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 ABSTRACT 

 In this study, two goals are followed. First, by means of the Generalized Differential Quadrature 
(GDQ) method, parametric analysis on the vibration characteristics of three-parameter 
Functionally Graded (FG) beams on variable elastic foundations is studied. These parameters 
include (a) three parameters of power-law distribution, (b) variable Winkler foundation modulus, 
(c) two-parameter elastic foundation modulus. Then, volume fraction optimization of FG beam 
with respect to the fundamental frequency is studied. Since the optimization process is so 
complicated and time consuming, Genetic Algorithm (GA), a computational algorithm based on 
Darwinian theories that allow to solve optimization problems without using gradient-based 
information on the objective functions and the constraints, is performed to obtain the best material 
profile through the thickness to maximize the first natural frequency. A proper Artificial Neural 
Network (ANN) is trained by training data sets obtained from GDQ method and then is applied as 
the objective function in genetic algorithm by reproducing the fundamental frequency for 
improving the speed of the optimization process. Finally, the optimized material profile for the 
maximum natural frequency of a FG beam resting on elastic foundations is presented.  
                                                                                  © 2011 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 NEW class of materials known as Functionally Graded Materials (FGMs) has attracted much attention as 
advanced structural materials in many structural members. FGMs are composite materials that are 

microscopically inhomogeneous, and the mechanical properties vary continuously in one (or more) direction(s). 
Recently, Tornabene [1] has used three-parameter power law distribution to study the dynamic behavior of 
functionally graded parabolic panels of revolution. One of the advantages of using three-parameter power law 
distribution is the ability of controlling the materials volume fraction of FG structures for considered applications. 
Beams and columns supported along their length are very common in structural configurations. Beams are often 
found to be resting on earth in various engineering applications. These include railway lines, geotechnical areas, 
highway pavement, building structures, etc. This motivated many researchers to analyze the behavior of beam 
structures on elastic foundations [2-6]. 

Optimization is the task of finding one or more solutions which correspond to minimizing (or maximizing) one 
or more specified objectives and which satisfy all constraints (if any). Optimization is implemented for various 
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objective functions in mechanical problems, such as buckling loads, fundamental frequencies, deflection, weight 
(either as a constraint or as an objective to be minimized) [7-10] and etc. When the search space becomes large, 
enumeration is soon no longer feasible simply because it would take far too much time. In this it’s needed to use a 
specific technique to find the optimal solution. Genetic Algorithm (GA) provides one of these methods. GA method 
was first introduced by John Holland in 1975 and has been applied to a wide range of engineering problems [7-10]. 
Genetic algorithm is one of the most approved heuristic methods to optimization problems where the extreme of the 
function cannot be computed analytically or it takes too much time. GA is a particular class of evolutionary 
algorithms that use techniques inspired by evolutionary biology such a inheritance, mutation, selection, and cross 
over (also called recombination). M. Abouhamze et al. [7] optimized stacking sequence of laminated cylindrical 
panels with respect to the first natural frequency and critical buckling load using genetic algorithm and neural 
networks. Artificial Neural Network (ANN) modeling is an equation-free, data-driven modeling technique that tries 
to emulate the learning process in the human brain by using many examples. ANN can be defined as a massive 
parallel-distributed information processing system that has a natural propensity for recognizing and modeling 
complicated input-output systems. The concept of neural networks has been introduced to different branches of 
engineering, analytical procedure of structural design, structural optimization problems and functionally graded 
materials [11-14]. 

However, this paper is motivated by the lack of studies in the technical literature concerning the analysis of 
three-parameter functionally graded beams resting on two-parameter elastic foundation. In this study, ceramic-metal 
graded beams resting on variable elastic foundations with three-parameter power-law variations of the volume 
fraction of the constituents in the thickness direction are considered. The effect of the power-law exponent, power-
law distribution choice, variable Winkler foundation modulus and two-parameter elastic foundation modulus on the 
mechanical behavior of functionally graded beams is investigated. The frequency parameter of beam is obtained by 
using numerical technique termed the Generalized Differential Quadrature (GDQ) method based on the DQ 
technique [15]. The GDQ approach was developed by Shu and Coworkers [16, 17]. It approximates the spatial 
derivative of a function of given grid point as a weighted linear sum of all the functional value at all grid point in the 
whole domain. The computation of weighting coefficient by GDQ is based on an analysis of a high order 
polynomial approximation and the analysis of a linear vector space. The weighting coefficients of the first-order 
derivative are calculated by a simple algebraic formulation, and the weighting coefficient of the second-and higher-
order derivatives are given by a recurrence relationship. The details of the GDQ method can be found in [16, 17] 

As a second goal of this study, volume fraction optimization of three-parameter power law distribution is 
presented for maximizing the natural frequency parameter of FG beam. A nature inspired technique named genetic 
algorithm is applied to find the optimal solution. To speed the optimization process, a suitable ANN is implemented 
to increase the speed of the process of optimization by reproducing the fundamental frequency parameter. 

2    PROBLEM DESCRIPTION 
2.1 FG material properties  

Consider a FG beam resting on two-parameter elastic foundation as shown in Fig.1 where k(x), k1(x) are Winkler 
foundation modulus and second parameter foundation modulus respectively. In the present work, different models of 
Winkler elastic coefficient including constant, linear and parabolic types are considered as follows: 
a: Winkler elastic foundation with constant  modulus                                      0( )k x k=  

b: Winkler elastic foundation with linear variation type                                 0( ) (1 )k x k x= -  

c: Winkler elastic foundation with nonlinear variation type                            2
0( ) (1 )k x k x= -  

 
Linear and parabolic types of Winkler elastic foundation are shown in Fig. 2. 

 
 

Fig. 1 
FG beam supported on variable two-parameter 
elastic foundations. 
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Fig. 2 
Various Winkler elastic foundations along the axial direction: (a) linear type (b) parabolic type. 

 
 
The Young’s modulus ,fgmE  Poisson’s ratio fgm  and mass density fgm  of the functionally graded beam can 

be expressed as a linear combination [1]: 
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where , , ,m m m mE V   and , , ,c c c cE V   represent mass density, Young’s modulus, Poisson’s ratio and volume 

fraction of the metal and ceramic constituent materials, respectively. In the present work, cV  is considered as follow 

[1]; 
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where volume fraction index (0 )p p£ £¥  and the parameters b, c dictate the material variation profile through 

the FG beam thickness. It should be noticed that the values of parameters b and c must be chosen so that 
0 1.cV£ £  Some material profiles through the FG beam thickness are illustrated in Figs. 3-5. In Fig. 3, the 

classical volume fraction profiles are presented as special case of the general distribution laws (2) by setting b0.  
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Fig. 3 
Variations of the volume fractions of the matrix phase Vc through the 
thickness for different values of the power-law index p (b=0). 
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Fig. 4 
Variations of the volume fractions of the matrix phase Vc through the 
thickness for different values of the power-law index p (b=0.2, 
c=2.2). 
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Fig. 5 
Variations of the volume fractions of the ceramic constituent (Vc) through the thickness for p=1 (a : c=2 ; b: b=0.5). 
 

 

Fig. 4 shows various power-law distributions obtained by modifying the parameters b, c, p with respect to the 
reference surface ( 0) =  of the beam. For another example, matrix phase profile for the different values of 

parameters b, c and p1 is shown in Figs. 5a, b. In Figs. 5a, b, ceramic volume fraction on the lower surface is the 
same (Vc1); however, volume fraction profile of ceramic constituent  as well as volume fraction on the upper 
surface will change with changing the parameter b or c. Eq. (2) presents this fact that: 
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2.2 The basic formulation 

For FG beam resting on two-parameter elastic foundation in the absence of body force, the governing equation can 
be expressed as [6]: 

4 2
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To obtain the natural frequency, Eq. (3) is formulated as an eigenvalue problem by using the following periodic 

function ( , ) ( ) ,i tw x t W x e -=  where W(x) is the mode shape of the transverse motion of the beam. Eq. (3) is a 

fourth-order ordinary differential equation. Thus, it requires four boundary conditions. The following two types of 
boundary conditions are considered.  

Simply supported edge 
2

2
0,   0 at 0  or  


   


W

W x x L
x

 (4a)
 

 
Clamped edge  

0,  0 at 0  or  


   

W

W x x L
x

 (4b)
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3    GDQ SOLUTION OF GOVERNING EQUATION 

The generalized differential quadrature (GDQ) approach is used to solve the governing equation of beam. In the 
GDQ method, the nth order of a continuous function f(x,z) with respect to x at a given point xi can be approximated 
as a linear sum of weighting values at all of the discrete point in the domain of x , i.e. [16, 17], 

( , )

1

( , ), 1,2,..., ,   1,2, 1
i Nn x z

n
ik ikn

k

f
c f x z i N n N

x =

¶
= = = -

¶ å  (5)
 

where N is the number of sampling points, and n
ijc  is the x i dependent weight coefficients.  

4    NEURAL NETWORK MODELING 

The basic element of an NN is the artificial neuron as shown in Fig. 6 which consists of three main components 
namely as weights, bias, and an activation function. Each neuron receives inputs X1, X2, …, Xn, attached with a 
weight wi which shows the connection strength for that input for each connection. Each input is then multiplied by 
the corresponding weight of the neuron connection. A bias bi can be defined as a type of connection weight with a 
constant nonzero value added to the summation of inputs and corresponding weights u, given by 
 

1

H

i i j j i
j

u w x b
=

= +å  (6)
 

 
The summation ui is transformed using a scalar-to-scalar function called an ‘‘activation or transfer function’’, 

F(ui) yielding a value called the unit’s ‘‘activation’’, given by: 
 

( )i iY f u=  (7)
 

 
Activation functions serve to introduce nonlinearity into NNs which makes NNs so powerful. NNs are 

commonly classified by their network topology (i.e. feedback, feed forward) and learning or training algorithms (i.e. 
supervised, unsupervised). There is no well-defined rule or procedure to have optimal network architecture. In this 
work, the feed forward Multi-Layer Perceptron (MLP) network has been applied. MLP networks are one of the most 
popular and successful neural network architectures which are suited to a wide range of applications such as 
prediction and process modeling. The neural network architecture adopted in the present work has two hidden layers 
which has high accuracy and has been used for various applications. Fig.7 illustrates the topology of a simple, fully 
connected four-layer MLP network. 

 
 

Fig. 6 
Basic elements of an artificial neuron. 
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Fig. 7 
Schematic diagram of ANN model. 

5    GENETIC ALGORITHM 

Genetic algorithms operate on a set of possible solutions. Chromosomes represent solutions within the genetic 
algorithm. Chromosomes are grouped into population (set of solutions) on which the genetic algorithm operates. In 
each step (generation), the genetic algorithm selects chromosomes from a population and combines them to produce 
new chromosomes (offspring chromosomes). These offspring chromosomes form a new population in the hope that 
the new population will be better than the previous ones. Genetic algorithms produce new chromosomes (solutions) 
by combining existing chromosomes. This operation is called crossover. A crossover operation takes parts of 
solution encodings from two existing chromosomes (parents) and combines them into a single solution (new 
chromosome). A coupling operation defines how the selected chromosomes (parents) are paired for mating (mating 
is done by performing a crossover operation over the paired parents and applying a mutation operation to the newly 
produced chromosome). This operation gives better control over the production of new chromosomes, but it can be 
skipped and new chromosomes can be produced as the selection operation selects parents from the population. The 
next step performed by a genetic algorithm is the introduction of new chromosomes into a population. Offspring 
chromosomes can form a new population and replace the entire (previous) population (non-overlapping population), 
or they can replace only a few chromosomes in the current population (overlapping population). For overlapping 
populations, the replacement operation defines which chromosomes are removed (usually the worst chromosomes) 
from the current population and which offspring chromosomes are inserted. By replacing chromosomes, there is a 
chance that the genetic algorithm will lose the best chromosome(s). To prevent this, the concept of elitism is 
introduced into genetic algorithms. Elitism guarantees that the best chromosome(s) from the current generation is 
(are) going to survive to the next generation. 
 
 

 
Fig. 8 
Flowchart of GA. 
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An algorithm performs the previously described steps one by one in sequence, and when they have been 
performed, it is said that a generation has passed. At the end of each generation, the genetic algorithm checks the 
stop criteria. Because of the nature of genetic algorithms, most of the time, it is not clear when the algorithm should 
stop, so a criteria is usually based on statistical information such as the number of the generation, the fitness value of 
the best chromosome, or the average fitness value of the chromosomes in the population, the duration of the 
evolution process, etc. The flowchart of the proposed algorithm is shown in Fig. 8. More details about the 
algorithms are found in Haftka and Gurdal [18], Gurdal et al. [19], etc. 

6    RESULTS AND DISCUSSION 
6.1 Free vibration analysis 

This section introduces some results and considerations about the free vibration problem of functionally graded 
beams on elastic foundations by means of GDQ method. First, validation study of the results is considered for an 
isotropic beam resting on Winkler elastic foundation in Table 1. As observed there is good agreement between the 
present results with similar one obtained by Zhou Ding [2]. In this study, ceramic and metal are particle mixed to 
form the functionally graded material. The relevant material properties for the constituent materials are shown in 
Table 2 [20]. The convergence and accuracy of the GDQ method is investigated in evaluating the normalized natural 

frequency, 2 /m mL A E I =  ( ,m mE are mechanical properties of aluminum). The non-dimensional forms of 

the elastic foundation coefficients are defined as / fgmk K L D=  and  1 1 / .fgmk K D L=  From Fig. 9 fast rate of 

convergence of the method is evident at different boundary conditions and it is found that only ten DQ grid in the 
axial direction can yield accurate results. It is also observed for the considered system the formulation is stable while 
increasing the number of points and that the use of 50 points guarantees convergence of the procedure. 

The influence of the index p on the natural frequency of simply supported FG beam on elastic foundations is 
shown in Table 3. As can be seen from this table, increasing the values of the parameter index p up to infinity 
reduces the contents of ceramic phase and at the same time increases the percentage of metal phase. In other words, 
by considering the relation (1), it is possible to obtain the homogeneous isotropic material when the power-law 
exponent is set equal to zero ( 0)p =  or equal to infinity ( ).p =¥  The influence of the index p on the natural 

frequency is also shown in Figs. 10 and 11 for three sets of boundary conditions, that is, simply supported-simply 
supported (S-S), clamped- simply supported (C-S) and clamped-clamped (C-C) conditions. In these figures, it is 
assumed that 1 10, 900 (1 0.2 ).k k x= = -  

 
 
Table 1 
Comparison of the frequency parameters of an isotropic beam resting on parabolic type of Winkler elastic foundation 

2 4 4 2
1 0( 1000 (1 ) , 0, / , 21 )i iK x k A L EI N   = - = = =  

  
 

1  2  3  
 
0.4 

Zhou[2] 
Present 

5.597 
5.596 

7.022 
7.0231 

9.675 
9.674 

     
 
0.8 

Zhou[2] 
Present 

5.409 
5.410 

6.935 
6.935 

9.638 
9.638 

 
 
Table 2 
Material properties [20] 

Material properties  

cE (Gpa) 380 

mE (Gpa) 70 

c
3(kg/m )  3800 

m
3(kg/m )  2707 
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Fig. 9 
Convergency of the normalized natural frequency 

1( 1, 4, 3, 1,  500)b c p k k= = = = =  

 
Table 3 
The first non-dimensional natural frequency of FG beams resting on elastic foundation with simply supported ends 

1 0( 0.6 , 2 , , (1 0.2 ) )b c k k k x     

01 , kk
 

p = 0 (Ceramic beam) p = 0.7 p = 1 p = 5 p=10 p = 20 p = ∞ (Metal beam) 

1, 10 20.6735 19.6658 19.2785 16.1435 14.6866 13.4546 11.2211 

1, 100 22.0248 21.1756 20.8521 18.2948 17.1280 16.1367 14.3842 

10, 900 32.5760 32.6197 32.6389 32.7768 32.6910 32.4438 31.8620 
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Fig. 10 
Variation of the natural frequency parameter vs. the power-law exponent p for various values of the parameter b and different 
boundary conditions ( 0 0.7 , 1 ),b c£ £ =  (a: S-S, b: C-S, c: C-C). 

 
The new and interesting result is that although it is expected to be the value of natural frequency parameter 

between the natural frequency parameter of the limit cases of homogeneous beams of alumina (p0) and of 
aluminum (p∞), as observed in Figs. 10 and 11, natural frequency parameter sometimes exceed the limit cases. 
Various parameters such as the boundary condition, the power-law distribution profile, mechanical properties of 
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materials, elastic foundations modulus, etc can influence on this fact. Thus, it is possible to obtain dynamic 
characteristics similar or better than the isotropic ceramic limit case by choosing suitable values of the three 
parameters b, c, p. 

Here, we consider the effect of elastic foundations on the frequency parameters. First, the influence of the 
Winkler elastic foundation on the first three frequency parameters of FG beam with simply supported ends are 
investigated. In Fig. 12 the shearing layers elastic coefficient (k1) is assumed to be 10 while Winkler elastic modulus 
(k) is considered to vary from 10 to 100,000. The effect of various Winkler elastic foundations on the natural 
frequency is studied. Fig.13 shows variations of the natural frequency parameter of FG beam with clamped ends 
resting on different type of Winkler elastic foundation. As observed, three different Winkler elastic foundations have 
the same effect on the natural frequency parameter of FG beam for Winkler elastic constant (k0), ranges 10<k0<1000 
and then for k0>1000, the natural frequency parameter of a FG beam resting on a variable Winkler elastic foundation 
decreases from constant type to parabolic and then linear types. Fig. 14 shows the influence of k on frequency 
parameter for different types of boundary conditions. As observed for k>10000, the type of boundary conditions 
does not effect on natural frequency of FG beam. The effect of shearing layer coefficient on the natural frequency 
parameter of a FG beam with simply supported ends is illustrated in Fig. 15 for different Winkler elastic foundation 
coefficients. As it could be observed the natural frequency parameter converges with increasing the shearing layer 
elastic coefficient. For further study, the first natural frequency parameters of the FG beam on elastic foundations 
with various linear modulus ( )  as well as parabolic modulus (  ) is shown for different boundary conditions in 
Tables 4 and 5. As noticed, the natural frequency parameters decrease with the increase of linear and parabolic 
modulus. The results in these tables are for b0.5, c4, p5. 
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Fig. 11 
Variation of the natural frequency parameter vs. the power-law exponent p for various values of the parameter b and different 
boundary conditions  ( 0.4, 1 3 ),b c= £ £  (a: S-S, b: C-S, c: C-C) 
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Fig. 12 
Variation of the first three normalized natural frequency 
versus Winkler modulus (k). 
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Fig. 13 
Variations of the natural frequency parameter of a clamped 
FG beam resting on different kinds of Winkler elastic 
foundation 5
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Fig. 14 
Variations of the fundamental frequency parameter of a FG 
beam resting on different kinds of boundary conditions  
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Fig. 15 
The effect of shearing layer coefficient on the natural 
frequency parameter of a FG beam with simply supported 
ends for different Winkler elastic foundation coefficients 
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Table 4 
Comparison of the first three non-dimensional natural frequency parameters of FG beam on elastic foundations 

0 1( (1 ), 100 , 15).k k x k N= - = =  

 
 
Table 5 
Comparison of the first three non-dimensional natural frequency parameters of FG beam on elastic foundations 

2
0 1( (1 ), 100, 15)k k x k N= - = =  

0k    S-S C-S C-C 

1000 0.2 45.088 49.826 56.499 
 0.4 44.493 49.195 56.044 
 0.8 43.264 47.899 55.118 
2000 0.2 53.977 57.914 63.834 

 0.4 52.969 56.817 63.023 

 0.8 50.848 54.527 61.353 

 

6.2 Optimization procedure 

The objective of optimization in this paper is to find the best values of the parameters b, c, p in three-parameter 
power law distribution so that to maximize fundamental frequency parameter of FG beam. There is an important 
point that considered parameters must be obtained so that the ceramic volume fraction is between zero and one 
(0 1).cV£ £  The boundary conditions of the FG beam are considered simply supported and the parameters are 

considered in the following ranges: 10 1, 0 30, 0 30, 900 (1 0.2 ), 10.b c p k x k£ £ £ £ £ £ = - =   

Therefore, the constrained optimization problem is defined as: 
 

( , , )

0 1

0 1 , 0 30 , 0 30
c

Minimize f b c p

V
Subject to

b c p

=-
ì £ £ïïíï £ £ £ £ £ £ïî

 (8)
 

 
It should be noticed that since GA minimizes the fitness function basically, fundamental frequency parameter 

has been multiplied by minus in the above equation. If GDQ method is applied for frequency parameters, the 
optimization process becomes so complicated and time consuming. For example, even if the increment of the 
parameters (b, c, p) is assumed 0.05, the formed discrete space contains more than 7,200,000 design choices to be 
searched for an optimum point. Also, if it is assumed that the process of one search takes 0.1 second in average, the 
optimization process takes about 100 hours. In the present work, therefore, ANN and GA are implemented for 
increasing the speed of optimization. The MLP network has been used having two hidden layers. A program was 
developed in MATLAB which handles the trial and error process automatically. The program tries varying number 
of hidden layers neurons is tested from two up to fifteen for a 1000 epochs for 5 times for different back 
propagation training algorithms. 8 neurons for first hidden layer and 10 neurons for second hidden layer, 
Levenberg-Marquardt (LM) algorithm are chosen for the network because it performs better than other cases. The 
ability of trained network to reproduce the fundamental frequency parameter is shown in Fig.16 for 50 test points 
which selected far from the training point randomly. In this figure, comparison is made between the ANN results for 
natural frequency with similar ones obtained from GDQ method. As noticed, the results are so close for all 50 test 
points.  Since the neural network has been accurately designed, it can be implemented for fitness function in genetic 

k0   S-S C-S C-C 

1000 0.2 44.636 49.412 56.123 
 0.4 43.571 48.353 55.283 
 0.8 41.346 46.155 53.559 
     
2000 0.2 53.219 57.201 63.167 
 0.4 51.413 55.355 61.664 
 0.8 47.551 51.440 58.526 
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algorithm by simulating fundamental frequency parameter. Table 6 shows the parameters of GA used to find the 
optimal solution. 
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Fig. 16 
Comparison of various predicted values of fundamental 
frequency parameter versus GDQ data. 

 
 
Table 6 
Parameters of GA approach 

 
 
Table 7 
Optimization result for the fundamental frequency parameter of the simply supported FG beam on elastic foundation  

1( 900(1 0.2 ), 10)k x k= - =  

Optimum parameters Exact value of Ω Predicted by 
ANN 

Relative 
error 

Density 
kg/m3 

Volume fraction of 
ceramic b c p 

1 2.856 4.801 33.46 33.45 0.03 % 3061.6 32.44% 
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Fig. 17 
Optimized material profile for maximum natural 
frequency. 

 
Here, optimization is investigated for the FG beam and result is shown in Table 7. The algorithm reached to the 

optimal values after 51 generations. The (b), (c) and (p) parameters for the optimized profile are 1, 2.856 and 4.801 
respectively. Fig 17 shows the optimized material profile for the maximum frequency parameter. As observed, the 
ceramic volume fraction decreases from 1 at  - 0.5 as far as middle surface of the beam ( 0) and then increases 

Parameters Value/type 
Population size 30 
Generations 200 
Selections stochastic uniform 
Crossover options Scattered 
Mutations options Constraints dependent 
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to 1 for  0.5. In other words, the profile is so close to parabolic one. For further verification on the accuracy of the 

trained network, the results obtained by ANN and GDQ have been compared in Table 7. As observed, the results are 
so close to each other and relative error is about 0.03 %. It should be mentioned that the process of optimization by 
GA took less than 2 minutes (CPU time was reduced by a considerable amount). 

7    CONCLUSIONS 

In this research, free vibrations of three-parameter FG beam on variable elastic foundation including Winkler elastic 
foundation with constant modulus, linear and parabolic types is studied through using GDQ method. The effect of 
the power-law exponent, power-law distribution choice, variable Winkler foundation modulus and two-parameter 
elastic foundation modulus on the natural frequencies of FG beams is investigated. Interesting result shows that 
although frequency parameter of the ceramic beam is more than the metal one, the frequency parameter of the FG 
beam does not necessarily increase with the increase of ceramic volume fraction. In other words, by choosing 
suitable values of b, c, p, frequency parameter can be obtained more than the frequency parameter of the similar 
beam made of 100% ceramic and at the same time lighter. This result is against the expected one for the frequency 
parameter of FG beam to fall between those for p0 (100% Ceramic) and p∞ (100% metal). In the next step, 
volume fraction optimization of FG beam resting on elastic foundations with respect to first natural frequency was 
studied. Genetic algorithm was performed to obtain the best material profile through the thickness to maximize the 
fundamental natural frequency. A numerical method able to solve the free vibration was developed and was used in 
training artificial neural network (with much fewer runs) and then the trained network was implemented as the 
fitness function in the GA. Also, it was concluded that using the combination of NN and GA reduces the CPU time 
by a considerable amount with losing negligible accuracy. Comparing Table 3 (if 0, 32.5760cp  = = = ) and 

then 33800 kg/mc = =  with Table 7, one can come to this conclusion that by choosing suitable values of (b), 

(c), (p), frequency parameter can be obtained more than the frequency parameter of the similar beam made of 100% 
ceramic and at the same time lighter (about 740 kg/m3). As observed for this frequency parameter, the volume 
fraction of the ceramic constituent is 32.44%. 
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