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 ABSTRACT 

 Stable ductile crack growth in 3 mm thick AISI 304 stainless steel specimens has been 
investigated experimentally and numerically. Multi-linear Isotropic Hardening method 
coupled with the Von-Mises yield criterion was adopted for modeling elasto-plastic 
behavior of the material. Mode-I CT fracture specimens have been tested to generate 
experimental load-displacement-crack growth data during stable crack growth. The critical 
fracture energy (JIc) was then determined using the finite elements results in conjunction 
with the experimental data. The effect of in-plane constraints on the numerical-
experimental JIc calculation was then investigated. The results of finite element solution 
were used to tailor an exponential CZM model for simulation of mode-I stable crack 
growth in CT specimens. It is found that the adopted CZM is generally insensitive to the 
applied constraints to the crack tip stress state and thus it can effectively be used for 
simulating crack growth in this material.                                       

            © 2014 IAU, Arak Branch. All rights reserved. 

 Keywords: Cohesive zone model; Finite element; CT specimen; In-plane constraint; AISI 
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1    INTRODUCTION 

UCTILE fracture processes are fairly common to failures in structural components. In many practical 
structural design cases, a great deal of effort has been made to prevent fracture in structural components. 

Aircraft structures, ship structures, bridges, pressure vessels and line pipe materials are all designed against fracture 
at working temperatures. The most important tool for such a design is an effective crack growth simulation 
technique together with a reliable crack growth criterion. In practice, it is common to consider ductile crack growth 
in a form of crack propagation resistant curve (R-curve), with crack growth expressed as a function of either crack 
tip parameters like the stress intensity factor (K), energy dissipation rates (J-integral) or crack tip opening 
displacement (CTOD) [1-2]. There are, of course, some other crack growth criteria suggested for characterization of 
ductile fracture in metals [3]. Among them, the crack tip opening angle (CTOA) [4] is the most popular crack 
growth criterion used in practice. Unfortunately, dependency of the CTOA and CTOD results to the in-plane 
constraints at the crack tip is not well understood yet. 

Damage mechanics based models are alternative approaches that are being increasingly used. A major advantage 
of the numerical damage mechanics models is that they do not basically need an initial crack present in the 
component. In addition, the transferability of toughness data from specimens to structures are handled much better 
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in damage mechanics models [5]. However, there are some difficulties in using these methods, such as mesh size 
sensitivity, mesh adaptation and stability of numerical solutions [6]. 

The concept of the cohesive zone model (CZM) which was first proposed by Barrenblatt [7] and Dugdale [8] is 
now considered as a powerful damage mechanics approach to analyze fracture process. The CZM has been 
previously used to model stable fracture process in a number of materials including polymers [9], metals [10], 
ceramic materials [11], bi-material systems [12], concrete [13], functionally graded materials [14] and woven and 
laminated composite materials [15-17]. Besides, the CZM can be assumed rate-dependent to simulate dynamic crack 
growth in solid materials [18].  

Even though the CZM has been widely used in ductile fracture, it is not yet clearly understood how to calculate 
CZM properties. Therefore, the main objective of the present work is to identify CZM parameters for AISI304 steel 
plates using an experimental calibration method. AISI 304 is a ductile stainless steel that found many applications in 
industries. Mode-I fracture is considered in this study since it is more often seen in failure of fracture-critical 
structures such as pressure tanks. The elasto-plastic finite element crack growth simulation in compact tension (CT) 
specimens was carried out to tailor a CZM model for this material. The presented work involves:  

 Conducting tensile tests to get material behavior including the stress-strain curve, 
 Conducting CT fracture tests to investigate stable crack growth in AISI 304 steel under static loading for 

mode-I fracture,  
 Determining critical J-integral using a numerical/experimental method, 
 Identifying CZM parameters using numerical simulation to represent the crack growth in this material under 

static loading. 

2    BASIS OF THE CZM 

When a cracked material is subjected to a load, energy dissipation occurs. The energy dissipation is mainly due to 
microcracking and localized deformation of the material which generally takes place in a small region called 
fracture process zone. This makes the material globally exhibit strain softening, i.e. a negative slope of the stress-
strain diagram. The behavior of the material outside this region can still be linear elastic. If the size of the fracture 
process zone is large enough as compared to the crack length, linear elastic fracture mechanics assumptions will not 
be further applicable. One method frequently used to simplifying fracture process zone behavior modeling is 
concentrating the fracture process zone at the crack tip and then characterizing it in the form of a stress-displacement 
which exhibit softening. This method is usually referred to as cohesive crack model. 

CZM first introduced in 1960 to account for the basic aspects of the nonlinear material behavior ahead of the tip 
of a pre-existing crack. In this procedure, the crack is assumed to extend and to open while still transferring stress 
from one face to the other. To implement the CZM to a finite element model, cohesive elements are inserted at the 
interfaces of continuum elements. Whereas these interface elements obey a special traction-stress law. The material 
outside is described by conventional constitutive equations. Decohesion law actually relates surface tractions to the 
relative displacement or separation at an interface, where a crack may occur. These tractions generally consist of one 
normal and two tangential components, compatible with crack opening displacement mode. Crack or damage 
initiation is related to an interfacial strength, i.e. the maximum traction on the traction separation curve. When the 
area under this curve is equal to critical fracture energy, the traction is reduced to zero and new crack surfaces are 
formed. 

Fig. 1 shows schematically the Mode-I fracture of a material which is described by the cohesive normal traction 
(Tn) as a function of relative displacements ( ) between two faces. In general: 

 
( )nT f      (1) 

 
where f  is a function used to describe stress distribution along the crack faces at the cohesive zone [19]. In this 
model, it is assumed that all micro-structural mechanisms of the fracture process can be captured by two cohesive 
parameters, i) the maximum traction or cohesive strength, max , and ii) a critical separation, 0 , beyond which the 

respective cohesive layer has lost its stress carrying capacity and the crack extends (or n , the separation at the point 
of maximum traction). Alternatively, the separation energy, Gc, being the area under the ( )f   curve, as given in Eq. 

(2) , can be used as a cohesive parameter. 
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There are many traction-separation models introduced in the literature. As it is implied previously, cohesive zone 

debonding generally allows three modes of separation, mode-I (opening), mode-II (shearing), mode-III (tearing) and 
mixed-mode displacements. The various traction-separation models for mode-I fall in three main categories, as 
shown schematically in Fig. 2. Some of the most popular models with a brief description of their applications are 
given in Table 1. 

Unlike the traditional finite element (FE) method, cohesive elements are inserted between the discretized 
elements. Decohesion process is then controlled via attributing special traction-separation behavior to these interface 
elements. Although the CZM incorporating FE method is known as a powerful method for quantifying crack growth 
in various materials, there are still some difficulties in using CZM for simulation of crack growth.  Determining 
suitable material parameters, difficulties in mesh and FE modeling and problems in prediction of crack growth 
direction, specifically for arbitrary curved crack extension path, are examples of such difficulties associated with this 
method.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1  
Schematic of cohesive model (damage is localized at the 
interface) and a typical stress-traction variation at the 
interface. 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Fig. 2 
Three common categories of traction-separation laws. 
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Table 1  
The most popular cohesive zone models 

Model name 
Traction-separation curve 

schematic 
Traction-separation and separation 

energy relationships 
Applications 
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3    EXPERIMENTAL WORK 

In order to determine a suitable model for crack growth in a material, it is first necessary to identify its strength 
properties. These properties are tensile strength and fracture strength parameters.  

3.1 Tensile test 

The investigated sheets are 3 mm thick and made of AISI 304 stainless steel. AISI 304 stainless steel is a very good 
corrosion resistance material. Besides, it has good resistance to oxidation in intermittent services up to 870 ˚C. It has 
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also good machinability characteristics which make them attractive for use in many industries such as nuclear power 
plants. The material essentially contains 0.08% C, 18% Cr and 10% Ni.  

Specimens were cut from a sheet panel in LT and TT directions according to ASTM E8-04 standard. Tensile 
tests were carried out as ASTM E8-04 standard procedure utilizing a 15 T tensile test machine. The average test 
results are given in Table 2. No distinct difference in tensile behavior was observed in LT and TT directions. 
Therefore, orientation dependence regarding yield strength is considered to be negligible for this material. The 
rupture surface in all specimens was perpendicular to the load line. A typical stress-strain variation during test is also 
given in Fig. 3.  

3.2 CT fracture test 

The fracture properties required for this study were determined by experiments performed on CT specimens. Twelve 
CT specimens and the required fittings and anti-buckling plates were produced according to the ASTM E 2472-06 
standard. Dimensions of the specimens in accordance with this standard are shown in Fig. 4.  

The specimens were loaded quasi-statically such that to produce stress intensity factor rate between 0.2 
MPa√m/sec and 3 MPa√m/sec. Using stress intensity factor relation for this specimen (Eq. (3)), the proper loading 
rate is determined.  

 

( / )I

P
K f a W

B a
   

   (3) 
 

where KI denotes mode-I stress intensity factor, P is the applied load, B is the specimen thickness, a is the initial 
crack length and f (a/W) is a correction factor expressed as: 
 

2 3 4 5( / ) 0.2960( / ) 1.855( / ) 6.557( / ) 10.17( / ) 6.389( / )f a W a W a W a W a W a W         (4) 

 
An accurate scale was carved along the crack line to aid in measuring crack length during growth. The crack 

growth was followed using a digital microscope which was mounted on a movable stand. Values of loads have been 
taken from the test machine load cell which was accurately calibrated prior to test. Displacement data have been 
measured by an extensometer and a clip gauge. The crack length data were determined by image correlation using 
Screen Maker v.2.31 software. A typical experimental load-applied displacement and crack length-applied 
displacement curves are exhibited in Fig. 5. 

 
 

Table 2 
Experimental stress-strain data for the AISI 304 material 

Modulus of lasticity, E (Gpa) 208 
Yield strength, y (Mpa) 282 

Ultimate tensile strength, u (Mpa) 736 

 
 

 
 
 
 
 
 
 
 
 
Fig. 3  
A typical stress-strain variation during tensile test for the AISI 
304 steel material. 
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Fig. 4 
Dimensions of the CT specimen in accordance with 
ASTM 2472-06. (dimensions in millimeter) 

 

 
 

Fig. 5 
Experimental load-applied displacement and crack growth-applied displacement data for AISI 304 steel material. 

4    COHESIVE ZONE MODELING 

The traction-separation relation for a mode-I crack is generally characterized using a scalar surface potential   by 
setting 
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where Tn denotes continuum normal traction and n is the normal separation between two surfaces of cohesive zone. 
The surface potential   actually represents the energy needed to separate the interface, i.e. separation between two 
surfaces of cohesive zone. If a proper potential function   is available, the constitutive equation between the 
cohesive traction and the relative separation can be derived. A number of different functions have been suggested to 
approximate . In this study, an exponential potential function for mode-I fracture as suggested by Xu and 
Needleman [33] is employed.  
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where e is exp(1), max  is the maximum stress, n  is the separation of interface elements at the maximum stress as 
given in Table 1. By differentiating the surface potential, the traction-separation relation is determined as: 
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The work of separation can be determined using Eq. 2. It is worth noting that in this model , Tn approaches zero 
at a very large value of 0 .  

 
maxc nG e      (8) 

5    FE SIMULATION 
5.1 Simulation of the tensile test 

To obtain a proper material model and stress state for elastic-plastic behavior of the specimen, the tensile test 
specimen has been discretized by finite elements. ANSYS, Ver. 13 general purpose finite element software was 
employed. The FE model consists of 883 2D four-noded quadrilateral elements with 1000 nodes. Multi-linear 
Isotropic Hardening model was used to characterize the material behavior. The hardening rule actually describes the 
change in the yield surface with progressive yielding, so that the conditions for subsequent yielding can be 
established. In isotropic (or work) hardening, the yield surface remains centered about its initial centerline and 
expands in size as the plastic strains develop. The Multi-linear term in the method is referred to the description of 
the stress-strain behavior used to model the material. The elastic region in this material model is represented by a 
line while the plastic region is represented by some pieces of lines with different slopes, as shown in Fig. 6. This 
method, which is suitable for large strain problems, basically uses Von-Mises yield criterion coupled with an 
isotropic work hardening. Fig. 7 shows the simulation results using both plane stress (low constraint) and plane 
strain stress (full constraint) states. It is seen that the plane strain assumption fairly matches with the experimental 
results. 
 

 
 
 
 
 
 
Fig. 6  
Stress- plastic strain curve given for the Multi-linear Isotropic 
Work Hardening model. 

 

 
 
 
 
 
 
Fig. 7 
Elasto-plastic FE simulation of the tensile test specimen. 

5.2 Simulation of the CT test 

The produced FE mesh using 2D elements is shown in Fig. 8. The FE model consists of 6969 four-noded elements 
with 14626 active degrees of freedom. The loading pins were also modeled by a high stiffness solid material 
including contact elements between the pin and the loading holes surfaces. 

Three stress states: plane stress, plane strain and plane strain core were examined. In plane strain core analysis, a 
band of plane strain elements located around the crack tip while the rest of elements are plane stress elements. The 
half core height of the plane strain band was set equal to the thickness of the plate, as recommended in [34]. It is 
noted that each of the above stress states actually applies constraints with different degrees to the crack tip and 
therefore, can have different effects on the elasto-plastic behavior of the material at the crack tip region.  (Some 
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researchers reported that the plane strain core assumptions generally gives a better results in stable ductile crack 
growth modeling in CT specimens, because of its ability to capturing stress triaxiality around the crack tip (for 
example see [35]).) FE model of the CT specimen in different crack lengths, from 5 to 102 mm of crack extension, 
was analyzed in several steps. In each crack length, the load on the specimen was determined from the experimental 
data, as given in Fig. 5, and the corresponding J-integral was calculated along a contour around the crack tip. The 
results, as presented in Fig. 9, show a strong R-curve exists in the fracture energy variation. 

To verify validity of the calculated critical J, simulation of loading the specimen at a crack length, say 5 mm 
crack extension, has been performed by the adopted elasto-plastic FE analysis. The area under the simulated load-
displacement results assuming plane strain state, as shown in Fig. 10, is then calculated using the Simpson rule for 
numerical integration. Finally, the critical J was calculated using Eq.(9) (see ASTM E-813-81). 

 

0( / )
A

J f a W
Bb

    
(9) 

 
where A denotes area under the load-displacement curve, B represents the plate thickness, b is the uncracked 
ligament and f (a0/W) is a correction factor equal to 2.2 for plane strain condition. The calculated value for the 
critical J-integral was 202.49 N/mm. For comparison purposes, values of the critical J-integral obtained by various 
methods for the 5 mm crack extension have been summarized in Table 3.  

The critical J-integral at the initial crack length (JIc), which is needed for the CZM crack growth modeling, was 
finally determined using a graphical procedure as described in ASTM E-813-81.  

 

 
 
 
 
 
 
 
 
 
Fig. 8  
Schematic of the CT specimen FE model. 

 

 
 
 
 
 
 
 
Fig. 9 
Variation of the critical J-integral versus crack extension. 

 

 
 
 
 
 
 
Fig. 10 
FE-determined load-displacement variation at the crack 
extension of 5 mm. 
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6    CZM MODELING OF CRACK GROWTH 

Typically, there are two methods for implementing CZM in finite element analysis of a cracked member: interface 
elements and bonded contact elements. Interface elements are zero thickness elements specially designed to 
represent cohesive zone between the components and to account for the separation across the interface. In this 
method, elements are meshed in between layers and linear or nonlinear material law for elasticity and debonding are 
defined. In bonded contact method, first general surface to surface contact constraint is used. Then, a specific 
traction separation material law is defined. When debonding occurs, usual contact behavior is implemented. 

As it is stated previously and shown in Fig. 2, constitutive equations of a CZM include a representation of 
cohesive and softening branches, which causes the problem be strongly nonlinear. Thus, the development and 
implementation of a suitable solution algorithm is an important issue. In this study, an arc-length control combined 
with a Newton-Raphson algorithm for iterative solution of nonlinear equations is employed [36]. 
 
 
 
Table 3 
Values of the critical J-integral at the crack extension of 5 mm 

 Plane strain Plane stress Using Eq. (9) 
Critical J (N/mm) 196.56 217.42 202.49 

 
 
 
Table 4 
Trial values of the cohesive strengths and their corresponding separation values. 

Relative cohesive strength ( max y  ) Cohesive normal strength ( max ) (Mpa) Interface separation ( n ) (mm) 

1.00 282.0 3.53 
1.50 423.0 2.35 
1.60 451.0 2.21 
1.75 493.5 2.02 
2.00 564.00 1.76 

 
 
 

 
 
 
 
 
 
Fig. 11 
Load-displacement variation for CZM analysis of the CT 
specimen for max 1y   . 

 

 
 
 
 
 
 
 
Fig. 12 
Numerical load-displacement data calculated from cohesive zone 
model together with the experimental data. 
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To calibrate the CZM model as described in section 4, FE crack growth simulations incorporating Multi-linear 
Isotropic Hardening model were carried out using various relative cohesive strength ( max y  ) and critical 

separation ( n ) values. For each pair of trial values, an exponential cohesive law was derived and implemented to 
the interface contact elements. Comparison between numerical load-displacement responses with the experimental 
one would indicate the proper set of CZM parameters. The calculated critical fracture energy at the growth initiation 
(JIc), as explained in Section 5, is used in Eq. (8) as the work of separation. This work is used to define the 
separation of interface elements at the maximum stress ( n ) for each assumed cohesive strength value ( max ). The 
trial relative cohesive strengths and their corresponding separations are given in Table 4. In order to investigate the 
dependency of the method to the constraints at the crack tip, the crack growth simulations have been performed with 
three plane stress, plane strain and plane strain core assumptions using max 1y    and 3.53n  mm. The results, 

as shown in Fig. 11, show that essentially no distinct difference exists in load-displacement variation for these three 
stress state assumptions. This also confirms that the CZM method is essentially independent of the constraint at the 
crack tip. However, the plane strain assumption is used for the rest of this simulation. The crack growth simulation 
for all the trial parameters, as given in Table 4. , was carried out. The numerical results together with the 
experimental data are shown in Fig. 12. The simulation results clearly indicate that the cohesive strength of 450 MPa 
( max 1.6y   ) together with the critical separation value of 2.21 mm are reasonable values. 

7    CONCLUSIONS 

Stable ductile crack growth in 3 mm thick AISI 304 stainless steel specimens has been investigated experimentally 
and numerically. Tensile tests and finite element simulations have been performed to characterize the material and 
introduce a proper model for the material elasto-plastic response. CT fracture specimens have also been tested to 
generate load-displacement-crack growth data during stable crack growth. Subsequently, the critical fracture energy 
(JIc) was determined using a numerical solution. 

In the present investigation, an attempt is made to tailor exponential CZM model for simulation of crack growth 
in CT specimens. The parameters of the model including maximum cohesive strength and corresponding separation 
were approximated using a finite element calibration method. On the basis of the study, the following conclusions 
can be made. 

 Multi-linear Isotropic Hardening method in conjunction with the Von-Mises yield criterion is generally 
suitable to model the ductile behavior of the AISI 304 steel material provided adequate constraints applied 
to the analysis, i.e. plane stress analysis is quite inaccurate in this case. 

 Exponential CZM model can be used successfully to model stable crack growth in this material.  
 The CZM model parameters including the cohesive strength and critical material separation can be 

determined using elasto-plastic FE numerical simulations. 
 Despite the fact that the material modeling is sensitive to the applied constraints, the CZM method is found 

to be quite insensitive to the applied constraints to the model. Therefore, the model can effectively be used 
in simulation of crack growth in AISI 304 steel components. 
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