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ABSTRACT 
The buckling analysis of stiffened cylindrical shells by rings and stringers made of functionally 
graded materials subjected to axial compression loading is presented. It is assumed that the 
material properties vary as a power form of the thickness coordinate variable. The fundamental 
relations, the equilibrium and stability equations are derived using the first order shear 
deformation theory. Resulting equations are employed to obtain the critical buckling loads. The 
effects of the material properties and geometry of shell on the critical buckling loads are 
examined. Excellent agreement with the results in the literature indicates the correctness of the 
proposed closed form solution. 
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1    INTRODUCTION 

NALYSIS of stiffened cylindrical shells is an important topic in modern engineering, especially in aircraft and 
spacecraft industry. Due to the increasing demands of high structural performance requirements, the study of 

functionally graded structures has received considerable attention in recent years. There have been many studies on 
the stability of cylindrical shells but closed-form solutions are possible only for the case which all edges are simply 
supported. The stabilization of a functionally graded (FG) cylindrical shell under axial harmonic loading is 
investigated by Ng et al. [1]. Yaffe and Abramovich [2] have analyzed numerically and experimentally the dynamic 
buckling of cylindrical stringer-stiffened shells. Rikards et al. [3] employed a triangular finite element model to 
study the buckling and vibration of laminated composite stiffened shells and plates based on the first order shear 
deformation theory. Khazaeinejad et al. [4] developed the first order shear deformation theory (FSDT) to study the 
critical buckling loads of FG cylindrical shells under three types of mechanical loadings.  

The aim of the present paper is to obtain the critical buckling loads of functionally graded stiffened cylindrical 
shells by rings and stringers under axial compression loading, and to investigate the effects of the material properties 
and geometry of shell on the critical buckling loads. The first order shear deformation theory is employed to derive 
the equilibrium and stability equations. 
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2    BRIEF DESCRIPTION OF THE METHOD 

A cylindrical shell of mean radius ,a  thickness ,h  and length L  with the cylindrical coordinates ( , , )x zθ  made of 
functionally graded materials is considered. The Young’s modulus of shell is assumed to vary as a power form of 
the thickness coordinate ,z that is [4] 
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Here, k  is non-negative real number called the inhomogeneity parameter and subscripts m  and c  refer to the metal 
and ceramic constituents, respectively. The first order shear deformation theory (FSDT), used in the present study, is 
based on the following displacement field 
 

),(),,(
),(),(),,(
),(),(),,(

0

10

10

θθ
θθθ
θθθ

xwzxw
xzvxvzxv
xzuxuzxu

=
+=
+=

 (2) 

          
where 0 0,  ,u v  and 0w  are the displacements of a point on the mid-surface of the shell along the ,  ,x θ   and 
z axes, respectively and  1u  and 1v  describe the rotations about the θ  and x axes, respectively, ,  u v  and w  
are the axial, circumferential, and lateral displacements of shell, respectively, ,  x θε ε  and , ,x z xzθ θγ γ γ  are 
respectively the normal and shear strains, and ,  xk kθ  and xk θ  are the curvatures. Also, the indices x  and θ  refer to 
the axial and circumferential directions, respectively. A thin-walled FG cylindrical shell, stiffened by closely spaced 
circular rings attached to the inside of the shell skin and with longitudinal stringers attached to the outside is 
considered (see Fig. 2). We assumed that the stiffeners and skin are made of functionally graded materials. The 
constitutive relations of FG stiffened cylindrical shells based on the FSDT are expressed as [5] 
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where 
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where subscripts s  and r  refer to the stringers and rings, respectively. The thickness and width of stringers are 
respectively denoted by sh and sb  and for rings are rh and .rb  Also, sd  and rd  are the distances between two 
stringers and rings, respectively. The eccentricities se  and re  represent the distance from the shell middle surface to 
the centroid of the stiffener cross section. In Eqs. (3), the stress resultants iN  and iM  are expressed as 
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Using the minimum potential energy criterion [5], the equilibrium equations of FG stiffened cylindrical shells are 

given by 
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The stability equations of FG cylindrical shell may be derived by the variational approach. If V  is the total 
potential energy of the shell, the first variation Vδ  is associated with the state of equilibrium. The stability of the 
original configuration of the shell in the neighborhood of the equilibrium state can be determined by the sign of 
second variation 2Vδ . However, the condition of 2Vδ =0 is used to derive the stability equations of many practical 
problems on the buckling of shells [5]. Thus, the stability equations are represented by the Euler equations for the 
integrand in the second variation expression as 
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The terms with the subscript 0 are related to the state of equilibrium and terms with the subscript 1 are those 

characterizing the state of stability. By substituting Eqs. (3) into (7), the stability equations can be derived in terms 
of displacement components. To determine the critical buckling loads, the prebuckling mechanical forces should be 
found from the equilibrium equations and then substituted into the stability equations for the buckling analysis. 
Under an uniformly distributed axial compressive load ,P the cylinder shortens, except at the ends, and increases in 
diameter. The initial deformation is axisymmetric and the prebuckling mechanical forces are given by [5] 
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Upon substituting the prebuckling forces into the stability equations in terms of displacement components, a set 

of five differential equations is obtained. To solve this set of equations, the following approximate solutions which 
satisfy the resulting equations and the simply supported boundary conditions are assumed 
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where / .m Lλ π  Substituting relations (9) into the stability equations in terms of the displacement components 
gives 
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where 
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By setting the determinant of [ ]K  equal to zero to obtain the non-zero solution, the value of P  can be found. The 
critical buckling load can be obtained by minimizing P  with respect to m  and ,n  the number of longitudinal and 
circumferential buckling waves. 

3    NUMERICAL RESULTS 

For the given values of the inhomogeneity parameter and thickness of shell, the values of m and n may be chosen by 
trial to give the smallest value of buckling load P. These values can be obtained by a suitable software or 
optimization program. To investigate the accuracy of the present method, comparison studies are presented. A 
ceramic-metal FG stiffened cylindrical shell is considered. The FG stiffened shell constituents are zirconia and 
aluminum. The Young’s modulus for zirconia and aluminum are 151 GPa and 70 GPa, respectively. The Poisson's 
ratio is assumed to be constant and equal to 0.3. As a numerical example, we consider an FG stiffened cylindrical 
shell with 15 rings and stringers. Let L=387.35×10-3 m, a=60.643×10-3 m, hs=0.076×10-3 m, bs=21.155×10-3 m, hr= 
0.127 ×10-3 m, and br=1.27×10-3 m. A comparison between the critical buckling loads of unstiffened and stiffened 
homogeneous shell using the Donnell's shell theory and finite element method [6], and the present work are given in 
Table 1. In Table 2, the results are presented for unstiffened and stiffened FG cylindrical shells. As can be seen, the 
agreement between the results is satisfactory.   

The analytical predictions are very close to the FEM results with only about 5% difference. When the shell is 
stiffened, the difference between the analytical and FEM results is only about 3%. It is evident that the buckling 
loads of shell increase as the shell becomes thicker. It is interesting to note that, when the shell thickness has 
doubled, the critical buckling loads almost have quadrupled. The critical buckling load is decreased while the 
inhomogeneity parameter is increased. This decrease is about 29% for 0k  and 1. The critical buckling loads for 
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homogeneous and FG stiffened cylindrical shells are generally upper than the corresponding values for the 
unstiffened cylindrical shells. 
 
Table 1 
Comparison of critical buckling loads for simply supported homogeneous cylindrical shell 

FEM [6] Donnell [6] FSDT  h (×10P

-3
P m) 

0.086 0.083 0.083 Unstiffened 0.305 
0.088 0.086 0.086 Stiffened  
0.132 0.129 0.129 Unstiffened 0.381 
0.135 0.133 0.133 Stiffened  
0.188 0.186 0.185 Unstiffened 0.457 
0.191 0.191 0.190 Stiffened  
0.252 0.253 0.252 Unstiffened 0.533 
0.256 0.258 0.258 Stiffened  
0.325 0.331 0.329 Unstiffened 0.610 
0.330 0.337 0.335 Stiffened  
0.408 0.419 0.417 Unstiffened 0.686 
0.413 0.425 0.423 Stiffened  
0.486 0.517 0.514 Unstiffened 0.762 
0.505 0.524 0.521 Stiffened  

 
Table 2 
Comparison of critical buckling loads for simply supported FG cylindrical shell 

FEM [6]  Donnell [6]  FSDT  h (×10P

-3
P m) k=1 k=0.5 k=1 k=0.5 k=1 k=0.5 

0.061 0.069 0.059 0.066 0.059 0.066 Unstiffened 0.305 
0.063 0.071 0.060 0.067 0.063 0.070 Stiffened  
0.094 0.106 0.092 0.103 0.092 0.103 Unstiffened 0.381 
0.096 0.108  0.093 0.104  0.097 0.107 Stiffened  
0.133 0.151  0.132 0.149  0.132 0.148 Unstiffened 0.457 
0.136 0.153  0.133 0.150  0.139 0.153 Stiffened  
0.179 0.203  0.180 0.202  0.179 0.202 Unstiffened 0.533 
0.182 0.206  0.181 0.204  0.188 0.208 Stiffened  
0.231 0.262  0.235 0.264  0.234 0.263 Unstiffened 0.610 
0.233 0.265  0.237 0.266  0.244 0.270 Stiffened  
0.288 0.327  0.298 0.334  0.296 0.333 Unstiffened 0.686 
0.291 0.331  0.299 0.336  0.308 0.341 Stiffened  
0.353 0.400  0.368 0.413  0.366 0.411 Unstiffened 0.762 
0.356 0.404  0.369 0.415  0.379 0.419 Stiffened  

 

4    CONCLUSIONS 

The present paper addresses to buckling problem of functionally graded stiffened cylindrical shells using the first-
order shear deformation theory. The buckling loads are obtained for a various range of the thickness factor and 
compared with the published results based on classical shell theory and finite element solution. It is found that the 
difference between the values of buckling loads for classical and first-order shear deformation theories is only 
obvious for thick cylindrical shells. Both theories provide approximately the same results for thin shells. For FG 
stiffened shells, the first-order shear deformation theory predicts higher values for buckling loads, while for FG 
unstiffened shells, the classical shell theory predicts higher values for buckling loads.      
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