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 ABSTRACT 

 Many real-world search and optimization problems involve inequality and/or equality constraints and 
are thus posed as constrained optimization problems. In trying to solve constrained optimization 
problems using classical optimization methods, this paper presents a Multi-Objective Bees Algorithm 
(MOBA) for solving the multi-objective optimal of mechanical engineering problems design. In the 
present study, a satellite heat pipe design, a space truss design and pressure vessel problems are 
considered. Multi-objective optimization using the bees algorithm which is a new multi-object obtain 
a set of geometric design parameters, leads to optimum solve. This method is developed in order to 
obtain a set of geometric design parameters leading to minimum heat pipe mass and the maximum 
thermal conductance. Hence, a set of geometric design parameters, lead to minimum pressure total 
cost and maximum pressure vessel volume. Numerical results reveal that the proposed algorithm can 
find better solutions when compared to other heuristic or deterministic methods and is a powerful 
search algorithm for various engineering optimization problems. 
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1    INTRODUCTION 

 HE goal of an optimization problem can be stated as finding the combination of parameters (independent 
variables) which maximizes or minimizes a given quantities or quantities, possibly subject to some restrictions 

on the allowed parameter ranges. The quantities to be optimized are called objective functions. If only one quantity 
has to be optimized, the problem is single function optimization and if more than one quantity are involved, the 

problem is multi-objective optimization. There is now increasing interest in constrained multi-objective function 
optimization as most engineering design problems involve multiple and often conflicting objectives. There are two 
ways of solving constrained multi-objective optimization problems. First, a linear combination could be formed of 
the different objective functions with different weights and could optimize the resulting function using methods 
developed for a single objective function problem. The other way of solving a multi-objective problem – the genuine 
- is to consider all objective functions simultaneously. There are two main drawbacks with converting a multi-
objective function problem into a single objective function. First, not all the solutions are found second the 
weighting assigned to some criteria or objective functions may not be suitable and the resulting function may lack 
significance. In the multi-objective optimization, it is of interest to compute the Pareto optimal set or the set of non-
dominated solutions, not to find a single optimal solution. A solution belonging to the Pareto set is not better than 
another one belonging to the same set. They are not comparable and each of them is called a feasible solution.  
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Since multi-objective optimization problems give rise to a set of Pareto-optimal solutions, evolutionary 
optimization algorithms are ideal for handling multi-objective optimization problems [1]. A number of multi-
objective optimization techniques using Evolutionary Algorithms (EAs) have been suggested since the pioneering 
work by Schaffer [2]. Other important developments are described in the works by Fonseca and Fleming [3], Horn 
et al. [4], Srinivas and Deb [5], Knowles et al. [6], Deb et al. [7], Zitzler et al. [8], [9], Farina et al. [10], Nebro et al. 
[11], Mainenti et al. [12], Copiello and Fabbri [13], Cuco et al. [14], Oliveira et al. [15], Khalkhali et al. [16], 
Szparaga et al. [17] and Shrivastava et al. [18]. 

The authors have developed a new optimization tool, called the Bees Algorithm [19], and have applied it to the 
constrained and unconstrained single objective function optimizations [20], [21]. An adapted version of this 
algorithm has been created to recognize and construct a Pareto set with as many non-dominated solutions as 
possible. 

During the harvesting season, a colony of bees keeps a percentage of its population as scouts and uses them to 
explore the field surrounding the hive for promising flower patches. Honeybee foraging behavior consists of two 
types of behavior, i.e., (i) recruitment behavior and (ii) navigation behavior. In order to recruit members of the 
colony for food sources, honeybees inform their nest mates of the distance and direction of these food sources by 
means of a waggling dance performed on the vertical combs in the hive [22]. This dance (i.e., the bee language) 
consists of a series of alternating left-hand and right-hand loops, interspersed by a segment in which the bee waggles 
her abdomen from side to side. The duration of the waggle phase is a measure of the distance to the food, and the 
angle between the sun and the axis of the waggle segment on the vertical comb represents the azimuthally angle 
between the sun and the direction in which the recruit should fly to find the target [23], [24] (Fig. 1).  

The ‘advertisement’ for a food source can be adopted by other members of the colony. The decision mechanism 
for adopting an ‘advertised’ food source location by a potential recruit is not completely known. It is considered that 
the recruitment amongst bees is always a function of the quality of the food sources [25]. Different species of social 
insects, such as honeybees and desert ants, make use of non-pheromone based navigation. Non-pheromone- based 
navigation mainly consists of Path Integration (PI) which is the continuous update of a vector by integrating all 
angles steered and all distances covered [26]. A PI vector represents the insect’s knowledge of direction and distance 
towards its destination. To construct a PI vector, the insect does not use a mathematical vector summation as a 
human does, but employs a computationally simple approximation [27]. Using this approximation the insect is able 
to return to its destination directly. More precisely, when the path is unobstructed, the insect solves the problem 
optimally. However, when the path is obstructed, the insect has to fall back on other strategies such as landmark 
navigation [28], [29] to solve the problem. Obviously, bees are able to fly and when they encounter an obstacle they 
can mostly choose to fly over it., Even, however, if the path is unobstructed, bees tend to use landmark navigation to 
minimize PI vector errors. The landmarks divide the entire path in segments and each landmark has a PI vector 
associated with it. In the remainder of this paper, we refer to a home-pointing PI vector as a Home Vector (HV). PI 
is used in both exploration and exploitation. During exploration, insects constantly update their HV. It is however, 
not used as an exploration strategy. During exploitation, the insects update both their HV and the PI vector 
indicating the food source, and use these vectors as guidance to a destination. 

The Authors wrote an efficient algorithm for solving mechanical problems with Taking inspiration the life of 
bees based on finding optimal way for food search. 

 
 

 

 
 
 
 
 
 
 
 
 
 
Fig. 1 
Distance and direction by waggling dance [30]. 
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2    MULTI-OBJECTIVE OPTIMIZATION PROBLEMS 

This paper describes application of the Bees Algorithm to multi-objective optimization problems. Multi-objective 
optimization procedure yields a set of non-determinated solutions, called Pareto optimal set. Each of which is a 
trade-off between objectives and can be selected by the user, regarding the application and the project’s limits. The 
Bees Algorithm is a search procedure inspired by the way honey bees forage for food. The general multi-objective 
optimization problem is posed as follows [1]: 
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where fi(x) are the objective functions, X is the column vector of the n independent variables, and cj(x) are equality 
constraints, and hk(x) are inequality constraints. Taken together, fi(x), cj(x) and hk(x) are known as the problem 
function. The word “minimize” means that we want to minimize all the objective functions simultaneously. If there 
is no conflict between the objective functions, then a solution can be found where every objective function reaches 
its optimum. To avoid such trivial cases, it is assumed that there is not a single solution that is optimal with respect 
to every objective function. This means that objective functions are at least partly conflicting. They may also have 
different units. 

3    THE BEES ALGORITHM 

The Bees Algorithm is a search procedure inspired by the foraging behavior of honey bees. This section summarizes 
the main steps of the Bees Algorithm. For more details, the reader is referred to references [31] to [33]. Table 1 
shows the pseudo code for the Bees Algorithm in its simplest form which is dependent to some parameters: 
 
nPopulation  
mNumber of selected sites 
nmNumber of bees recruited for m sites 
nghInitial patch size 
imaxNumber of iteration 
 
Table 1 
Pseudo code of the bees algorithm 
1. Initialize population with random solutions. 
2. Evaluate fitness of the population. 
3. While (stopping criterion not met) // forming new population. 
4. Select sites for neighborhood search and determine the path size. 
5. Recruit bees for selected sites (more bees for best e sites) and evaluate fitness 
6. Select the fittest bee from each path. 
7. Amend the Pareto optimal set. 
8. Assign remaining bees to search randomly and evaluate their fitnesses. 
9. End while. 

4    MECHANICAL COMPONENT DESIGN 

In this section we deal with the optimal design of a satellite heat pipe, a space truss design and pressure vessel which 
are important in aerospace industry, etc. 
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4.1 Multi-objective optimization of artificial satellite heat pipe 

For a cooling system of an artificial satellite, heat pipes based isothermal radiator panels are generally employed. To 
maximize the fin efficiency of isothermal panels, the minimization of the temperature gradient between the lateral 
and header heat pipes becomes a very important design object. On the other hand, saving the total mass (weight) of 
the thermal control subsystem is highly important to reduce load (pay load cost) on a booster- rocket. The satellite 
panels contain many embedded aluminum heat pipes, which generally occupy over 50%of the total mass of the 
fundamental radiator panels. Thus, the thermal design of the artificial satellite requires both the fin efficiency and 
mass saving of the heat pipes at the same time. 

The calculated value G is the thermal conductance across the thermal joint of the heat pipes, defined as [34]: 
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G
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=

-
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where conT  is condensing liquid temperature in the lateral heat pipe, Teva is the evaporating vapor temperature in the 

header heat pipe, Q is the assumed quantity of the transported heat of the 2.5W per a thermal joint. The determined 
response surface equation of G is as follow [35]: 
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The response surface equation for the total mass M also expressed in the following equation [35]: 
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In the present heat pipe optimization, the 5-dimentional design parameter space is split in 2D and 3D subspaces, 

i.e., the 2D space of tb, TOP and the 3D space of Lf, Lc and tf,  respectively. The design parameters determined by the 
mechanical designers are as follow: 

 
Length of fin (Lf) 
Cutting length of adhesive attached area (Lc) 
Thickness of fin (tf) 
Adhesive thickness (tb)  
Operation temperature (TOP)  

 
These are illustrated in Fig. 2 and allowable range of design parameters are given in Table 2. (TOP) and (tb) are 

uncontrollable by mechanical designers but effect on the thermal performance of the heat pipes. Their ranges are 
given in Table 3. 
 
Table 2 
Design parameter bounds 
Parameter Lf Lc tf 
Lower Bound  10.0 mm 1.5 mm 1.0 mm 
Upper Bound  25.4 mm 2.5 mm 1.7 mm 
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Table 3 
Uncertain design parameter 
Parameter tb TOP 
Lower Bound  0.12 mm -20.0 0C 
Upper Bound  0.22 mm  60.0 0C 
 
 
 

 

 
 
 
 
 
 
 
 
 
Fig. 2 
Schematic of heat pipe [34]. 

 
 
Considering the result, without changing shape parameters Lf, Lc and tf the design of heat pipes adopting thinner 

adhesive at lower operating temperature is expected to minimize the mass and to maximize conductance. However, 
it is very difficult to change the operating temperature because of the design limitation of an orbit and thermal 
control system. Moreover, controls over the thickness of adhesive involve great uncertainty in manufacturing. To 
improve heat pipe performance, therefore it is required to focus on the correlation of the shape parameters and the 
objective functions. For this purpose, the equation of G and M are regenerated to consider uncertainty of tb and TOP 
[34]. 

 

2 2

2

( , , )

   0.2312513 0.0261369 0.008299937 0.002905449 0.00007364545

0.05925684 0.01028177

f c f

c c f f

f f

G f L L t

L L L L

t t

=

= + - + -

+ -

 (5)
 

2 2( , , ) (1283.375 75.5 11 1.4 380.8 1120 ) 21f c f c c f b bM f L L t L L L t t= = - + + - + ´  (6)
 

4.2. Pressure vessel problem 

A cylindrical vessel is capped at both ends by hemispherical heads as shown in Fig. 3. The objective functions are to 
minimize the total cost (f1) and to maximize the storage capacity (f2) of the vessel. The parameters that should be 
optimized are Ts (thickness of the shell, x1), Th (thickness of the head, x2), R (inner radius, x3) and L (length of 
cylindrical section of the vessel, not including the head, x4). All parameters are continuous variable. By denoting the 
variable vector 1 2 3 4( , , , ) ( , , , )s hx x x x x T T R L= =  we write the two-objective optimization problem [36]: 

 
 

 
Fig. 3 
Schematic of pressure vessel [35]. 
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4.3 Multi-objective optimization of 120-bar truss design 

The third structure considered is a 120-bar space truss whose members are collected in 7 groups as shown in Fig. 4. 
The problem is to find the cross-sectional area of each member such that the total structural weight and the vertical 
displacement are minimized concurrently. The loading of the truss and the upper bounds for the displacements of the 
restricted joints are given in Table 4. The modulus of elasticity and the minimum member cross-sectional area are 

taken as 4 22.06 10 (kN/cm )´  and 2 cm2, respectively. In this case, objective functions are expressed as following 

[37]: 
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The design variables are bounded as 
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Fig. 4 
120-bar space truss [37]. 
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Table 4 
The loading and displacement bounds for 120-bar space truss system [37]. 

 
 
Table 5 
Parameters of the Bees Algorithm for mechanical problems 

 
 
Table 6 
Results for heat pipe design obtained using the Bees Algorithm and other optimization methods 

Objective function Methods Min (Total mass) (kg) Max (Thermal conductance)(W/K) 
Min(Total mass) 

BA 26.700 0.3818 
Max(Thermal conductance) 

    
Min(Total mass) 

BFGS  [35] 26.854 0.3750 
Max(Thermal conductance) 

    
Min(Total mass) 

HS [35] 26.704 0.3810 
Max(Thermal conductance) 

    
Min(Total mass) 

GA [34] 26.714 0.3812 
Max(Thermal conductance) 

 

5    RESULTS AND DISCUSSION 

The empirically chosen parameters for the Bees Algorithm are given in Table 5. 

5.1 Multi objective optimization heat pipe with 5 dimensional parameters 

It is assumed that the design optimization has two functions (G,M), two uncontrollable parameters (tb , Top), and 
three shape parameters of the satellite heat pipes (Lf , Lc , tf). The empirically chosen parameters for the Bees 
Algorithm (BA) are given in Table 5. Figs. 5 and 6 show the non-dominated solutions obtained from using the Bees 
Algorithm. Other researchers have investigated this problem using the Genetic Algorithm (GA) [34], Harmony 
Search (HS) [35] and another different predecessor which is one of best mathematical techniques, called the 
Broyden—Fletcher—Goldfarb—Shanno (BFGS) [35] which searches the solution area based on mathematical 
gradients, for finding multiple Pareto optimal solutions. In comparison with other results, Bees algorithm shows 
most optimal results. This is illustrated in Table 6. 

Joint Number Loading (kN) Displacement Limitation (cm) 
X Y Z Z 

1 0 0 60 1 
2 0 0 30 1 
. . . . . 
. . . . . 
. . . . . 
14 0 0 30 1 
15 0 0 10 1 
. . . . . 
. . . . . 
. . . . . 
37 0 0 10 1 

Problems n m nm ngh imax 
Heat pipe-3D 100 20 10 0.1 200 
Heat pipe-5D 100 20 10 0.1 200 
Pressure vessel 120 30 15 0.1 200 
120 bar truss 100 20 15 0.1 100 
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Fig. 5 
Non-dominated solutions obtained for heat pipe design problem 
with 5D design parameter using the BA. 

   
   

 

Fig. 6 
Non-dominated solutions obtained for heat pipe design problem 
using the BA and other optimization methods. 

  
  

Fig. 7 
Non-dominated solutions obtained for heat pipe with 3D design 
parameter using the Bees Algorithm. 

   
   

Fig. 8 
Non-dominated solutions obtained for heat pipe design problem 
with 3D design parameter and 5D design parameter using the Bees 
Algorithm. 

 

5.2 Multi-objective optimization heat pipe with 3 dimensional parameter 

It is assumed the design optimization has two functions (G,M), and three shape parameters of heat pipes of the 
satellite (Lf , Lc , tf) .The empirically chosen parameters for the Bees Algorithm are given in Table 5. Fig. 7 shows 
the non-dominated solutions obtained from using the Bees Algorithm. Fig. 8 shows comparison between heat pipe 
optimization with 3 dimensional parameters and heat pipe optimization with 5 dimensional parameters. It can be 
seen that two uncontrollable parameters have slight effect on mass minimization but its effect on conductance 
maximization is further. 
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5.3 Multi objective optimization pressure vessel 

The empirically chosen parameters for the Bees Algorithm are given in Table 5. Figs 9 to 11 show the non-
dominated solutions obtained using the Bees Algorithm. Deb has investigated this problem [36] using the NASGA-
II for finding multiple Pareto optimal solution. In comparison with the number of solution found by non-dominated 
sorting genetic algorithms, it can be seen that the Bees Algorithm can find more non dominated solutions. 

According to Table 7, the solutions are spread in the following range: [(37.545 $ , 7330.383 in3) , (3.215e+005 $, 
6.367e+007 in3)] respectively, which indicates the superiority of the Bees Algorithm compared to other optimization 
methods. 

5.4 Multi-objective optimization of 120-bar truss design 

The empirically chosen parameters for the Bees Algorithm are given in Table 5. Fig. 12 shows the non-dominated 
solutions obtained using the Bees Algorithm. Kelesoglu has investigated this problem [37] using the Genetic 
Algorithm (GA) for finding optimal solution. In comparison with the number of solution found by non-dominated 
sorting genetic algorithms, it can be seen that the Bees Algorithm can find more non dominated solutions. 
 
 

Fig. 9 
Non-dominated solutions obtained for the pressure vessel 
design problem using the BA and other optimization 
methods. 

   

   

Fig. 10 
Non-dominated solutions obtained for max volume pressure 
vessel design problem using the BA and other optimization 
methods. 

   

   

Fig. 11 
Non-dominated solutions obtained for min cost pressure 
vessel design problem using the BA and other optimization 
methods. 
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Table 7 
Results for the pressure vessel design problem obtained using the Bees Algorithm and other optimization methods  

Method  X1  X2  X3 X4 Min Cost ($)  Max Volume (in3)  
BA  0.193 0.0954 10 10 37.545  7330.383  
BA  3.860 1.9080 200  240  3.215 e+005 6.367 e+007 
NSGAII [36] 0.200 0.0973 10 10 38.982 7329.341  
NSGAII [36]  3.871  1.9100  200  240  3.223 e+005  6.366 e+007  

 
 
Table 8 
Results for 120-bar truss design obtained using the Bees Algorithm and other optimization methods 

Variables Methods 

Fuzzy-Linear by GA [37] Fuzzy-Non-Linear by GA [37] BA 

A1 (cm2)        36.17             34.44              21.52 
A2 (cm2)        50.00             26.68              26.37 
A3 (cm2)        27.81             40.11              26.52 
A4 (cm2)        34.99             32.70              15.23 
A5(cm2)        28.40             39.73              49.17 
A6 (cm2)        40.15             33.44              17.43 
A7 (cm2)        34.87             32.73                9.62 
Min W (cm3) 2,175,715 2,134,888 1,604,695 
Min   (cm)                0.52                0.33                0.3137 

 
 
 

Fig. 12 
Non-dominated solutions obtained for the 120-bar truss design 
problem using the BA other optimization methods. 

 
 
 

According to Fig. 12, the solutions are spread in the following range: [(0.1666 cm, 2,441,573 cm3) , (0.7834 cm , 
995,963cm3)] respectively, which indicates the superiority of the Bees Algorithm compared to other optimization 
method. Table 7 shows comparison between BA and another algorithm. 

6    CONCLUSIONS 

We have presented a novel approach to solve engineering design problems based on a simple evolution strategy. The 
proposed approach has described a modified version of the Bees Algorithm and its application to the search for 
multiple Pareto optimal solutions in mechanical engineering problems. We compared our results with respect to 
those obtained by two algorithms that had been previously found to perform well in the same problems. The Bees 
Algorithm found many trade-off solutions compared to the number of solutions obtained using non-dominated 
sorting genetic algorithms. Also, the computational cost of our approach (measured in terms of the number of 
evaluations of the objective function) is very low. Furthermore, the proposed approach is very simple and easy to 
implement. Hence, the Bees Algorithm is a computationally fast multi-objective optimizer tool for complex 
engineering multi-objective optimization problems. 



Constrained Multi-Objective Optimization Problems in Mechanical Engineering Design …                   363 
 

© 2011 IAU, Arak Branch 

REFERENCES 

[1] Deb K., 2001, Multi-Objective Optimization using Evolutionary Algorithms, First edition, Wiley, Chichester, UK. 
[2] Schaffer J.D., 1985, Multiple objective optimization with vector evaluated genetic algorithms and their applications, in: 

Proceedings of the first international conference on Genetic Algorithms, Pittsburgh, PA, USA, 93-100. 
[3] Fonseca C.M., Fleming P.J., 1993, Genetic algorithms for multi-objective optimization: Formulation, discussion, and 

generalization, in: Proceedings of the 5th international conference on Genetic Algorithms, University of Illinois at 
Urbana-Champaign, July 17-21, 416-423. 

[4] Horn J., Nafploitis N., Goldberg D.E., 1994, A niched Pareto genetic algorithm for multi-objective optimization, in: 
Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational 
Intelligence, June 27-29, Orlando, Florida, USA, 82-87. 

[5] Srinivas N., Deb K., 1995, Multi-objective function optimization using non-dominated sorting genetic algorithms, 
Evolutionary Computation Journal 2: 221-248. 

[6] Knowles J., Corne D., 1999, The Pareto archived evolution strategy: A new baseline algorithm for multi-objective 
optimization, in: Proceedings of the Congress on Evolutionary Computation, New Jasery, IEEE Service Center, 98-
105. 

[7] Deb K., Pratap A., Agrawal  S., Meyarivan T., 2000, A fast elitist non-dominated sorting genetic algorithm for multi-
objective optimization: NSGA-II, in: Proceedings of the 6th International Conference on Parallel Problem Solving 
from Nature, Paris, France, 846-858. 

[8] Zitzler E., Theiele L., 1999, Multi-objective evolutionary algorithm: a comparartive case study and the strength Pareto 
approach, Evolutionary Computation Journal 3(4): 257-271. 

[9] Zitzler E., Deb K., Thiele L., 2000, Comparison of multi-objective evolutionary algorithms: Empirical results, 
Evolutionary Computation Journal 8( 2): 173-195. 

[10] Farina M., Deb K., Amato P., 2004, Dynamic multi-objective optimization problems: test cases, approximations, and 
applications, IEEE Transactions On Evolutionary Computation 8(5): 425-442. 

[11] Nebro A.J., Durillo J.J., Luna F., Dorronsoro B., Alba E., 2009, A cellular genetic algorithm for multiojective 
optimization, International Journal of Intelligent Systems 14(7):726-746 

[12] Mainenti I., DeSouza L., Sousa F., Kuga H., Galski R., 2007, Satellite attitude control using the generalized extremal 
optimization with a multi-objective approach, in: Proceedings of the 19th International Congress of Mechanical 
Engineering, DF, Brazil. 

[13] Copiello D., Fabbri G., 2008, Multi-objective heat transfer optimization in corrugated wall channels by hybrid genetic 
algorithms, in: Proceedings of the 5th European Congress on Computational Methods in Applied Sciences and 
Engineeering (ECCOMAS), Venice, Italy, 81-88.. 

[14] Cuco A., Sousa F., Vlassov V., Neto v., 2008, Multi-Objetive Design Optimization of a New Space Radiator, in: 
Proceedings of the International Conference on Engineering Optimization, Rio de Janeiro, Brazil, 201-209. 

[15] Oliveira L., Saramago S., 2010, Multi-objective optimization techniques applied to engineering problems, Journal of 
the Brazilian Society of Mechanical Sciences and Engineering 32(1): 94-105. 

[16] Khalkhali A., Sadafi M., Rezapour J., Safikhani H., 2010, Pareto based multi-objective optimization of solar thermal 
energy storage using genetic algorithms, Transactions of the Canadian Society for Mechanical Engineering 34(4): 
463-474. 

[17] Szparaga L., Ratajski J., Zarychta A., 2011, Multi objective optimization of wear resistant TiAlN and TiN coatings 
deposite by PVD techniques, Achievements in Materials and Manufacturing Engineering Journal 48(1): 33-39. 

[18] Shrivastava R., Singh S., Dubey G.C., 2012, Multi-objective optimization of time cost quality quantity using multi 
colony ant algorithm, International Journal of Contemporary Mathematical Sciences 7(16): 773-784. 

[19] Pham D.T., Ghanbarzadeh A., Koc E., Otri S., Rahim S., Zaidi M., 2005, Technical Note: Bees Algorithm, Technical 
Report No MEC 0501, Manufacturing Engineering Centre, Cardiff University, Cardiff. 

[20] Pham D. T., Ghanbarzadeh A., Koc E., Otri S., Rahim S., Zaidi M., 2006, The Bees Algorithm. A novel tool for 
complex optimization problems, in: Proceedings of the Second International Conference on Intelligent Production 
Machines and Systems, 454–459.   

[21] Pham D.T., Ghanbarzadeh A., Koc E., Otri S., 2006, Application of the bees algorithm to the training of radial basis 
function networks for control chart pattern recognition, in: Proceedings of 5th CIRP International Seminar on 
Intelligent Computation in Manufacturing Engineering, Ischia, Italy, 711-716. 

[22] Frisch K., 1967, The Dance Language and Orientation Of Bees, First edition, Harvard University Press, 
Massachusetts, USA. 

[23] Michelsen A., Andersen B., Storm J., Kirchner W., Lindauer M., 1992, How honeybees perceive communication 
dances, studied by means of a mechanical model, Behavioral Ecology and Sociobiology Journal 30(3-4): 143-150. 

[24] Dyer F., 2002, When it pays to waggle, Nature Journal 419(6910): 885-886. 
[25] Camazine S., Sneyd J., 1990, A model of collective nectar source by honey bees: self-organization through simple 

rules, Journal Theoretical Biology Journal 149: 547-571. 
[26] Lambrinos D., M¨oller R., Labhart T., Pfeifer R., Wehner R., 2000, A mobile robot employing insect strategies for 

navigation, Robotics and Autonomous Systems Journal  30(1-2): 39-64. 



364                   A. Mirzakhani Nafchi and A. Moradi 

© 2011 IAU, Arak Branch 

[27] Müller M., Wehner R., 1988, Path integration in desert ants, Cataglyphis Fortis, Experimental Biology Journal 85(14): 
5287-5290. 

[28] Collett P., Graham T.S., Durier V., 2003, Route learning by insects, Current Opinion in Neurobiology Journal 13(6): 
718-725. 

[29] Collett T., Collett M., 2004, How do insects represent familiar terrain, Journal of Physiology 98:259-264. 
[30] Barth F. G., 1982, Insects and Flowers: The Biology of a Partnership, First edition, Princeton University Press, 

Princeton, NJ, USA.  
[31] Pham D.T., Otri S., Ghanbarzadeh A., Koc E., 2006, Application of the bees algorithm to the training of learning 

vector quantization networks for control chart pattern recognition, in: Proceedings of Information and Communication 
Technologies Conference, Syria, 1624-1629. 

[32] Pham D.T., Koç E., Ghanbarzadeh A. Otri S., 2006, Optimization of the weights of multi-layered perceptions using the 
Bees Algorithm, in: Proceedings of the 5th International Symposium on Intelligent Manufacturing Systems, Turkey, 
38-46. 

[33] Pham D.T., Castellani M., Ghanbarzadeh A., 2007, Preliminary design using the bees algorithm, in: Proceedings of the 
International Conference on Laser Metrology, CMM and Machine Tool Performance, LAMDAMAP, Cardiff: euspan 
Ltd, UK, 420-429. 

[34] Jeong M.J., Kobayashi T., Yoshimura Sh., 2005, extraction of design characteristics of multi-objective optimization- 
Its application to design of artificial satellite heat pipe, Lecture Notes in Computer Science Journal 3410: 561-575. 

[35] Geem Z.W., Hwangbo H., 2006, Application of harmony search to multi-objective optimization for satellite heat pipe 
design, US-Korea Conference on Science, Technology, and Entrepreneurship, Teaneck, NJ, 157-165. 

[36] Deb K., Srinivasan A., 2006, Monotonicity analysis, evolutionary multi-objective optimization, and discovery of 
design principles, in: Proceedings of the Bio-Inspired Computing: Theory and Applications, Wuhan, China, 89-96. 

[37] Kelesoglu O., Ulker M., 2005, Fuzzy optimization of geometrical nonlinear space truss design, Engineering Turkish 
Journal 29: 321- 329. 


