o*w,

5WP —jOPEa(5wo)dx—Pg§wo —JAOP?é’Wde (10)
For transverse load Q the external work is:

W, =—05 (w, +2w,) (11

The motion equations and the boundary conditions can determine using the Hamilton’s principle [11]:

t 1
" SLdi+ lzﬁWncdt:O ., L=T-U (12)
1

4

where Wi stands for non-conservative work and it is due to axial and transverse loads in this problem, i.e.
Wae=Wp+Wog. From Egs. (6,8,10,11,12) result:
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ON, . O, 0 oM _ph? Quy
Ox ot? ’ Ox 12 o2 ’
0 ow ow, 82w0 82w0
—I| N +M, —+N_ (1+w ) |-ph -Q-P =0,
6x[ e 1)] Phor 0P (13)
3 42
O, Do p iy (14w ) [+ N . Mo _pp N (1w <20 Lo —g
Ox Ox X Ox 12 o8t 2
The boundary conditions are:
ow ow
N Sugl5=0,M _6u l5=0, |N, —0+MX%+NXZ (1+w,)-P—2 6w, 5 =0,
ox ox ox
5 (14)
[Mxﬂ+sz (1+w1)+Px% Swilb=0
ox ox

By substituting the stress resultants Eqgs. (7) into Eqs. (13), the governing equations in terms of the
displacement components are derived. They are four coupled nonlinear partial differential equations.

3 ANALYTICAL SOLUTION

In this paper, the perturbation technique is used for solving the governing equations. We start by converting the
governing equations to dimensionless form, using the following parameters:

|~
=

* X * M
P Y N ALy L Ay 2o
0 0 I 6 hy L 4 4

2
* P *: Q , e:pho ) X X
bAe At} &

(15)

x and ¢ are dimensionless position and time respectively, u, and w, are dimensionless displacement
components. ho and fo are characteristics thickness and time which are defined as ho=h and f=Il/c. c is the
characteristics of wave speed and it is defined as ¢ =/A/p. ¢ is a small parameter which is considered as the

perturbation parameter. By using Eq. (15), the dimensionless form of Eqs. (13) (in terms of displacement) are as the
following:

* qu* aW* 62W* 1« 82W* % 8W* % azu* *

h 0 202 04l — g2 g (14w ) |—L |—eh” —2— £ =0, (16)
[axz ox ax? (12 ox? (i) 5 a2 )

ﬁ ﬁ_Fi %% —eﬁ —o.h u*+(1+w*)% £ =0 17)

12| ax? ox| ax ax ar | 2! Yex | 72

© 2013 TAU, Arak Branch



395 Response Determination of a Beam with Moderately Large Deflection Under Transverse Dynamic Load ...

. . 2 2 * B . 2 *3 * 2 *
oh" (14w ) 68;0 +h [4/1 2‘2;1 +6,(1+ )J‘Xl ZV)V(O +’;—2{%J—a@;l
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X 2| ax 8 oX 2 ox? 6X (18)
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2

* * * *
where S S50 0s are:

. 26w0

f1*:fz*:0» f3 Qg Pe *29 f4 Q (20)

We use the multiple scale method . By defining the new scales To=¢'and Ti=et" , so the derivative operator is:

o = 0’ +2¢ o
FoARG) oT,oT, 21

We apply Eq. (21) into Egs (16) to (19) and we consider the solution with a uniform expansion as:

ug (X1 58) = & (ug (X7, 1) + 2w (X1, T;)

(22)

wy (X, 1. 1)+ ew (X, T,,T))

)

ul(X,t*;g) &y (XT3, 1) + sus (X, T,
WO(X,I*,' ) & )
)

(o
w (X0 8) =2 (wy (X, T, 1) + 23 (X T, 1)

By substituting Eqs (22) into Eqs (16) to (19), and separating the equations with the same order of ¢, results:For
the first-order equations :
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396

(23)

The resulted equations in Eqs.(23) are two independent systems of equations. According to the eigenfunction
expansion method, the solution of each system of equations for the simply supported beam is considered as the

following:
X Ty, T ZAlm TO Tl cos(mﬂX/a) X 1y, T ZAZm TO sm(mirX/a)
m=1

Substituting Eqs. (24) into the second and third equations of Eqgs. (23) yields:

Zle cos(mﬂX/a) =F, ZPZm sin(mﬂX/a) =F,

m=1 m=1
where

1 . 1 wd*4
B=——h"A4n’e" 0, (4 + Ayme ) ——eh> —L,
12 12 dTy

d*4y . :
h2d22—PA27z252, F=0, F=0

P, =6, (h*Alﬂ'E-i-h*zAzﬂ &£ )

The index “m” has been removed for simplicity.
Based on the Fourier half-range expansion for Eqs (25), P1 and P> are obtained as:

27 20,
R:;J-Fl cos(mﬂX/a)dX ,F’ZZZ}[Fzsm(m;rX/a)dX ,a:%

Egs. (27) are two coupled differential equations whose solution are:

A4(T).T) =q (Tl)ei%% +a,(T)e iody 4 e A, (T).T,) = a3 (7)™ +a4(Tl)ei”3T° +cc

(24)

(25)

(26)

27)

(28)

where cc stands for the complex conjugate terms, @2 and @®3 are natural frequencies for the first systems of
equations and as(7Ti), a«T:) are dependent to ai(T:), a(T:). The solution procedure for the second systems of

equations is similar where ®1 and @4 are its natural frequencies. The numerical results shows that m=1 is sufficient

for convergence of Eqs. (24) so we used just one term in deriving the second order equations.
The resulted equations in the second-order of € are:
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a2u{‘+8%‘_eazuf_2e o*u; Lo 0wy | OPwy Owy L1 O*wy wy _
ax? Vax e Cemer, "Max T ax? ax 12 ax? ox

2 2 % 2 * 2 % 2
h*za W2 aWO h*za Uy _eh*za Us —2@]’1*2 0 Us + *26 WO aWZ

ox? ox ox*? oIy oT,oT, ox* ox
. W, ow, ;
—120,w, —2 —1260, —-~126,u; =0
22 oxX 2 293
*u;y ow, *w, u, uy . &y ow, *w
x0 O Uy OW) 4 OW, Ol 3 ”0 Wy W
—=+126, —+12 +1260, —-
ox? aX ox? ox ox ox?* ox ox?
. . 62 2 2. %
+126, 22 ow; Ow +1292 oy M 12 1902 Mg O
X ax X 6X2 o1y ATy oT,
2 * *
+24928W My 1% % Mo 4196, (OO
X ax ox? ox 2 ox ax?
o owiY ., i1 ow’ Y
O 0 o' T2 | a2 E S ey Py g2 22
X oT OToT, 2 ox
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For solving equations of the first system containing Eqs.(30,31) , the solutions are:

uy (X T, 1) = Y As,, (Tg, Ty )eos (maX Ja), — w (X ,To,Ty)= Y Ay, (To.T))sin(mzX [a)

m=1 m=1

By substituting Egs. (33) into Egs.(30,31), we have

2133," cos(mﬁX/a) =F, ZP‘W sin(mﬂX/a)z

m=1 m=1

where

. o d?4 T
Py=Py=—— 124,72 6, (A3+A47zg)—ieh 2—3:3jF3cos (7X /a)dX
12 127 ar  ay
d*4 2
Py =Py =0y (0 Ayms+h 2 A m2e ) +eh™ - ELa P ar :—jF4sin(nX/a)dX
0 a

SO:
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(29)

(30)

(31

(32)

(33)

(34)

(35)
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B= fie" @ 4 fetel 4 fotiol o g ooty g ollate)l | g tilestol | g rilenze)l g tilote)h

+i + +i +i i, )T +i w3ty )T, +i w, T, )T +i oty )T
Py= g€ + g, M0 4 gD “‘g4efw4ro+gsel(wl @)l +8gg€ o on)T +g7e o) +8s¢ Aoz )l

. tiof, tioyT, .
The non-homogenous terms of Eqs. (35) contain e™ "™ 3p4 €™ which are secular for the second order Egs.

(35). To find a uniform expansion solution, one can remove the secular terms by defining the solvability conditions
[12] as the follows:

(qu cos(mX /a)+ Eq, sin(ﬁX/a))dX: (F3 cos(mX /a)+F, sin(;rX/a))dX (36)

S e
S e

where Eg, and Eg, are left-hand sides of Egs. (34) i.e:.

Eq, =P, cos(ﬂX/a) , Eq, =P, Sin(ﬂX/a) (37)

*ianT *ianT
Letting the coefficients of € “"and € equal to zero, the functions a/(T;) and a2(T) are obtained and
finally the solution of the first-order equations are determined. The second-order equation may be solved by

and €

Ty +i 3T

+i
substituting a:(T7) and a2(T7) and canceling the secular terms € ” " . The particular solution of the

second order equations are:

w (X, Ty,T ) = e 4 h,e D 4 p el 4 p ool

: : : : (38)
+hsez(a)]ia)2)1}] +h6ei1(a)3ia)4)1]) +h7€il(w2i{u4)To i hgeiz({o, tan )T,

The total solution can be set as the homogenous first-order solution plus the particular part of the second-order
solution.
ug( Xt €)= e(uy( X, Ty, T, )+ eu, (X, T,,T; ) 39)

The constants in determining of a:(77) and a2(T1) can be calculated by applying the initial conditions.

4 NUMERICAL RESULTS

ANSYS 11 FE package is used for the response analysis of the beam with the axial and transverse loads by using
element BEAM189, which has three nodes and six degrees-of-freedom in each node. The boundary conditions are
considered simply supported at x=0 and x=I. The characteristics of the beam have been listed in Table 1. Before the
final analysis, the sensitivity to the mesh size was investigated. The optimum elements numbers was 38. Also, the
optimum time step was chosen 0.02 seconds by trial and error. The transverse load is a step function as Fig.2.

Table 1
Beam properties

Length (m) 1

Width (m) 0.02
Thickness (m) 0.002

Poisson’s ratio 0.3
Young’s modulus (Pa) 2ell

Density(kg/m?) 7800
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Q(N) 4

10

Fig. 2
> t(s) Transverse load- time variations.

The analytical calculations performed on Maple 13 environment. Fig. 3 shows the transverse displacement
response at the mid-span of the beam due to transverse load and axial load P=10 N. The response has been
calculated for three cases: analytical results (FSDT) which we formulated in this paper, the FE results by
considering the large deflection effects and the FE results with small deflection option. According to this figure, the
difference of the FSDT with the large deflection FE is closer than the small deflection FE. Fig. 4 shows the
analytical and FE results for transverse response at x'=0.05, which is a point near the boundary. The behavior is
similar to Fig. 3 and the difference is not more than the results at x"=0.5. In Fig. 5 the deformed shape of the beam at
a special time (t=0.5) is shown with the FE and FDST method which is in accordance with the Fig. 3 and simply
supported boundary conditions. For different axial load, the transverse deflection has been plotted in Fig. 6. By
increasing the tensile load, the transverse deflection will decrease whereas by increasing the compressive load, the
transverse deflection will increase, as expected. Fig. 7 shows the effect of number of terms Egs. (22) on the solution.
So, a two term expansion is sufficient for convergence of the transverse displacement. Fig. 8 shows the axial
displacement of the upper and middle layer of the beam at a special time. It is possible to show the transverse
displacement of the different layers with the FSDT too. The Euler-Bernolli and Timoshenko theories can not predict
the variations of the transverse displacements across the section but it is possible for FSDT.

wransver sedeflection imi

o1 rl - " - s large FE
— — —smallTC Fig. 3
o Analytical and numerical transverse response at
x*=0.5.
0.01 4
—_ -
£ [ !
g Py 1
4 ! !
3 Yty
=)
g
5
Z
z == =FSDT
- —— small FE
2 = lage FE Fig. 4 . )
£.02 Analytical and numerical transverse response at
*
x =0.05.
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Fig. 5
Analytical and numerical transverse deflection at
t=0.5.

Fig. 6
Transverse deflection at t=0.5 for different axial load.

Fig. 7
Transverse response for one and two term.

Fig. 8
Axial deflection at t=0.5 for top and mid-span of the
beam.
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5 CONCLUSIONS

In the presented paper, a mathematical procedure base on the shear deformation theory is proposed for response
determination of a geometrical nonlinear beam subjected to transverse and axial loads. The perturbation technique
and eigenfunction expansion method were employed for solution. This formulation can predict the axial response as
well as transverse one for different layers of the beam. The FSDT results is closer than to the nonlinear FE results.
So , the FSDT theory can be used to predict the nonlinear behavior of the beam too.
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