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 ABSTRACT 

 A semi-analytical iterative method as one of the newest analytical methods is used for the 
elastic analysis of thick-walled spherical pressure vessels made of functionally graded 
materials subjected to internal pressure. This method is accurate, fast and has a reasonable 
order of convergence. It is assumed that material properties except Poisson’s ratio are 
graded through the thickness direction of the sphere according to an exponential 
distribution. For different values of inhomogeneity constant, distributions of radial 
displacement, radial stress, circumferential stress, and von Mises equivalent stress, as a 
function of radial direction, are obtained. A numerical solution, using finite element 
method (FEM), is also presented. Good agreement was found between the semi-analytical 
results and those obtained through FEM.                                        

            © 2014 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 UNCTIONALLY graded materials (FGMs) are a special group of heterogeneous composite materials with 
mechanical properties changing continuously from one surface to another. These materials are advanced, 

resistant to heat, erosion and corrosion, and have high fracture toughness [1]. Advances in material synthesis 
technologies have spurred the development of FGM with promising applications in aerospace, transportation, 
energy, cutting tools, electronics, and biomedical engineering [2]. Although the functionally graded materials 
(FGMs) are extensively employed to sustain elevated temperatures and severe temperature gradients, they have been 
mainly proposed to precisely monitor the distribution of the material properties within the stressed components to 
meet the local strength requirements [3]. Closed-form solutions are obtained by Tutuncu and Ozturk [4] for 
cylindrical and spherical vessels with variable elastic properties obeying a simple power law through the wall 
thickness which resulted in simple Euler-Cauchy equations whose solutions were readily available. Elastic analysis 
of internally pressurized thick walled spherical pressure vessels of functionally graded materials was studied by You 
et al. [5]. Two kinds of pressure vessel are considered: one consists of two homogeneous layers near the inner and 
outer surfaces of the vessel and one functionally graded layer in the middle; the other consists of the functionally 
graded material only. Based on the assumption that Poisson’s ratio is constant and the modulus of elasticity is an 
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exponential function of radius, Chen and Lin [6] analyzed stresses and displacements in FG cylindrical and spherical 
pressure vessels by a numerical method. A hollow sphere made of FGMs subjected to radial pressure was analyzed 
by Li et al. [7]. This paper reduces the problem to a Fredholm integral equation. Using plane elasticity theory and 
complementary functions method, Tutuncu and Temel [8] obtained axisymmetric displacements and stresses in 
functionally graded hollow cylinders, disks and spheres subjected to uniform internal pressure. Complementary 
functions method reduces the boundary value problem to an initial-value problem. The boundary value problem can 
be solved accurately by Runge–Kutta method. Zamani Nejad et al. [9] developed a 3- D set of field equations of 
FGM thick shells of revolution in curvilinear coordinate system by tensor calculus. Assuming that material 
properties vary nonlinearly in the radial direction, and Poisson’s ratio is constant, exact solutions for stresses and 
displacement in a functionally graded (FGM) pressurized thick-walled hollow circular cylinder are obtained under 
generalized plane strain and plane stress assumptions, respectively. Deformations and stresses inside multilayered 
thick-walled spheres are investigated by Borisov [10]. Each sphere is characterized by its elastic modules. The zone 
of contact between each of the spheres is continuous on the surface. Assuming the volume fractions of two phases of 
an FG material (FGM) vary only with the radius, Nie et al. [11] obtained a technique to tailor materials for 
functionally graded linear elastic hollow cylinders and spheres to attain through-the-thickness either a constant 
circumferential stress or a constant in-plane shear stress. Assuming that the modulus of elasticity varies nonlinearly 
in the radial direction as power function of r, and Poisson’s ratio is constant, Ghannad and Zamani Nejad [12] 
derived the governing equations for axisymmetric thick spherical shells made of nonhomogeneous functionally 
graded materials (FGMs) subjected to internal and external pressure in the general case. The analytical solution of 
the equations for real, double and complex roots was obtained. Zamani Nejad et al. [13] obtained stresses and the 
displacements in thick-walled spherical shells made of functionally graded materials subjected to internal and 
external pressure are developed by an analytical method. 

Generally speaking, the analysis of actual engineering problems involves solution of nonlinear differential 
equations or linear differential equations with variable coefficients. Except for a limited number, these problems 
cannot be solved explicitly and normally fail to yield exact solutions [14]. Therefore, the researchers are looking for 
semi-exact and analytical methods. The Adomian’s decomposition method (ADM) [15] was presented in 1988 by 
Adomian. This method had been introduced as a semi-exact and approximation solution for partial differential 
equations (PDE’s) and ordinary differential equations (ODE’s). After 1988, many researchers tried to perfect this 
method. However, He presented the homotopy perturbation method (HPM) [16-21]. The benefits of this method, 
compared to the previous methods, are that it is more accurate, requires little computational volume, is easier to use, 
etc. There are many standard methods for solving nonlinear ordinary differential equations, such as Lie Group 
method [22], Inverse Scattering method [23], Hirota’s Bilinear method [24], Homogeneous Balance method [25], 
and Variational Iteration method (VIM), that was proposed by He [26-29]. The semi-analytical solution has been 
used by many authors to solve various types of linear and non-linear equations in solid mechanics. Hojjati and Jafari 
[30] studied the elastic analysis of non-uniform thickness and density of rotating disks subjected to only centrifugal 
loadings by variational iteration method (VIM).  Hojjati and Jafari [31] also studied the elastic analyses of non-
uniform thickness and density of rotating disks under only centrifugal body loadings. They used two semi-exact 
methods, namely the homotopy perturbation and Adomian’s decomposition. Still in another study, Hojjati and Jafari 
[32] presented analytical solutions for the elastic-plastic stress distribution in rotating annular disks with variable 
thickness and density under the plane stress assumption based on Tresca’s yield criterion, its associated flow rule 
and linear strain hardening by applying the homotopy perturbation method. They carried out their research only for 
centrifugal loading. Asghari and Ghafoori [33] presented a semi-analytical three-dimensional elasticity solution for 
rotating functionally graded disks for both hollow and solid disks. Their objective was to generalize an available 
two-dimensional plane-stress solution to a three-dimensional one in the elastic zone. 

Semi-analytical iterative technique is one of the non-perturbation methods that do not require any small/large 
parameter. An approach in which an attempt is made to incorporate the various tools into a problem solvers disposal, 
a combination of analytical, symbolic and numerical computation, has been considered by [34, 35]. 

In this paper, using the semi-analytical solution, an analysis of displacements and stresses of FGM thick 
spherical pressure vessels with exponential varying material properties is presented. For validation purposes, a 
numerical solution based on a commercial finite element program ANSYS 12 is used. Compliance of the two types 
of simulations verifies the current study. 
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2    PROBLEM FORMULATION AND SOLUTION METHOD 

Consider a thick FGM spherical pressure vessel, with internal radius a  and external radius b . The sphere is 
assumed to be under the action of a constant pressure P , on the inner surface (Fig. 1). 
 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 1  
Cross-section of thick sphere. 

 

 
Spherical coordinates ( , , )r     are considered. Infinitesimal deformations are presumed. Besides, in this study, 

Poison’s ratio ” v ” is taken to be a constant value, and also the modulus of elasticity E , varies radially according to 
exponential form, as follows: 
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Here, iE  is the module of elasticity at r a  and n  is the inhomogeneity constant. 

In the spherical symmetric case ( )   , the equilibrium equation in the absence of body forces is expressed 

as: 
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where r  and   are radial and circumferential stresses, respectively. 

The displacement in the r -direction is denoted by ( )u r u . Two strain components can be expressed as: 
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where r  and   are radial and circumferential strains, respectively.

 The relationships between the strains and stresses can be described by Hooke’s law: 
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Substitution of Eqs. (3), (4) and (5) into Eq. (2) leads to the Navier equation in terms of displacement as follows: 
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where; 
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Boundary condition is as follows: 
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Since Eq. (8) is considered as a highly nonlinear one, and it has not been solved analytically so far, our 

elaboration in this paper is to solve the so-called problem using a powerful method called iterative simulation to 
find ( )u r . 

2.1 Basic idea of iterative technique [34] 

Any differential equation can be written as: 
 

( ( )) ( ( )) ( ) 0L u x N u x g x       (11) 
 
Along with boundary condition 
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where x  denotes the independent variable, ( )u x is an unknown function, ( )g x is a known function, L  is a linear 

operator, N  is a nonlinear operator and N  is a boundary operator. Of course, the main requirement here is that L  
must be the linear part of the ODE but it is possible to take some linear parts and add them to N , as needed. The 
method we propose works in the following way: we start by assuming that 0 ( )u x  is an initial guess of the solution to 
the problem ( )u x

 
and is the solution of the equation. 
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To generate the next improvement to the solution, i.e., the next iterate, we solve the following problem: 
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and thus we have a simple iterative procedure which is effectively the solution of a linear set of problems i.e., 
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It is important to note that each of the ( )iu x

 
is standing alone solutions to problem (11). We believe that this 

iterative procedure, although very simple to apply, has merits in that each solution is an improvement over the 
previous iterates and as more and more iterations are taken, the solution converges to the solution of problem (11).  

2.2 Implementation of iterative technique 

By applying the iterative technique to Eq. (8), the differential equation of thick-wall sphere for the radial 
displacement is separated into the linear and nonlinear parts. Therefore, we will have: 
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Thus, the initial problem is 
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The general solution of initial problem Eq. (18) is as follows: 
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Using the boundary conditions, the integration constants 1C  and 2C  can be obtained as: 
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The second iteration can be carried through and is given as: 
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and has solution: 
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Using the boundary conditions, the integration constants 3C  and 4C can be obtained as: 
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Applying the same process we obtain the second iteration 2u . 
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By applying the boundary conditions , the integration constants 5C  and 6C  can be calculated as follows 
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We stop at this point as the remaining iterates are too long to show here. The more the iteration, the more 

accurate the answer. 
Substitution of 2( ) ( )u r u r  in Eqs. (3-5) gives stress relations as follows: 
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3    RESULTS AND DISCUSSION 

Consider a thick FGM spherical pressure vessel with the inner radius 1a m  outer radius 1.5b m , with material 
property of ( 2n  , 30iE GPa ). It is assumed that the Poisson’s ratio v  is a constant with the value of 0.3. The 
sphere is assumed to be under the action of a constant pressure 3P KPa . In order to present the numerical results, 
the following formal dimensionless and normalized variables are used: 
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In this study, in order to do a numerical analysis of the problem, a geometry specimen was modeled using a 

commercial finite elements code, ANSYS 12, for a comparative study. In the FE model (finite element model), due 
to symmetry, only a quarter of the spherical specimen geometry is considered (Fig. 2). An 8-node axisymmetric 
quadrilateral element is used to represent the FGM specimen. For the purpose of modeling the FGM sphere, the 
variation in material properties was implemented by 20 layers, with each layer having a constant value of material 
properties. Fig. 2 illustrates the meshing region. 

 

 

 
 
 
 
 
 
 
 
 

Fig. 2  
Finite element mesh region. 

 
Radial displacement obtained from the iterative technique (two and four iterations  ) and FEM is summarized in 

Table 1. The results show that the iterative technique gives us reliable accuracy for the problem in hand and the 
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more the iteration, the more accurate the answer. In Fig. 3, the comparison radial displacement between the two 
methods is performed. This Figure also acknowledges the desired accuracy.  

Radial stress obtained from the iterative technique and FEM are tabloid in Table 2. The errors are small and 
acceptable, and more iteration can improve the response. The radial, tangential and von Mises stresses, obtained 
from iterative technique and FEM, are compared in Figs. 4, 5 and 6.  In these Figures, it is clearly evident that the 
iterative technique has high accuracy. u against r  is shown in Fig. 7. This Figure demonstrates that at the constant 
r , by increasing the parameter n, the displacement is decreased, as could be seen. r  and   versus r  for 
different parameters n  are shown in Figs. 8 and 9. These Figures show that the graded material properties have 
significant effects on the mechanical behavior of the hollow sphere. For different values of n , dimensionless 
modulus of elasticity along the r  direction is plotted in Fig. 10. 
 
 
 
Table 1 
 Comparison of radial displacement obtained by the iterative technique and FEM 

Error% u (FEM) 4u (Iterative Technique) 2u (Iterative Technique) r  

0.35 0.00000044235 0.00000044394 0.00000043604 1     
0.39 0.00000035536 0.00000035677 0.00000034962 1.1  
0.40 0.00000030285 0.00000030408 0.00000029807 1.2  
0.39  0.0000002697     0.00000027076 0.00000026592 1.3  
0.37 0.00000024764 0.00000024858 0.00000024453 1.4  
0.36 0.00000023211  0.00000023297 0.00000022925 1.5  

 
 
 

 

 

 
 
 
 
 
 
 
 
 
 

Fig. 3  
Comparison of radial displacement obtained by the iterative 
technique and FEM. 

 
 
 

Table 2 
Radial displacement and tangential stresses obtained by the iterative technique and FEM. 

Error% r (FEM) r (Iterative Technique) r  

0          1          1          1        
0.051   0.7783 0.7787 1.1  
0.34      0.582   0.584   1.2  
0.75      0.395   0.398   1.3  
0.77     0.2057 0.2073 1.4  
0          0          0         1.5  
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Fig. 4 
Comparison of radial stress obtained by the iterative 
technique and FEM. 
 

 
 

 

 
 
 
 
 
 
 
 
 

Fig. 5 
Comparison of tangential stress obtained by the iterative 
technique and FEM. 

 

 

 
 
 
 
 
 
 
Fig. 6 
Comparison of von Mises stress obtained by the iterative 
technique and FEM. 

 
 

 

 
 
 
 
 
 
 

Fig. 7 
Distribution of displacement in r direction of the sphere 
versus to r . 
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Fig. 8 
Distribution of radial stress of the sphere versus to r . 
 

 

 

 
 
 
 
 
 
 
 
 
 

Fig. 9 
Distribution of tangential stress of the sphere versus to r . 

 

 

 
 
 
 
 
 
 
 
 
Fig. 10 
Distribution of modulus of elasticity. 

4    CONCLUSIONS 

The present paper has discussed the applicability of iterative technique to obtain the stresses and displacements of 
FGM thick spherical shells with exponentially-varying properties. A semi-analytical iterative technique is employed 
to solve the governing Navier equation and numerical solution, using FEM is also presented. The results suggest a 
good agreement between the semi-analytical method and the results based on FEM. Also to show the effect of 
inhomogeneity on the stress distributions, different values were considered for material inhomogeneity parameter n. 
The presented results also show that the material inhomogeneity has a significant influence on the mechanical 
behaviors of the spherical shells with exponentially-varying properties. 



Effect of Exponentially-Varying Properties on Displacements and Stresses …                    376 

© 2014 IAU, Arak Branch 

REFERENCES 

[1] Zenkour A. M., 2012, Dynamical bending analysis of functionally graded infinite cylinder with rigid core, Applied 
Mathematics and Computation 218: 8997-9006. 

[2]     Kalali A. T., Hadidi-Moud S., 2013, A semi-analytical approach to elastic-plastic stress analysis of FGM pressure 
vessels, Journal of Solid Mechanics 5(1): 63-73. 

[3]     Shariyat M., 2009, A rapidly convergent nonlinear transfinite element procedure for transient thermoelastic analysis of 
temperature-dependent functionally graded cylinders, Journal of Solid Mechanics 1(4): 313-327. 

[4]     Tutuncu N., Ozturk M., 2000, Exact solutions for stresses in functionally graded pressure vessels, Composites Part B-
Engineering 32(8): 683-686. 

[5]     You L. H., Zhang J. J., You X. Y., 2005, Elastic analysis of internally pressurized thick-walled spherical pressure 
vessels of functionally graded materials, International Journal of Pressure Vessels and Piping 82(5): 347-354. 

[6]     Chen Y. Z., Lin X. Y., 2008, Elastic analysis for thick cylinders and spherical pressure vessels made of functionally 
graded materials, Computational Materials Science 44(2): 581-587. 

[7]      Li X. F., Peng X. L., 2009, Kang Y. A., Pressurized hollow spherical vessels with arbitrary radial nonhomogeneity, 
AIAA Journal 47(9): 2262-2265. 

[8]      Tutuncu N., Temel B., 2009, A novel approach to stress analysis of pressurized FGM cylinders, disks and spheres, 
Composite Structures 91(3): 385-390. 

[9]     Nejad M. Z., Rahimi G. H., Ghannad M., 2009, Set of field equations for thick shell of revolution made of functionally 
graded materials in curvilinear coordinate system, Mechanika 77(3): 18-26. 

[10]     Borisov A. V., 2010, Elastic analysis of multilayered thick-walled spheres under external load, Mechanika 84(4): 28-
32. 

[11]    Nie G. J., Zhong Z., Batra R. C., 2011, Material tailoring for functionally graded hollow cylinders and spheres, 
Composites Science and Technology 71(5): 666-673. 

[12]    Ghannad M., Nejad M. Z., 2012, Complete closed-form solution for pressurized heterogeneous thick spherical shells, 
Mechanika 18(5): 508-516. 

[13]    Nejad M. Z., Abedi M., Lotfian M. H., Ghannad M., 2012, An exact solution for stresses and displacements of 
pressurized FGM thick-walled spherical shells with exponential-varying properties, Journal of Mechanical Science and 
Technology 26(12): 4081-4087.  

[14] Hassani A., Hojjati M. H., Farrahi G., Alashti R. A., 2011, Semi-exact elastic solutions for thermo-mechanical analysis 
of functionally graded rotating disks, Composite Structures 93: 3239-3251. 

[15]    Adomian G., 1998, A review of the decomposition method in applied mathematics, Journal of Mathematical Analysis 
and Applications 135: 501-544. 

[16]     He J.H., 1999, Homotopy perturbation technique, Computer Methods in Applied Mechanics and Engineering 178: 257-
262. 

[17]     He J.H., 2004, Comparison of homotopy perturbation method and homotopy analysis method, Applied Mathematics 
and Computation 156: 527-539. 

[18]     He J.H., 2004, Asymptotology by homotopy perturbation method, Applied Mathematics and Computation 156: 591-
596. 

[19]    He J.H., 2005, Homotopy perturbation method for bifurcation of nonlinear problems, International Journal of 
Nonlinear Sciences and Numerical Simulation 6: 207-208. 

[20]     He J.H., 2005, Application of homotopy perturbation method to nonlinear wave equations, Chaos Solitons & Fractals 
26: 695-700. 

[21]     He J.H., 2006, Some asymptotic methods for strongly nonlinear equations, International Journal of Modern Physics B 
20: 1141-1199. 

[22]    Olver P. J., 1996,  Applications of Lie Groups to Differential Equations, Berlin, Springer. 
[23]    Gardner C. S., Kruskal M. D., Miura R. M., 1967, Method for solving the Korteweg-de Vries equation, Physical 

Review Letters 19: 1095-1097. 
[24]    Hirota R., 1971, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Physical Review 

Letters 27: 1192-1194. 
[25]    Wang M. L., Exact solutions for a compound KdV-Burgers equation, Physical Review Letters 213: 279-287. 
[26]      He J.H., 2000, Variational iteration method for autonomous ordinary differential systems, Applied Mathematics and 

Computation 114: 115-123. 
[27]    He J.H., 1998, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Computer 

Methods in Applied Mechanics and Engineering 167: 57-68. 
[28]    He J.H., 1998, Approximate solution of nonlinear differential equations with convolution product nonlinearities, 

Computer Methods in Applied Mechanics and Engineering 167: 69-73. 
[29]    He J.H., Wu X.H., 2006, Construction of solitary solution and compacton-like solution by variational iteration method, 

Chaos Solitons & Fractals 29: 108-113. 
[30]    Hojjati M. H., Jafari S., 2007, Variational iteration solution of elastic non uniform thickness and density rotating disks, 

Far East Journal of Applied Mathematics 29: 185-200. 



377                    M. Zamani Nejad et al.  

© 2014 IAU, Arak Branch 

[31]    Hojjati M. H., Jafari S., 2008, Semi-exact solution of elastic non-uniform thickness and density rotating disks by 
homotopy perturbation and Adomian’s decomposition methods, International Journal of Pressure Vessels and Piping 
85: 871-878. 

[32]     Hojjati M. H., Jafari S., 2009, Semi-exact solution of non-uniform thickness and density rotating disks, International 
Journal of Pressure Vessels and Piping 86: 307-318. 

[33]    Asghari M., Ghafoori E., 2010, A three-dimensional elasticity solution for functionally graded rotaing disks, Composite 
Structures 92: 1092-1099. 

[34]    Temimi H., Ansari A. R., 2011, A semi-analytical iterative technique for solving nonlinear problems, Computers & 
Mathematics with Applications 61: 203-210. 

[35]    Temimi H., Ansari A. R., 2011, A new iterative technique for solving nonlinear second order multi-point boundary 
value problems, Applied Mathematics and Computation 218: 1457-1466. 


