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 ABSTRACT 

 In this paper, the equation of motion for an incompressible transversely isotropic 

fibre-reinforced elastic solid is derived in terms of a scalar function.   The general 

solution of the equation of motion is obtained, which satisfies the required radiation 

condition.  The appropriate traction free boundary conditions are also satisfied by 

the solution to obtain the required secular equation for the Rayleigh wave speed. 

Iteration method is used to compute the numerical values of non-dimensional speed 

of Rayleigh wave.  The dependence of the non-dimensional wave speed on non-

dimensional material parameter is illustrated graphically. Effect of transverse 

isotropy is observed on the Rayleigh wave speed. 

                                                 © 2016 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 ELFIELD et  al. [2] gave the  idea of introducing  a continuous  self-reinforcement at  every point of an 

elastic solid.  Fibre-reinforced composite concrete structures are significant due to their low weight and 

high strength.  A reinforced composite has characteristic property where its components act together  as a 

single anisotropic unit till they remain in the elastic condition.   During an earthquake, the artificial structures 

on the surface of the earth are excited which gives rise to violent vibrations in some cases.  The material 

structures which resist the oscillatory vibration are of much interest for engineers and architects. Hashin and 

Rosen [11] investigated the elastic moduli for fibre-reinforced materials. 

Bose and Mal [3] studied the propagation of time-harmonic elastic waves in a fibre- reinforced composite. 

Scott and Hayes [23] discussed the small vibrations of a fibre reinforced composite.  Scott [24-25] studied the 

waves in a fibre-reinforced elastic material.  Sengupta and Nath [26] considered the surface waves in fibre-

reinforced anisotropic elastic media. They expressed the plane strain displacement components in terms of two 

scalar potentials to decouple the plane motion into qP and qSV waves. Singh [28] showed that, for wave 

propagation in fibre-reinforced anisotropic media, this decoupling cannot be achieved by the introduction of the 

displacement potentials. The reflection of qP and qSV waves at the free surface of a fibre-reinforced anisotropic 

elastic half-space is studied by Singh and Singh [29] by using a direct method without the introduction of 

potentials. Singh [30] obtained the reflection coefficients from free surface of an incompressible transversely 

isotropic fibre-reinforced elastic half-space for the case when outer slowness section is re- entrant. Singh and 

Yadav [31] studied the reflection of plane waves from a free surface of a rotating fibre-reinforced elastic solid 

half-space with magnetic field. Surface waves are very important in the study of earthquake, geophysics and 
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geodynamics.  Rayleigh waves cause destruction to the structure due to its slower attenuation of the energy 

than that of the body waves.  Surface waves in elastic solids were first studied by Lord Rayleigh [18] for an 

isotropic elastic solid. The extension  of surface wave analysis and other  wave propagation  problems to 

anisotropic  elastic materials  has been the subject of many studies; see, for example, Musgrave [15]; Anderson 

[1]; Stoneley [32]; Crampin and Taylor [6]; Chadwick and Smith [4]; Royer and Dieulesaint [22]; Dowaikh and 

Ogden [10]; Mozhaev [14]; Nkemzi [17]; Nair and Sotiropoulos [16]; Malischewsky [12]; Destrade [7-8]; Ting 

[33]; Destrade [9]; Ogden  and Vinh [19]; Ogden and Singh [20]; Vinh and Linh [34]; Shams and Ogden [27]; 

Ogden and Singh [21]. 

The aim of this paper is to obtain a secular equation for the Rayleigh wave in an incompressible 

transversely isotropic fibre-reinforced elastic medium.  Using iteration method, non-dimensional wave speed of 

Rayleigh wave is plotted against non-dimensional material parameter to show the effect of transverse isotropy. 

2    EQUATIONS OF MOTION   

Let us consider an incompressible transversely isotropic fibre-reinforced elastic medium.  The constitutive 

equation explaining the stress-strain response to small deformation of such a material is given by  Chadwick [5] 

as: 

     

   2 2( ) ( ) ( ) 4( ) ( )T L T E LpI e e e e e e e e                                 (1) 

 
where ,   and I denote the infinitesimal strain  and stress tensors and the 3×3 identity  tensors, respectively, 

and e is a unit vector defining the axis of transversely isotropy.  In Eq. (1), 
L  and 

T are longitudinal  and 

transverse shear moduli and 
E is a weighted shear modulus, given by L

E T

T

E

E
   where 

LE  and 
TE are 

longitudinal  and transverse Young’s moduli. p is the hydrostatic pressure required to maintain the 

incompressibility constraint. 

 

0tr                (2) 

 

Consider a Cartesian  coordinate  system 
1 2 3Ox x x , such that 

1Ox is parallel to the direction of transversely  

isotropy, the constitutive relation  (1) is written  in component form as: 
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The Eq. (3) may be written in matrix form (stiffness matrix) as: 
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   (4) 

 

Let 
1 2 3( )x x x  be Cartesian coordinates and consider a transversely isotropic fibre-reinforced elastic material   

occupying the  half-space 
2 0x ,  with traction-free  boundary 

2 0x  . We consider a plane motion in the 

1 2( , )x x plane with displacement components 1 2 3( , , )u u u such that 
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1 1 1 2 2 2 1 2 3( , , ), ( , , ), 0u u x x t u u x x t u                (5) 

 

where t is time. For an incompressible material, we have 

 

1,1 2,2 0u u               (6) 

 

From which we deduce the existence of a scalar function,  denoted  
1 2( , , )x x t , such that 

 

1 ,2 2 ,1,u u                 (7) 

 
Using the strain-displacement relation  

, ,2 ij i j j iu u    i n  E q . ( 4 ) ,  the stress components are written 

in terms of displacement components and pressure as: 

 
2 2

11 1 2 1,1( )c c u p                 (8) 

 
2

12 3 1,2 2,1( )c u u                (9) 

 
2

22 2 2,22c u p                (10) 

 

where 
1 2( , , )p p x x t is the hydrostatic pressure associated  with the incompressibility  constraint, and  

2 2 2

1 2 34 , ,E T T Lc c c       . The  requirements of a physically reasonable response ensure that 2 2

1 2,c c  
  

and 2

3c
 
are all positive. In absence o f  body forces, the equations of motion are 

 

,ij j iu               (11) 

 

which upon using Eqs. (8) to (10) become
 

 
2 2 2

1 2 1,11 3 1,22 2,12 ,1 1( ) ( )c c u c u u p u                  (12) 

 
2 2

3 1,12 2,11 2 2,22 ,2 2( ) 2c u u c u p u                 (13) 

 

with the help of Eq.  (7), the Eqs.  (12) and (13) become 

 
2 2 2

1 2 ,211 3 ,222 ,112 ,1 ,2( ) ( )c c c p                     (14) 

 
2 2

3 ,212 ,111 2 ,122 ,2 ,1( ) 2c c p                     (15) 

 

Elimination of p by cross differentiation leads to the following equation of motion 

 
2 2 2 2 2

3 ,1111 1 2 3 ,1122 3 ,2222 ,11 ,22( 2 ) ( )c c c c c                        (16) 

3    RAYLEIGH WAVES   

We now consider a half-space  occupying the  region 
2 0x  in the  reference configuration with boundary  

2 0x  and Rayleigh surface waves propagating  along the direction 1x  and we write   in the form 
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 1 2 1( , ) ( )exp ( )x x t y ik x ct                 (17) 

 

where 
2y kx  a n d  k  i s  w a v e  n u m b e r . Using Eq. (17) into Eq. (16), we obtain 

 
2 2 2 2 2 2 2

3 1 2 3 3( ) ( 2 ) ( ) ( ) ( ) 0c y c c c c y c c y                         (18) 

 

The boundary conditions on 
2 0x  are 

 

21 220, 0                (19) 

 

which are written as: 

 
2

3 1,2 2,1( ) 0c u u               (20) 

 
2

2 2,22 0c u p               (21) 

 

with  the help of Eq.(7), the Eq. (20) is written  as: 

 
2

3 22 11( ) 0c                 (22) 

 
Differentiating Eq.(21) with respect to 

1x  and using Eq. (7) and Eq.(14), we have 

 
2 2 2

3 222 112 1 2 112 2( ) ( ) 0c c c                     (23) 

 

In addition to conditions (22) and (23), we need also the following condition on   

 

1 2 2( , , ) 0,x x t as x                (24) 

 

In terms of  , the conditions (22) to (24) become 

 

(0) (0) 0                 (25) 

 
2 2 2 2 2

3 3 1 2(0) ( ) (0) 0c c c c c                     (26) 

 

2 2( ) 0,x as x                (27) 

 

The general solution ( )y of Eq. (18) that satisfies r adiation condition (27) is: 

 

1 2( ) exp( ) exp( )y A s y B s y                (28) 

 

where A, B are constants  and 
1 2,s s are solutions of following quadratic  equation  in 2s  

 
2 4 2 2 2 2 2 2 2

3 1 2 3 3( 2 ) ( ) 0c s c c c c s c c                     (29) 

 

If the  roots 2

1s
 
and 2

2s
 
of the  quadratic  Eq. (29) are real, the  they  must  be positive to ensure that 

1s  

and  2s  can have a positive real part. If they are complex then they are conjugate.  In either  case, the  product  

2 2

1 2s s
 
must  be positive  and  hence a real (surface) wave speed satisfies the inequalities 
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2 2

30 c c               (30) 

                                                           

Using solutions (28) into boundary conditions (25) and (26), we have 

 
2 2

1 2(1 ) (1 ) 0s A s B                 (31) 

 
2 3 2 2 2 2 2 3 2 2 2 2

3 1 3 1 2 1 3 2 3 1 2 2( ) ( ) 0c s c c c c s A c s c c c c s B                              (32) 

 

Following Ogden and Vinh [19], the non-trivial solution of Eqs. (31) and (32) requires 

 
2

2 2 2 2

1 2 2

3

( ) 1 0
c

c c c c
c


                

    

(33) 

 

which is the secular equation  for wave speed. Eq. (33) may also be written  as: 

 
2

2 2(4 ) 1 0E

L

c
c c


  


              

    

(34) 

 

For a real solution for c of Eq. (34), the inequality 2 4 Ec   must also hold along with inequality (30).With 

the help of Eqs. (7), (17), (28), (29), (31) and (32), it can be shown that the particles in a solid move in elliptical 

paths with the major axis of the ellipse perpendicular to the surface of the solid. The width of the elliptical path 

decreases with the increase in depth into the solid. 

4    NUMERICAL RESULTS   

Taking 
2

L

c
x




  and 

4 E

L

R



  into the Eq.  (34) and squaring both sides, we can obtain 

 
2 2 3

2

2

2

R Rx x
x

R R
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
          

    

(35) 

 

Using iteration method, the Eq. (35) is solved for x in the range 0 10R  . The non-dimensional speed 
2

L

c
x




  is plotted against the ratio 

4 E

L

R



  of material constants in Fig. 1. For small values of ratio R of 

material constants, the wave speed is very small. It increases sharply with the increase in value of ratio R. For 

( 4)E L R   , the wave speed corresponds to isotropic case and is approximately 0.9126. For very large value 

of R, the non-dimensional speed 
2

L

c
x




  tends to one. It is necessary to mention here that the Fig. 1 is similar to 

that plotted by Ogden and Vinh [19] using an explicit formula for wave speed.  

Taking 
2

4 E

c
x




   and 

4 E

L

R



  into the Eq.  (34) and squaring both sides, we can obtain 

 

2 31
2x x x

R
             

    

(36) 
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Using iteration method, the Eq. (36) is solved for x in the range 0.2 10R  . The non-dimensional speed 
2

4 E

c
x




  is plotted against the ratio 

4 E

L

R



  of material constants in Fig. 2. For small values of ratio R of 

material constants, the wave speed is very l a r g e . It decreases very sharply with the increase in value of ratio R. 

For ( 4)E L R    , the wave speed corresponds to isotropic case and is 0.25. At higher values of R , the non-

dimensional speed 
2

4 E

c
x




  decreases slowly.  
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Variation of non-dimensional speed 
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 of Rayleigh 

wave against non-dimensional constant 
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Fig.2 

Variation of non-dimensional speed 
2

4 E

c
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 of Rayleigh 

wave against non-dimensional constant 
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L

R



 . 

5    CONCLUSIONS 

A problem on Rayeligh wave in an incompressible transversely isotropic fibre-reinforced elastic solid half-space is 

considered. The secular equation for Rayleigh wave speed is obtained. The numerical results show the dependence 

of wave speed on material parameters. The present theoretical and numerical results may provide important 

information to experimental seismologists for their further research on the subject.     
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