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 ABSTRACT 

 An efficient C0 continuous two dimensional (2D) finite element (FE) model is developed based on a 
refined higher order shear deformation theory (RHSDT) for the static analysis of soft core sandwich 
plate having imperfections at the layer interfaces. In this (RHSDT) theory, the in-plane 
displacement field for the face sheets and the core is obtained by superposing a globally varying 
cubic displacement field on a zig-zag linearly varying displacement field. The transverse 
displacement is assumed to have a quadratic variation within the core and it remains constant in the 
faces beyond the core. In this theory, the interfacial imperfection is represented by a liner spring-
layer model. The proposed model satisfies the condition of transverse shear stress continuity at the 
layer interfaces and the zero transverse shear stress condition at the top and bottom of the sandwich 
plate. The nodal field variables are chosen in an efficient manner to circumvent the problem of C1 
continuity requirement of the transverse displacements associated with the RHSDT. The proposed 
model is implemented to analyze the laminated composites and sandwich plates having interfacial 
imperfection. Many new results are also presented which should be useful for the future research.  

                                                                              © 2012 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 ANDWICH construction is a special type of laminated structure having low strength thicker core and high 
strength face sheets in the form of composite laminates. These structures are weak in shear due to their low shear 

modulus as compared to extensional rigidity as well as large variation of material properties between the core and 
face layers. Thus the effect of shear deformation is quite significant which may lead to failure. 

The structural behavior of sandwich plates can not be predicted by a simple plate theories i.e. single layer plate 
theories [1-4], as the core and face sheets deform in different manners due to large variation of their material 
properties. In addition to that, the problem becomes much more complex if some inter-laminar imperfection is there 
in the form of weak bonding or something else. In this context , a number of plate theories have been developed for 
accurately modelling the shear deformation in laminated sandwich structures in a refined manner.  

The typical feature of sandwich plate is that the variation of in-plane displacements across the thickness shows 
kinks at the interface between the core and stiff face layers, which gives discontinuity of transverse shear strains at 
these interfaces. This typical behavior is also detected in laminated composite plate due to its layered configuration 
but the order of discontinuity is not as prominent as in case of sandwich plate. Actually, it depends on the order of 
ifference in the values of transverse shear rigidity and thickness of adjacent layers, which is quite significant in the 
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case of sandwich plate as compared to the composite laminates. However, the effect of this discontinuity cannot be 
ignored in a multi layer thick laminates.  

Considering this aspect in view and to model some other features of thick laminate in a better manner, a number 
of layer wise plate theories [5-9] have been developed. In these theories, the unknown displacement components are 
taken at all the layer interfaces including top and bottom surfaces of the plate. Using these unknowns at the different 
layers, the displacement components at any intermediate level are interpolated with the help of piecewise linear or 
other functions. It gives a zigzag through the thickness variation of in-plane displacement, which represents the 
desired shear strain discontinuity at the layer interfaces. The performance of these plate theories is good but they 
require huge computational involvement, as the number of nodal unknowns is directly proportional to the number of 
layers. 

The above problem of layer wise theories has been overcome by Di Sciuva [10], Murakami [11], Liu and Li [12] 
and some other researchers where the unknowns at the different interfaces are expressed in terms of those at a 
particular plane defined as reference plane. This can be achieved by satisfying transverse shear stress continuity at 
the layer interfaces. These plate theories may be identified as refined first order shear deformation theory (RFSDT) 
where the unknowns are similar to those of the first order shear deformation theory (FSDT) of Yang et.al. [3]. 

A further improvement on RFSDT is due to Bhaskar and Varadan [13], Di Sciuva [14], Lee and Liu [15] and 
Cho and Parmerter [16] who have combined the concepts of RFSDT and the higher order shear deformation theory 
(HSDT) of Reddy [4]. These plate theories may be defined as refined higher order shear deformation theory 
(RHSDT). It gives parabolic through the thickness variation of transverse shear strains with discontinuity at the layer 
interfaces as desired in a layered composite plate. Moreover, it satisfies the transverse shear stress free condition at 
the top and bottom surfaces of the plate. Thus RHSDT has all the merits required for an efficient modeling of 
sandwich plates. Though the basic features of all these plate theories are more or less the same but there are some 
refinements of one over the other [13-16]. In this group, the plate theory of Cho and Parmerter [16] seems to be 
more effective and possesses all the merits of the above mentioned theories. A lot of discussion on these plate 
theories addressing zig-zag and interlaminar shear stress continuity has been given by Carrera [17].  

Therefore, these plate theories are more suitable for the analysis of sandwich plates as the discontinuity in 
transverse shear strain at the layer interfaces is more prominent in comparison to laminated plates. In addition to 
transverse shear strain jump at the core face sheet interfaces, transverse normal strain within the core becomes very 
much significant in some situations where the plate thickness/span ratio becomes quite high and core material is 
transversely flexible or soft (low transverse rigidity). The transverse flexibility of low-strength core seriously affects 
the overall response of the sandwich structure and also crucial for sandwich panels which are subjected to localized 
loads. Frostig [18] has presented the classical and the higher order computational models of unidirectional sandwich 
panels with incompressible and compressible cores to demonstrate the differences in overall response of the panels 
as well as in the vicinity of the localized loads and supports. Givil et al. [19] has presented the dynamic model based 
on higher order sandwich panel theory to study the behavior of soft core sandwich panel under dynamic loading. 
Therefore, more attention must be given for the accurate modeling of the variation of transverse deflection across 
the depth of a sandwich structure having soft core. Brischetto et al. [20] showed the effect of zig-zag function used 
to build higher order plate theories for the analysis of unsymmetrically laminated sandwich structures and highly 
recommended the use of zig-zag functions for analysis of softy-core sandwich structures. 

The conventional modeling techniques adopted by different researchers [21-24] are not enough to accurately 
predict the behavior of soft core sandwich structures. A considerable amount of literature is available on the static 
analysis of the sandwich plate without taking into account the effect of transverse normal deformation for the core 
[25-29]. However, a limited work has been done on the analysis of the sandwich plate considering the effect of 
transverse normal deformation for the core [30-37]. Carrera and Ciuffreda [38] studied the response of composite 
and sandwich plates subjected to localized distribution of transverse pressure and to point loadings and concluded 
that an accurate description of transverse normal strain effect plays a fundamental role in order to capture the effect 
of localized bending. Carrera and Brischetto [39] has done the numerical assessment of various plate theories (e.g. 
classical, higher order, zig-zag, layerwise and mixed theories) for bending and vibration analysis of sandwich flat 
panels and concluded that classical and first order theory can not be used for the accurate analysis of sandwich 
structures.   

Thus, the effect of transverse normal deformation of the core should be taken into consideration in order to 
accurately predict the behavior of soft core sandwich plate. Hence, it is required to introduce unknown transverse 
displacement fields across the depth in addition to that in the reference plane, to represent the variation of transverse 
deflection in a laminated sandwich structure. On the other hand, introduction of additional unknowns in the 
transverse displacement fields invites additional C1 continuity requirements in its finite element implementation by 
using the above mentioned refined higher order shear deformation theory. Moreover, the application of a C1
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continuous finite element is not encouraged in a practical analysis. Recently Pandit et al. [40-41] proposed a higher 
order zigzag theory for the analysis of sandwich plates with soft compressible core. To circumvent the above 
problem of C1

 continuity, they have used separate shape functions to define the derivatives of transverse 
displacements in order to develop a C0

 finite element model for the implementation of the proposed higher order 
shear deformation theory. However, it has imposed some constrains, which are enforced variationally through 
penalty approach. The selection of suitable value for the penalty stiffness multiplier is quite arbitrary and is a well 
known problem in the finite element method. Recently Mantari et al. [42] has developed a new shear deformation 
theory for the analysis of sandwich and composite plates. This theory accounts for adequate distribution of the 
transverse shear strains through-the-thickness and transverse shear stress free boundary conditions, thus it does not 
require the use of shear correction factor. The transverse displacement has taken to be constant through-the-
thickness in this theory.  

In all these refine higher order shear deformation theories, a perfect interface between the layers is taken, which 
is characterized by continuous displacements and tractions across the interfaces. But in case of imperfect interfaces, 
there should be jumps in the displacement components at the interfaces whereas traction would remain continuous 
from equilibrium point of view [44-45]. Di Sciuva and Gherlone [46, 47] have developed an analytical as well as a 
FE model based on third-order Hermitian zig-zag plate theory to study the damaged bonded interfaces. The simplest 
way to model this phenomenon is to use a linear spring layer model where the displacement jumps in a particular 
interface are proportional to the tractions at that interface. Such an attempt has been made by Cheng et al. [48], Di 
Sciuva [49], Chakrabarti and Sheikh [50] and few others where the linear spring layer model has been implemented 
in a plate model based on RHSDT. In all these studies it has been applied to ordinary composite laminates where the 
problem has been solved analytically. 

Keeping all these aspects in view, an attempt has been made to study the behavior of soft core sandwich plates 
with inter-laminar imperfection of arbitrary variation at the different levels by modifying the FE model proposed by 
Khandelwal et al. [43] based on the RHSDT in combination with the linear spring model of Cheng et al. [48]. An 
efficient C0

 finite element model based on RHSDT has been proposed in this paper for the analysis of soft 
compressible core sandwich plate with inter-laminar imperfection. In this model, the in-plane displacement fields 
are assumed as a combination of a linear zigzag function with different slopes at each layer and a global cubically 
varying function over the entire thickness. The transverse displacement is considered to be quadratic within the core 
and constant in the face sheets. The proposed model satisfies the transverse shear stress continuity conditions at the 
layer interfaces and the zero transverse shear stress condition at the top and bottom of the plate. The isoparametric 
quadratic plate element has nine nodes with eleven field variables (i.e., in-plane displacements and transverse 
displacement at the reference mid surface, at the top and at the bottom of the plate along with rotational degrees of 
freedom at the reference mid surface and top and bottom of the plate) at each node.  The displacement fields are 
chosen in an efficient manner that there is no need to impose any penalty stiffness in the formulation. 

The proposed model is validated solving problems of sandwich plates with perfect interfaces and composite 
laminates with imperfect interfaces, as there are very few results available of laminated sandwich plates with inter-
laminar imperfections. Finally the proposed model is applied to the actual problem where numerical results are 
generated by solving a number of problems to study the behavior of the present structure under different situations. 

2    MATHEMATICAL FORMULATIONS 

The in-plane displacement field (Fig. 1) is chosen as follows: 
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(2) 

 
where u0 and  v0 denotes the in-plane displacements of any point on the mid surface (i.e., u0 along x-axis and v0 along 
y-axis) of any point on the mid surface, x and y  are the rotations of the normal to the middle plane about the x-

axis and y-axis respectively, nu and nl are number of upper and lower layers respectively, , ,x y x    and  y  are the 
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higher order unknown, , , ji i
xu yu xl    and j

yl  are the slopes of i-th / j-th layer corresponding to upper and lower 

layers respectively and ( ) u
iH z z  and ( )  l

jH z z are the unit step functions. 

 

 

 
 
 
 
 
 
 
 
 
 
Fig. 1  
General lamination lay-up and displacement configuration. 

 
The transverse displacement is assumed to vary quadratically through the core thickness and constant over the 

face sheets (as shown in Fig. 2) and it may be expressed as: 
 

1 2 0 3 for core region  u lw l w l w l w  (3a) 

for upper face layers uw  (3b) 

for lower face layers lw  (3c) 

 
where wu , w0 and wl are the values of the transverse displacement at the top layer, middle layer and bottom layer of 
the core, respectively, and l1, l2 and l3 are Lagrangian interpolation functions in the thickness co-ordinate as defined 
below. 
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The stress-strain relationship of an orthotropic layer/ lamina (say k-th layer) having any fiber orientation with 

respect to structural axes system (x-y-z) may be expressed as: 
 
 

 

 
 

 
 
 
 
Fig. 2  
Transverse displacement (w) variation through the 
thickness of sandwich plate. 
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(4) 

 

where   ,  and  
 KQ are the stress vector, the strain vector and the transformed rigidity matrix of k-th lamina, 

respectively. 
The imperfection at the k-th interface is characterized by the displacement jumps  ku  and  kv  as in Eqs. (1)-(2) 

and  Fig. 1, which may be expressed in terms of tractions at the k-th interface following the concept of linear spring-
layer model of Cheng et al. [48] as follows: 
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Utilizing the conditions of zero transverse shear stress at the top and bottom surfaces of the plate and imposing 
the conditions of the transverse shear stress continuity at the interfaces between the layers along with the conditions, 
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material properties. It is to be noted that last four entries of the vector {B} helps to define the derivatives of 
transverse displacement at the top and bottom faces of the plate in terms of the displacements  u0, v0, ,x y  , u

x , u
y , 

l
x  and l

y  to overcome the problem of C1
 continuity as mentioned before [43]. 

Using the above equations, the in-plane displacement fields as given in Eqs. (1-2)  may be expressed as: 
 

1 0 2 0 3 4 5 6 7 8        u u l l
x yx xy yu b u b v b b b b b b      (8) 

 



360                   R.P. Khandelwal et al. 

© 2012 IAU, Arak Branch 
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where the coefficients bi’s and ci’s are function of thickness coordinates, unit step functions and material properties. 
The generalized displacement vector {  } for the present plate model can now be written with the help of Eqs. (3), 
(8) and (9) as: 
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Using linear strain-displacement relation and Eqs.(1)-(5), the strain field may be expressed in terms of unknowns 

(for the structural deformation) as: 
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and the elements of [H0] having an order of (633) contains z and some constant quantities found above. 

With the quantities found in the above equations, the total potential energy of the system under the action of 
transverse load may be expressed as: 
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where Us is the strain energy and  extW  is the energy due to the external transverse static load.  

Using Eqs. (11), the strain energy (Us) is given by: 
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and the energy due to externally applied distributed transverse static load of intensity q(x,y) can be calculated as: 

.  extW wqdxdy  
 

(15) 

 
In the present problem, a nine-node quadratic element with eleven field variables (u0, v0, w0, ,x y  , uu, vu, wu, ul , 

vl and wl) per node is employed. Using finite element method ,the generalized displacement vector {  } at any point 
may be expressed as: 
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where,    T
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x y x yy u lu v w w w      as defined earlier, i   is the displacement vector 

corresponding to node i, Ni  is the shape function associated with the node i and N is the number of nodes per 
element, which is nine in the present study. 

With the help of Eq. (16), the strain vector {  } that appeared in Eq. (11) may be expressed in terms of 
unknowns (for the structural deformation) as: 
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where [B] is the strain-displacement matrix in the Cartesian coordinate system. 

The elemental potential energy as given in Eq. (12) may be rewritten with the help of Eqs. (13)-(17) as: 
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where, [Nw] is the shape function like matrix with non-zero terms associated only with the corresponding transverse 
nodal displacements. 

The equilibrium equation can be obtained by minimizing eП  as given in Eq. (18) with respect to { } as: 

 

  { }  e eK P  (21) 

 
where [Ke] is the element stiffness matrix and {Pe} is the nodal load vector. 

The global stiffness matrix and global load vector for the whole plate is then formed by taking the contribution 
of all the plate elements. Finally, the global linear simultaneous equations are formed and solved for the problem of 
the sandwich plate after incorporation of appropriate boundary conditions. The in-plane stresses are calculated with 
the help of constitutive relationship by using the condition of stress continuity as in Eq. (4). 

A numerical code is developed to implement the above mentioned operations involved in the proposed FE model 
to calculate deflections and stresses in the sandwich plate. The skyline technique has been used to store the global 
stiffness matrix in a single array and Gaussian decomposition scheme is adopted for the solution. 

The following different boundary conditions are used:  
1. Boundary line parallel to x axis 

 Simply supported condition: The degrees of freedoms u0, v0, w0, θx, u
x , l

x ,wu,wl are restrained while 

θy, u
y and l

y  are unrestrained. 

 Clamped condition: All the nodal degrees of freedoms at the boundary are fully restrained. 
 Free boundary condition: All the nodal degrees of freedoms at the boundary are unrestrained. 
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2. Boundary line parallel to y axis 

 Simply supported condition: The degrees of freedoms u0, v0, w0, θy, u
y , l

y ,wu,wl are restrained while 

θx, u
x  and l

x  are unrestrained. 

 Clamped condition: All the nodal degrees of freedoms at the boundary are fully restrained. 
Free boundary condition: All the nodal degrees of freedoms at the boundary are unrestrained. 

3    NUMERICAL RESULTS AND DISCUSSIONS 

The behavior of laminated sandwich plates having imperfect interfaces is studied by solving a number of numerical 
examples having different features using the proposed C0 plate FE model based on refined higher order shear 
deformation theory (RHSDT). The validation of the proposed model is carried out with the available results of 
ordinary composite plates Cheng et al. [51]-[52], Cheng and Kitiporncahi [53] and laminated sandwich plates 
Chakrabarti and Sheikh [50] with or without imperfection. Finally, the proposed model is applied to solve many 
problems to generate results in the form of deflections and stresses. The geometric details of the plate problem 
considered in different cases are shown in Fig. 3. The results obtained are presented in the form of different tables 
and figures. 
 
 

 

 
 
 
 
 
 
 
 
 
Fig.3  
Rectangular plate having a mesh of mn. 

3.1 Cylindrical bending of a cross ply (0/90/0) laminate subjected to a distributed load of sinusoidal variation  
 
The problem have been solved by Cheng et al. [51] and Chakrabarti and Sheikh [50] using a plate theory, which is 
more or less similar to that used in the present study except that in the present model the variation of the transverse 
displacement is also considered. They Cheng et al. [51] and Chakrabarti and Sheikh [50] have taken imperfection at 
all the interfaces and solved the problem. To assess the performance of the proposed element, it is used to solve this 
plate problem. The plate Fig. 3, b/a=3 is subjected to a distributed load of intensity q=q0 sin(πx/a). In this example, 
all the layers are of equal thickness and possess the same material properties in their material axis system (E1=25E, 
E2=E3=E, G12=G13=0.5E, G23=0.2E, ν12= ν13= ν23=0.25). The imperfections at the layer interfaces excepting the 
reference middle plane (i.e., a continuous part of the core) are defined by the parameters: 11

kR = 22
kR =Rh/E and 

12
kR = 21

kR =0.0 where the non-dimensional parameter R is varied from 0.0 to 0.6 (R=0.0 represents perfect interface). 

Taking thickness ratio (h/a) = 0.25, the plate is analyzed by the present finite element model using mesh sizes Fig. 3 

of 22, 44, 66, 88, 1212 and 1616. The values of the non-dimensional central deflection, cw =100wEh3/(q0a4) 
obtained by the proposed element are presented in Table 2. with the analytical solution of Cheng et al. [51] and 
finite element solution of Chakrabarti and Sheikh [50] for the cases of perfect as well as imperfect interfaces. For the 
case of perfect interfaces, the results based on three-dimensional elasticity solution of Pagano [30] are also included 
in Table 2. , which shows that the present results are in excellent agreement with those of Pagano [30] and Cheng et 
al. [51]. It also shows that the convergence of present results with mesh refinement is very good. 
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Table 1  
Material properties (dimensionless) used for the Core and Face Sheets 

Location Elastic properties 
E1 E2 E3 G12 G13 G23 υ12 υ13 υ32 

Face 25.0 1.0 1.0 0.5 0.5 0.2 0.25 0.25 0.25 
Core 0.04 0.04 0.5 0.016 0.06 0.06 0.25 0.02 0.25 

 
 
Table 2 

Normalized central deflection ( cw ) of a simply supported cross ply (0/90/0) laminate subjected to a distributed load of sinusoidal 
variation (cylindrical bending) (b/a=3, h/a=0.25) 

Reference Theory Central deflection ( cw ) 
R=0.0 R=0.2 R=0.4 R=0.6 

Present (2x2)b RHSDT 2.7678 2.8690 3.3971 3.9777 
Present (4x4) RHSDT 2.8320 3.3702 3.8940 4.4490 
Present (6x6) RHSDT 2.8360 3.3938 3.9207 4.4785 
Present (8x8) RHSDT 2.8367 3.3981 3.9257 4.4838 
Present (12x12) RHSDT 2.8370 3.3997 3.9275 4.4858 
Present (16x16) RHSDT 2.8371 3.4000 3.9277 4.4861 
Pagano [30] 3D-Elasticity 2.8200 - - - 
Cheng et al. [45] Zigzag theory 2.7567 3.3419 3.8825 4.3622 
Chakrabarti and Sheikh [44] RHSDT 2.7575 3.3429 3.8833 4.3630 

bQuantities inside the parenthesis indicate mesh division 

3.2 A cross ply (0/90/90/0) square laminate simply supported at the four edges and subjected to a distributed load of  
sinusoidal variation in both the direction 

 
The problem of a simply supported cross ply (0/90/90/0) square laminate Fig. 3, a=b  having imperfections at all the 
layer interfaces studied by Cheng et al. [51] and Chakrabarti and Sheikh [50]  is taken in this example. The plate is 
subjected to a distributed load of sinusoidal variation q=q0 sin(πx/a)  sin(πy/b). The analysis is carried out by the 
proposed element using mesh sizes Fig. 3 of 22, 44, 66, 88, 1212 and 1616 taking h/a = 0.25 and 0.10 and R  

= 0.0 and 0.2. The value of non-dimensional central deflection cw ; transverse shear stress 0/ ( )xz xzh q a   at x = 0, 

y = b/2 and z = 0; transverse shear stress 0/ ( )yz yz h q a   at x = a/2, y = 0 and z = 0; in-plane normal stress 
2 2

0/ ( )xx xxh q a   at x = a/2, y = b/2 and z = h/2; in-plane normal stress 2 2
0/ ( )yy yyh q a   at x = a/2, y = b/2 

and z = h/4 obtained are presented in Table 3. with those of Cheng et al. [51] , Chakrabarti and Sheikh [50] and 
Pagano [30]. Table 3. shows that the agreement between the results is quite good. 

Now the through the thickness variation of non-dimensional in-plane displacement 2 0/ ( )E u q h  at x=0 and y=b/2; 

in-plane normal stress x / q0 at x=a/2 and y=b/2 obtained in the present analysis (mesh size: 1212) are plotted in 
the Figs. 4-7 where R= 0.0, 0.2, 0.4 and 0.6; and h/a= 0.25 and 0.10. In all these plots, results based on elasticity 
solution of Pagano [30] are included to compare the present results for the perfect case (R = 0.0). The plots are found 
to follow a proper trend as expected. 
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Table 3 

Normalized central deflection cw , in-plane normal stresses xx , yy and transverse shear stresses xz , yz  of a simply supported 
square cross ply (0/90/90/0) laminate subjected to a distributed load of sinusoidal variation 
h/a Reference Theory 

cw  xx  yy  xz  yz  

R=0.0 
0.25 Present (2x2)b RHSDT 1.9446 0.8101 0.8178 0.2947 0.3144 

Present (4x4) RHSDT 1.9291 0.7219 0.7313 0.2442 0.2582 
Present (6x6) RHSDT 1.9282 0.6985 0.7116 0.2323 0.2456 
Present (8x8) RHSDT 1.9281 0.6904 0.7046 0.2280 0.2410 
Present (12x12) RHSDT 1.9281 0.6850 0.6996 0.2249 0.2377 
Present (16x16) RHSDT 1.9281 0.6832 0.6979 0.2238 0.2365 
Pagano [30]  3D Elasticity 1.9540 0.7200 0.6630 0.2190 0.2920 
Cheng et al. [45] Zigzag  1.9060 0.7368 0.7000 0.2109 0.3148 
Chakrabarti and Sheikh [44] RHSDT 1.9065 0.7461 0.7044 0.2079 0.3158 

0.10 Present (2x2)b RHSDT 0.7378 0.6599 0.4685 0.3587 0.1973 
Present (4x4) RHSDT 0.7319 0.5890 0.4238 0.3392 0.1636 
Present (6x6) RHSDT 0.7314 0.5707 0.4126 0.3231 0.1557 
Present (8x8) RHSDT 0.7313 0.5642 0.4086 0.3171 0.1528 
Present (12x12) RHSDT 0.7313 0.5597 0.4057 0.3128 0.1507 
Present (16x16) RHSDT 0.7313 0.5582 0.4047 0.3113 0.1499 
Pagano [30] 3D Elasticity 0.7430 0.5590 0.4010 0.3010 0.1960 
Cheng et al. [45] Zigzag  0.7359 0.5611 0.4081 0.3002 0.1995 
Chakrabarti and Sheikh [44] RHSDT 0.7364 0.5681 0.4106 0.3006 0.2006 

R=0.2 
0.25 Present (2x2)b RHSDT 2.1575 0.9141 0.9061 0.3032 0.3288 

Present (4x4) RHSDT 2.1387 0.8128 0.8017 0.2514 0.2709 
Present (6x6) RHSDT 2.1377 0.7883 0.7775 0.2392 0.2575 
Present (8x8) RHSDT 2.1375 0.7799 0.7696 0.2347 0.2526 
Present (12x12) RHSDT 2.1375 0.7922 0.7640 0.2315 0.2490 
Present (16x16) RHSDT 2.1375 0.7721 0.7620 0.2304 0.2477 
Cheng et al. [45] Zigzag  2.4811 0.885 0.7761 0.1931 0.2818 
Chakrabarti and Sheikh [44] RHSDT 2.4816 0.8960 0.7815 0.1950 0.2834 

0.10 Present (2x2)b RHSDT 0.8669 0.7404 0.5494 0.4367 0.2144 
Present (4x4) RHSDT 0.8598 0.6610 0.4972 0.3654 0.1783 
Present (6x6) RHSDT 0.8593 0.6412 0.4833 0.3480 0.1698 
Present (8x8) RHSDT 0.8592 0.6343 0.4783 0.3416 0.1667 
Present (12x12) RHSDT 0.8591 0.6316 0.4748 0.3369 0.1643 
Present (16x16) RHSDT 0.8591 0.6279 0.4736 0.3352 0.1635 
Cheng et al. [45] Zigzag  0.8615 0.5820 0.4498 0.2887 0.2108 
Chakrabarti and Sheikh [44] RHSDT 0.8621 0.5893 0.4525 0.2913 0.2121 

bQuantities inside the parenthesis indicate mesh division 
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Fig. 4  
Through the thickness variation of normalized in-plane 

displacement u . 
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Fig. 5 
Through the thickness variation of normalized in-plane 

displacement u . 
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Fig. 6 
Through the thickness variation of normalized in-plane 
stress xx .  
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Fig. 7 
Through the thickness variation of normalized in-plane 
stress xx . 

3.3 A simply supported square sandwich plate (f/C/f) having orthotropic face sheets under distributed load of  
sinusoidal variation in both the direction 

 
A square sandwich plate (Fig. 3, a=b) simply supported at the four sides and subjected to distributed load of 
intensity q=q0 sin(πx/a)  sin(πy/b) is analyzed by the proposed element using mesh sizes Fig. 3 of 44, 66, 88, 
1212 and 1616 taking h/a = 0.25, 0.10 and 0.01. The plate has a central core of thickness 0.8 h and an orthotropic 
stiff layer of thickness 0.1 h at each face. The material properties of face sheet and core are given in Table 1. The 
imperfections at the interfaces between core and stiff face layers are defined by 11

kR = 22
kR =Rh/E and 12

kR = 21
kR =0.0 

where the non-dimensional parameter R is taken as 0.0, 0.3 and 0.6 in the present study. The values of non-

dimensional central deflection cw ; in-plane normal stress xx  (x = a/2, y = b/2 and z = h/2), in-plane shear stress 
2 2

0/( )xy xyh q a   (x = 0, y = 0 and z = h/2) and transverse shear stress xz  (x = 0, y = b/2 and z = 0.4h) obtained by  
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Table 4 

Normalized central deflection cw , in-plane normal stress xx , in-plane shear stress xy   and transverse shear stress xz  of a 
simply supported square sandwich plate (f/C/f) having orthotropic face sheets under distributed load of sinusoidal variation 
h/a Reference Theory 

cw  xx  xy  xz  

R=0.0 
0.25 Present (4x4) b RHSDT 7.5926 1.6080 0.1503 0.2893 

Present (6x6) RHSDT 7.5882 1.5608 0.1468 0.2752 
Present (8x8) RHSDT 7.5875 1.5436 0.1456 0.2701 
Present (12x12) RHSDT 7.5873 1.5316 0.1446 0.2665 
Present (16x16) RHSDT 7.5873 1.5276 0.1443 0.2651 
Pagano [30]  3D Elasticity 7.5960 1.5120 0.1481 0.2354 
Chakrabarti and Sheikh [44] RHSDT 7.6262 1.5775 0.1484 0.2322 

0.10 Present (4x4) RHSDT 2.1804 1.2147 0.0731 0.3174 
Present (6x6) RHSDT 2.1789 1.1761 0.0716 0.3018 
Present (8x8) RHSDT 2.1787 1.1630 0.0710 0.2962 
Present (12x12) RHSDT 2.1786 1.1539 0.0705 0.2922 
Present (16x16) RHSDT 2.1786 1.1509 0.0704 0.2908 
Pagano [30]  3D Elasticity 2.2004 1.1520 0.0717 0.2974 
Chakrabarti and Sheikh [44] RHSDT 2.2011 1.1686 0.0716 0.2968 

0.01 Present (4x4) RHSDT 0.8823 1.1476 0.0451 0.3291 
Present (6x6) RHSDT 0.8820 1.1186 0.0440 0.3161 
Present (8x8) RHSDT 0.8819 1.1074 0.0437 0.3112 
Present (12x12) RHSDT 0.8819 1.0991 0.0434 0.3073 
Present (16x16) RHSDT 0.8819 1.0963 0.0433 0.3059 
Pagano [30]  3D Elasticity 0.8924 1.0980 0.0437 0.3222 
Chakrabarti and Sheikh [44] RHSDT 0.8935 1.1095 0.0438 0.3259 

R=0.3 
0.25 Present (4x4) RHSDT 8.0047 1.6950 0.1459 0.2617 

Present (6x6) RHSDT 8.0000 1.6455 0.1387 0.2491 
Present (8x8) RHSDT 7.9993 1.6277 0.1348 0.2446 
Present (12x12) RHSDT 7.9991 1.6151 0.1301 0.2413 
Present (16x16) RHSDT 7.9991 1.6108 0.1272 0.2401 
Chakrabarti and Sheikh [44] RHSDT 8.0586 1.6159 0.1531 0.1336 

0.10 Present (4x4) RHSDT 2.3293 1.2720 0.0739 0.2808 
Present (6x6) RHSDT 2.3277 1.2314 0.0713 0.2673 
Present (8x8) RHSDT 2.3275 1.2177 0.0698 0.2625 
Present (12x12) RHSDT 2.3273 1.2083 0.0681 0.2591 
Present (16x16) RHSDT 2.3273 1.2051 0.0670 0.2579 
Chakrabarti and Sheikh [44] RHSDT 2.2982 1.1735 0.0735 0.276 

0.01 Present (4x4) RHSDT 0.9540 1.1968 0.0470 0.2895 
Present (6x6) RHSDT 0.9537 1.1666 0.0458 0.2786 
Present (8x8) RHSDT 0.9536 1.1550 0.0453 0.2747 
Present (12x12) RHSDT 0.9536 1.1463 0.0449 0.2720 
Present (16x16) RHSDT 0.9536 1.1433 0.0445 0.2714 
Chakrabarti and Sheikh [44] RHSDT 0.8946 1.1096 0.0438 0.3259 

R=0.6 
0.25 Present (4x4) RHSDT 8.4643 1.7888 0.1408 0.2352 

Present (6x6) RHSDT 8.4593 1.7369 0.1301 0.2243 
Present (8x8) RHSDT 8.4585 1.7184 0.1238 0.2204 
Present (12x12) RHSDT 8.4583 1.7052 0.1161 0.2175 
Present (16x16) RHSDT 8.4583 1.7007 0.1112 0.2164 
Chakrabarti and Sheikh [44] RHSDT 8.4983 1.6557 0.1578 0.0309 

0.01 Present (4x4) RHSDT 2.4972 1.3343 0.0748 0.2428 
Present (6x6) RHSDT 2.4955 1.2914 0.0709 0.2315 
Present (8x8) RHSDT 2.4952 1.2770 0.0686 0.2278 
Present (12x12) RHSDT 2.4951 1.2672 0.0657 0.2253 
Present (16x16) RHSDT 2.4951 1.2639 0.0638 0.2244 
Chakrabarti and Sheikh [44] RHSDT 2.3980 1.1785 0.0755 0.2540 

0.01 Present (4x4) RHSDT 1.0348 1.2501 0.0489 0.2473 
Present (6x6) RHSDT 1.0343 1.2187 0.0476 0.2387 
Present (8x8) RHSDT 1.0343 1.2065 0.0471 0.2361 
Present (12x12) RHSDT 1.0342 1.1975 0.0464 0.2350 
Present (16x16) RHSDT 1.0342 1.1943 0.0458 0.2357 
Chakrabarti and Sheikh [44] RHSDT 0.8957 1.1097 0.0439 0.3258 

bQuantities inside the parenthesis indicate mesh division 
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proposed element are presented in Table 4. For the perfect cases (R = 0.0), the present results are compared with 
those obtained from the elasticity solution of Pagano [30] in Table 4., which shows the good agreement between the 
results. Now the through the thickness variation of non-dimensional in-plane normal stress y / q0 at x=a/2 and y=b/2 
obtained in the present analysis (mesh size: 1212) are plotted in the Figs. 8-9 where R= 0.0, 0.3 and 0.6; and h/a= 
0.25 and 0.10. In all these plots, results based on elasticity solution of Pagano [30] are included to compare the 
present results for the perfect case (R = 0.0). The plots are found to follow the proper trend as expected. 
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Fig. 8  
Through the thickness variation of normalized in-plane 
stress yy . 

 

-14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

 

N
or

m
al

is
ed

 d
ep

th

Normalised inplane normal stress 
yy 

 Pagano [30], R=0.0
 Present, R=0.0
 Present, R=0.3
 Present, R=0.6

Sandwich plate (f/C/f)
h/a=0.10

 

 
 
 
 
 
 
 
Fig.9  
Through the thickness variation of normalized in-plane 
stress yy . 

3.4 A square laminated sandwich plate (0/90/0/C/0/90/0) having different boundary conditions under uniformly 
distributed load 

 
The problem of a square (Fig. 3, b = a) sandwich plate (0/90/0/C/0/90/0) having stiff laminated face sheets (0/90/0) 
under uniformly distributed load of intensity q0 is studied for different boundary conditions and imperfections at the 
interfaces between core and face sheets. The core has a thickness of 0.85 h while it is 0.025 h for each ply in the face 
sheets. The material properties of the core and those of ply in the face sheets are identical to those used in the 
previous example. The different boundary conditions taken are SSSS (all the sides simply supported), SCSC (simply 
supported at x = 0 and x = a; and clamped at the other sides) and CCCC (all the sides clamped). The imperfections 
are taken only at the interfaces between core and face sheets where these are defined by 11

kR = 22
kR =R1h/E for the 

upper interface, 11
kR = 22

kR =R2h/E for the lower interface and 12
kR = 21

kR = 0.0 for both these interfaces. The analysis is 

carried out with a mesh size of 1212 taking h/a = 0.20 and different values of R1 and R2 to have a number of 

combinations for the imperfections (see Table 5.) The values of non-dimensional central deflection cw ; in-plane 

normal stress xx  (x = a/2, y = b/2 and z = h/2) and transverse shear stress yz  (x = a/2, y = 0 and z = 0.425 h) 
obtained in the present analysis are presented in Table 5. For SSSS boundary condition, the present results 
corresponding to R1 = R2 = 0.0 (perfect cases) are compared with those obtained from the elasticity solution of 
Pagano [30] (see Table 5.), which shows these results have very good agreement.  
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Table 5 

Normalized central deflection cw , in-plane normal stress xx , and transverse shear stress yz  of a laminated sandwich plate 
(0/90/0/C/0/90/0) subjected to uniformly distributed load having different boundary conditions 
Interfacial 
parameters 

Boundary 
conditions 

References Theory 
cw  xx  yz  

R1=0.0 
R2=0.0 

SSSS Present element RHSDT 6.7337 2.0271 0.2914 

Pagano [30] 3D Elasticity 6.7576 1.9816 - 

Chakrabarti and Sheikh [44] RHSDT 6.7444 2.0479 - 

SCSC Present element RHSDT 5.7640 1.7477 0.5451 

Chakrabarti and Sheikh [44] RHSDT 5.6843 1.7504 - 

CCCC Present element RHSDT 5.0650 0.8663 0.4960 

Chakrabarti and Sheikh [44] RHSDT 4.8696 0.9028 - 

R1=0.0 
R2=0.2 

SSSS Present element RHSDT 6.8742 2.0775 0.3031 

Chakrabarti and Sheikh [44] RHSDT 6.8494 2.0579 - 

SCSC Present element RHSDT 5.8725 1.7875 0.5519 

Chakrabarti and Sheikh [44] RHSDT 5.7863 1.7588 - 

CCCC Present element RHSDT 5.1510 0.8825 0.5017 

Chakrabarti and Sheikh [44] RHSDT 4.9626 0.9106 - 

R1=0.2 
R2=0.2 

SSSS Present element RHSDT 6.9250 2.0701 0.3207 

Chakrabarti and Sheikh [44] RHSDT 6.9556 2.0600 - 

SCSC Present element RHSDT 5.8959 1.7738 0.5680 

Chakrabarti and Sheikh [44] RHSDT 5.8898 1.7652 - 

CCCC Present element RHSDT 5.1724 0.8885 0.5162 

Chakrabarti and Sheikh [44] RHSDT 5.0569 0.9168 - 

R1=0.4 
R2=0.2 

SSSS Present element RHSDT 6.9777 2.0596 0.3378 
Chakrabarti and Sheikh [44] RHSDT 7.0627 2.0623 - 

SCSC Present element RHSDT 5.9205 1.7569 0.5828 

Chakrabarti and Sheikh [44] RHSDT 5.9936 1.7714 - 

CCCC Present element RHSDT 5.1959 0.8945 0.5296 

Chakrabarti and Sheikh [44] RHSDT 5.1513 0.9231 - 

R1=0.6 
R2=0.2 

SSSS Present element RHSDT 7.0320 2.0462 0.3544 
Chakrabarti and Sheikh [44] RHSDT 7.1708 2.0647 - 

SCSC Present element RHSDT 5.9461 1.7370 0.5962 

Chakrabarti and Sheikh [44] RHSDT 6.0678 1.7773 - 

CCCC Present element RHSDT 5.2219 0.9008 0.5419 

Chakrabarti and Sheikh [44] RHSDT 5.2457 0.9293 - 

R1=0.8 
R2=0.2 

SSSS Present element RHSDT 7.0877 2.0298 0.3705 
Chakrabarti and Sheikh [44] RHSDT 7.2799 2.0671 - 

SCSC Present element RHSDT 5.9728 1.7142 0.6081 

Chakrabarti and Sheikh [44] RHSDT 6.2022 1.7829 - 

CCCC Present element RHSDT 5.2502 0.9072 0.5529 

Chakrabarti and Sheikh [44] RHSDT 5.3401 0.9354 - 

R1=1.0 
R2=0.2 

SSSS Present element RHSDT 7.1449 2.0107 0.3859 
Chakrabarti and Sheikh [44] RHSDT 7.3899 2.0697   - 

SCSC Present element RHSDT 6.0004 1.6887 0.6185 

Chakrabarti and Sheikh [44] RHSDT 6.3069 1.7883 - 

CCCC Present element RHSDT 5.2809 0.9139 0.5627 

Chakrabarti and Sheikh [44] RHSDT 5.4346 0.9416 - 
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For SSSS, SCSC and CCCC boundary condition, the present results corresponding to different values of R1 and 
R2 are compared with those of Chakrabarti and Sheikh [51]. Table 5. shows that the agreement between the results is 
quite good. 

4    CONCLUSIONS 

In this paper an efficient C0 plate finite element (FE) model based on refined higher order shear deformation theory 
(RHSDT) is used to represent the behavior of soft core sandwich plate having different degrees of inter-laminar 
imperfections. The imperfections are incorporated taking displacement jumps at the layer interfaces, which are 
characterized by a linear spring-layer model. The analysis is carried out by displacement based finite element 
technique using a nine node quadratic element with eleven field variables. As very less number of investigations is 
carried out on sandwich plates with inter-laminar imperfections, the performance of the proposed element is initially 
tested by solving some benchmark numerical examples of laminated composites and sandwich plates with inter-
laminar imperfections and comparing the present results with some published results. It is found that the results 
obtained by this element are quite consistent with good accuracy and convergence. 

The major contributions of the present paper are as given below. 
 The present C0 FE model based on RHSDT, has been developed in such a way that it does not require to      

include the C1 continuity of the transverse displacement in the formulation. 
 There is no need to impose any penalty parameter for the formation of the element stiffness matrix. 
 The compressibility of the core of sandwich plates having a soft core is also taken care by taking   variation 

of transverse displacement within the core. 
 The proposed model satisfies the transverse shear stress continuity conditions at the layer interfaces and the 

conditions of zero transverse shear stress at the top and bottom of the plate. 
 The imperfection at the layer interfaces are very efficiently combined using a linear spring layer model 

with the proposed C0 FE model based on RHSDT. 
Therefore, the proposed FE model should be recommended for the accurate analysis of laminated soft core 

sandwich plates having inter-laminar imperfections. 
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