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 ABSTRACT 

 This paper presents an analytical solution for response of a piezoelectric hollow cylinder under 
two-dimensional electro thermo mechanical fields. The solution is based on a direct method and 
the Navier equations were solved using the complex Fourier series. The advantage of this method 
is its generality and from mathematical point of view, any type of the thermo mechanical and 
electrical boundary conditions can be considered without any restrictions. The thermo mechanical 
and electrical displacements are assumed that vary in radial and circumferential directions. 
Finally, three examples were considered to confirm the results and investigate the effect of in-
phase and opposite-phase electro thermo mechanical boundary loads on two-dimensional electro 
thermo mechanical behavior of piezoelectric hollow cylinder. The results are compared with the 
previous work and FEM analysis. The main result of this study is that, by applying a proper 
distribution of thermal, electrical and mechanical fields, the distributions of electric and 
mechanical displacement, thermal and mechanical stresses can be controlled.                        

           © 2013 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

IEZOELECTRIC materials have attracted widespread attention due to their direct and inverse effects on 
many industrials including aerospace, automobile and marine as a sensor or actuator [1] in the last decade. But 

the combinations of mechanical, electrical and thermal loads have confronting effects on piezoelectric materials 
which has been the subjects of many researches in these years. Ying and Zhifei [2] presented an exact solution for a 
long thick walled double layers piezo-thermo-elastic hollow cylinder. They investigated the effects of some coupled 
loading on piezo-thermo-elastic cylinder. Haojiang et al. [3] presented a general solution for coupled equations for 
piezoelectric media. An exact solutions for a piezoelectric plane beam subjected to electromechanical loads was 
investigated by Zhang et al. [4]. The thermo piezoelectric behavior of a functionally graded hollow cylinder due to 
electric, thermal and mechanical loads is investigated by Khoshgoftar et al. [5]. They reported by applying specific 
thermo mechanical boundary conditions, the distribution of electro mechanical field and displacements in the 
cylinder can be controlled. By using the double Fourier sinusoidal series expansions Xu and Zhou studies the 
elasticity solution of a transversely isotropic rectangular plates with variable thickness [6]. Jafari Fesharaki et al. [7] 
investigated the two-dimensional solution for electro mechanical behavior of FGPM Hollow Cylinder. Tarn and 
Jiann [8] depicted an exact solutions for a piezoelectric circular tube or bar under torsion, extension, shearing, 
pressuring, uniform electric loading and temperature changes. Zhang et al. [9] presented an exact solution of coupled 
electro thermo elastic behavior of piezoelectric laminates. Dumir et al. [10] investigated the solution of piezo elastic 
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simply-supported orthotropic circular cylindrical panel under cylindrical bending. Galic and Horgan [11, 12] 
developed an analytical solution for a radially polarized piezoelectric hollow cylinder in rotating and static 
conditions. Dai and Wang [13] depicted the responses of piezoelectric hollow spheres and cylinders due to transient 
electro thermo mechanical loads. Guan and He [14] presented the two-dimensional analysis of 
piezoelectric/piezomagnetic and elastic media. The effective elastic properties of a piezoelectric composite cylinders 
with radially polarized cylinder is investigated by Gu et al. [15]. They showed that, by increasing the piezoelectric 
cylinder constants, the effective elastic properties can be enhanced or reduced. By using the infinitesimal theory, Dai 
et al. [16], depicted an analytical solution for electro magneto thermo mechanic behavior of a functionally graded 
hollow cylinder. Dai and Wang [17] presented an exact expression for the dynamic responses of a piezoelectric 
hollow cylinder in an axial magnetic field. Yee and Moon [18] presented a plane thermal stress analysis of an 
orthotropic cylinder subjected to an arbitrary transient asymmetric temperature distribution. 

In this paper, the complex Fourier series is employed to present an exact electro-thermo-elastic solution of a 
piezoelectric hollow cylinder subjected to two-dimensional steady state thermal, electrical and mechanical loads. All 
electro thermo mechanical fields are assumed to vary in radial and circumferential directions which do not have any 
limitations to handle the general types of thermal, mechanical and electrical boundary condition. With a direct 
solution method, the Navier equations in terms of displacements are derived and solved analytically. After the 
solution is completed, three examples were considered to confirm the results. In the first example, the effect of two 
phases -mechanical and thermal field -are investigated and the results are compared with the given data in previous 
works. In the second example, the effect of two phases electro mechanical fields were depicted and the result was 
confirmed with the FEM analysis. Finally, in the third example, four general boundary conditions were considered 
to investigate and control the three phases electro thermo mechanical response of a piezoelectric hollow cylinder 
with the combination of any types of boundary conditions. 

2    BASIC FORMULATION OF THE PROBLEM 

Consider a thick piezoelectric hollow cylinder with inside and outside radius of “a” and “b” respectively subjected 
to two-dimensional electro thermo mechanical loads (Fig. 1). The cylinder is polarized in radial direction. 
 

 

 
 
 
 
 
 
 
 
 

Fig. 1  
Hollow cylinder subjected to two-dimensional electro thermo 
mechanical loads. 
 

The relations between strain and displacement components in cylindrical coordinate system are: 
 

1 1 1
,      ,      ( ).

2rr r
u v u u v v

r r r r r r 
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(1) 

 
“u” and “v” are the displacement components in the radial and circumferential directions, respectively. The 

constitutive relations for a piezoelectric cylinder with thermal effect are [19]: 
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(2) 

 
where ij

 
and  (i, j r, )ij    are stress and strain tensors, respectively. Di (i=r, θ) are electric and displacements in 

radial and circumferential directions and   is electric potential. cij, gij, hij, and bij (i, j=1, 2, 3) are elastic, 
piezoelectric, dielectric and pyroelectric coefficients respectively and finally dij (i, j=1, 2) are thermal modules. The 
equilibrium equations in cylindrical coordinates, in radial and circumferential directions, irrespective of body forces, 
inertia terms and electrostatic charge equation, are expressed as [19]: 
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(3) 

 
Substituting Eq. (1) into (2) and then into equilibrium Eqs. (3), three coupled governing differential equations for 

two dimensional electro thermo mechanical problem in cylindrical coordinates are obtained: 
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(4) 

where constants w1 to w24 are given in the Appendix. 

3    HEAT CONDUCTION PROBLEM 

Before solving the governing Eqs. (4), the steady-state heat conduction equations for a two-dimensional problem 
with no heat generation in cylindrical coordinates and the thermal boundary conditions for a hollow cylinder are 
considered as [20]: 
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where mij (i, j=1,2) are the thermal constant parameters related to the conduction and convection coefficients. The 
functions f1 (  ) and f2 (  ) are known on the inner and outer surfaces of the cylinder, respectively. Because of T(r, 
 ) is a periodic function of  , the complex Fourier series may be used for temperature function as [21]: 
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where Tn(r) is the coefficient of the complex Fourier series of T(r,θ): 
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Substituting Eq. (7) into Eq.(5) yields: 
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The solutions of Euler Eq. (9) may be considered in the form of: 
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Substituting Eq. (10) into Eq. (9) yields: 
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By substituting Eq. (12) into Eq. (7), the temperature function is obtained: 
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To determine the constants Qn1 and Qn2, one should note that the right hand sides of Eq. (6) are the complex 

Fourier series coefficients of left hand one, so substituting boundary conditions (6) into Eq. (13) yields:  
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By using the Cramer’s method to solve the system of algebraic Eqs. (14), the constants Qn1 and Qn2 is expressed 
as: 
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where 
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4    SOLUTION OF THE PROBLEM 

To solve the Eq.(4) consider the complex Fourier series for displacements u(r, θ) and v(r, θ) and electric potential 
φ(r, θ) as: 
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where un (r), vn (r) and φn (r) are the coefficients of the complex Fourier series of un(r, θ), vn(r, θ) and φn(r, θ) 
respectively, and are: 
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Substituting Eq. (17) into Eq. (4) and using Eq. (7) one obtains: 
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Eqs. (19) to (21) are a system of ordinary differential equations with non-constant coefficients that have the 

general and particular solutions. The general solution of the this system are assumed as: 
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Substituting Eqs. (22) into Eqs. (19), (20) and (21) and neglecting the right hand sides of equations for general 
solution lead to: 
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For obtaining the nontrivial solution of the system of algebraic Eqs. (23), the determinant of coefficients should 

be equal to zero. So six roots, 1n to 6n  for system of equations are achieved and the general solutions are 
expressed as: 
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where njM is the relation between constant njA and njB , and njN is the relation between constants njA and njC  

obtained from Eq. (23): 
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The particular solution of Eqs. (19), (20) and (21) are assumed as: 
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Using Eq. (12), substituting Eq.(27) into Eqs. (19) to (21), and equating the coefficients of identical powers, the 

following systems for power 1 1nr   and 2 1nr   are obtained: 
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where, the constants X1 to X18 and Y1 to Y6 are given in the appendix. Eqs. (28) and (29) are a system of algebraic 
equations and using the Cramer’s method, the solutions for unknown constants Pn1, Pn2, Rn1, Rn2, Sn1 and Sn2 can be 
obtained. 

Summation of the general and particular solution for un(r), vn(r) and φn(r), leads to the complete solutions: 
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If n = 0, since Eq. (20) is independent of Eqs. (19) and (21), the coefficients njM
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where zero subscript denoted for n=0. Eqs. (31) and (33) are a system of ordinary differential equations and have 
general and particular solutions. The general solution is assumed as: 
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0 0 0 0( ) ,      ( ) . u r A r r C r     (34) 

 
Substituting Eq. (34) into Eqs. (31) and (33) yield: 
 

0 0 0 2 0 5 0 0 7 0 0

18 0 0 19 0 0 0 0 0 0

[ ( 1) ] [ ( 1) ] 0

[ ( 1) ] [ ( 1) ] 0     

w A w w C

w w A C

            

           
 

 
(35) 

 
To obtain the nontrivial solution of Eq. (35), the determinant of coefficients should be equal to zero. So the four 

roots, 01 to 04 , are achieved and the general solutions are: 
 

0 0

4 4

0 0 0 0 0
1 1

( ) ,                    ( ) .j jg g
j j j

j j

u r A r r N A r
 

 

     
 
 

(36) 
 

where N0j is the relation between constants A0 and C0 and is obtained from the first Eq. (35) as: 
 

0 0 0 2
0

5 0 0 7 0

[ ( 1) ]
 

[ ( 1) ]
j j j

j
j j j

w
N

w w

      


    
 

 
(37) 

 
For 0n  , Eq. (32) is a decoupled ordinary differential equation and the solution of this equation is considered in 

the form of: 
 

06
0 05
g A

v A r
r

   
 

(38) 

 
The particular solution of Eqs. (31) and (33) are assumed as: 
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01 02 021 1 10 1
0 01 02 0 01 02( ) , ( )  p pu r P r P r r S r S r            (39) 

 
For 0n   in Eq. (12), substituting Eq. (39) into Eqs. (31) and (33), and equating the coefficients of the identical 

powers, the following systems for power 1 1nr   and 2 1nr   are obtained: 
 

19 01 20 01 7 01

23 01 24 01 9 01

. . .

. . .

X P X S Y Q

X P X S Y Q

 
  

 
 

(40) 

  

21 02 22 02 8 02

25 02 26 02 10 02

. . .

. . .

X P X S Y Q

X P X S Y Q

 
  

 
 

(41) 

 
where the constants X19 to X26 and Y7  to Y10 are given in the appendix. Eqs. (40) and (41) are a system of algebraic 
equations and using the Cramer’s method, the solutions for unknown constants P01, P02, S01 and S02 can be obtained.  

Considering the addition of general and particular solutions for every value of “n” and using Eq.(17), the 
complete solution for u(r, θ), v(r, θ) and φ(r, θ) are expressed as: 

 

0 0

4 2 6 2
1 1

0 0
1 1 , 0 1 1

( , ) . .  j j nj nj in
j j nj nj

j j n n j j

u r A r P r A r P r e


      

     

 
     
  

      
 

(42) 

6 2
106

05
, 0 1 1

( , ) . . .  nj nj in
nj nj nj

n n j j

A
v r A r M A r R r e

r


   

   

 
     
  

    
 

(43) 

0 0

4 2 6 2
1 1

0 0 0
1 1 , 0 1 1

( , ) . . . .  j j nj nj in
j j j nj nj nj

j j n n j j

r N A r S r N A r S r e


      

     

 
      
  

      
 

(44) 

 
Substituting Eqs. (42), (43) and (44) into Eq. (1), the strains are obtained as: 
 

0

4 2 6 2
1 1

0 0 0 0
1 1 , 0 1 1

.( 1). .( 1).  
oj

j nj nj in
rr j j j j nj nj nj nj

j j n n j j

A r P r A r P r e
 

     

     

 
           
  

      
 

(45) 

0

4 2 6 2
1 1

0 0
1 1 , 0 1 1

. . ( . 1) . ( . ).  
oj

j nj nj in
j j nj nj nj nj

j j n n j j

A r P r in M A r in R P r e
 

     


     

 
       
  

      
 

(46) 

6 2
1

, 0 1 1

1
( . ). ( . . ).  

2
nj nj in

r nj nj nj nj nj nj nj
n n j j

in M M A r in P R r e


   


   

           
    

    
 

(47) 

 
Substituting Eqs.(45), (46) and (47) into Eq.(2) and utilizing Eq.(13) and (44), the stress components are 

obtained as: 
 

0 0

4 2
11 0 12 01

11 12 11 0 0 0
11 0 01 1

6
1

11 12 12 11
1

11 12 12 11

. .( 1) .
( . . . ). . .

. .( 1)

( . . . . . ). .

. .( 1) . . .(

j j

nj

j oj j
rr oj j j j

j jj j

nj nj nj nj nj
j

bj nj nj nj nj nj

c P c P
c c g N A r r

g S

c c M in c g N A r

c P c R c P g S

  

 

 



    
        

   

    



      

 

 2

112
, 0 1

1

. . .

1) .

nj

nj

in in
nj

n n n j

j

e d Q r e

r

 
 

   



 
 

              
  

  


 
 
 
 
 
 

(48) 
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0 0

4 2
21 0 22 01

21 22 21 0 0 0
21 0 01 1

6
1

21 22 22 21
1

21 22 22 21

. .( 1) .
( . . . ). . .

. .( 1)

( . . . . . ). .

. .( 1) . . .(

j j

nj

j oj j
oj j j j

j jj j

nj nj nj nj nj
j

bj nj nj nj nj nj

c P c P
c c g N A r r

g S

c c M in c g N A r

c P c R c P g S

  


 

 



   
        

    

    



      

 

 2

212
, 0 1

1

. . .

1) .

nj

nj

in in
nj

n n n j

j

e d Q r e

r

 
 

   



 
 

              
  

  


 

 
 
 
 

(49) 

6
1

31 31 31 31
1

2
, n 0

31 31 31
1

( . . . . . . . ). .

.

( . . . . . . ).

nj

nj

nj nj nj nj nj
j in

r
n

nj nj nj nj
j

c in c M c M g N in A r

e

c P in c R g S in r

 


 


 



 
    

 
   

 
    
  





 

 
 
 

(50) 

 
And electrical displacement components in radial and circumferential directions are: 
 

0 0

4 2
11 0 21 01

11 21 11 0 0 0
11 0 01 1

6
1

11 21 21 11
1

11 21 21 11

. .( 1) .
( . . . ). . .

. .( 1)

( . . . . . ). .

. .( 1) . . .(

j j

nj

j oj j
r oj j j j

j jj j

nj nj nj nj nj
j

bj nj nj nj nj nj

g P g P
D g g h N A r r

h S

g g M in g h N A r

g P g R g P h S

  

 

 



   
       

    

    



       

 

 2

112
, 0 1

1

. . .

1) .

nj

nj

in in
nj

n n n j

j

e b Q r e

r

 
 

   



 
 

              
  

  


 

 
 
 
 

(51) 

6
1

31 31 31 21 2
1

212
, n 0 1

31 31 21
1

( . . . . . . . ). .

. . .

( . . . . . . ).

nj

nj

nj

nj nj nj nj nj
j in in

nj
n n j

nj nj nj nj
j

g in g M g M h N in A r

D e b Q r e

g P in g R h S in r

 

 
  


   



 
    

  
            

  


  


 

 
 
 

(52) 

It is recalled that Eqs. (42) - (52) contain six unknown constants ( 1,..., 6)njA j  and therefore to evaluate these 

constants, six boundary conditions from displacements, stresses, or combinations are required. Expanding the given 
boundary conditions in complex fourier series gives: 

 

( ) ( )           1,...,6in
j j

n

Z Z n e j






    
 

(53) 

 
where 
 

-

1
( ) ( )           1,...,6

2
in

j jZ n Z e d j


 



   
   

 
(54) 

 
Using Eqs. (53) and (54) and substituting the six boundary conditions into Eqs. (42) to (52), all unknown 

constants Anj are calculated. 
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5   FUNCTIONALLY GRADED MATERIAL FORMULATION 

Consider that the functionally graded material proposed in here are radially graded and the material properties are 
the function of r: 
 

0 ,       ( , 1,  2,  3) ii iiX X r i j   (55) 

 
where the superscript zero denotes the corresponding value at the outer surface of the functionally graded 
piezoelectric material hollow cylinder, and β is the power-law indices of the material in-homogeneity. “X” is the 
material property such as elastic coefficient, electric constant etc. Considering the presented above solution, the 
stresses along the radial and circumferential direction are:  

 

0

0

4
1

0 0 6
10 0 1

11 126
1 , 0 1

, 0 1

4

0 0 0
10 1 0

12 116

, 0 1

[ ( ) ]

( )
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j
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nj

j
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j j
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n n jin

nj nj
n n j

j j j
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n n j

A r

c r c r N A r in e

A r e

A r R A

c r g r

A r e

 


   


    

  



 


 

  

 
  

 
   

 
 

  
 

 
 

  
 
 
  


 

 



 

0

4
1

0
1

6
1

, 0 1

( )

j

nj

j
j

in
nj nj nj

n n j

r

M A r e

 




  

  

 
  

 
 
 

 
  


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And the relations for electrical displacements along the radial and circumferential direction in cylinder are presented 
as: 
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where the unknown constant  ( 1,..., 6)njA j  are specified from boundary conditions. 

6   RESULTS AND DISCUSSION 

To examine the proposed solution, three different examples are considered. In the first example, to validate our 
solutions, a thick piezoelectric hollow cylinder under electro thermo mechanical load is considered. The inner and 
outer radiuses of cylinder are a=0.25m and b=1 m respectively and the material is considered to be PZT-4. Also the 
boundary conditions are considered similar to those proposed in reference [21] and are obtained as: 
 

( , ) 1,      ( , ) 0,      ( , ) 0,      ( , ) 100,     ( , ) 1,           ( , ) 0. rr rra b T a T b a b                  (61) 

 
In reference [21], an analytical solution for electro thermo piezoelectric hollow cylinder is presented. All fields 

are considered to be symmetric along the circumference of the cylinder and the stresses, temperature and electric 
field are varied across the thickness. The results in that paper are presented for two materials, PZT-4 and Batio3. 
Also the results are presented for three ratio of outer and inner radius of cylinder as R= 0.25, 0.5, 0.75. 

Fig.2 shows the stresses and electric field across the thickness of the piezoelectric hollow cylinder with the 
material and boundary conditions proposed in [21]. Fig. 3 shows the results reported in reference [21]. From these 
two figures, by considering the red line in Fig. 3 and for R=0.25 (0.25<R<1), it can be seen that the boundary 
conditions are satisfied in Fig. 2. Considering the boundary conditions and material properties, in addition, the 
curves in Figs. 2 and 3 also show very good agreement between stress and electric field with those reported in [21]. 
 
 



361                   S. Golabi and J. Jafari Fesharaki 

© 2013 IAU, Arak Branch 

(a) (b) 
 

Fig. 2 
Stresses and electric field distributions due to electro thermo mechanical load. 
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Fig. 3 
Stresses and electric field distributions due to electro thermo mechanical load [21].
 
 

In the second example, the behavior of hollow cylinder subjected to two dimensional electro mechanical loads is 
considered. The results from analytical method are compared to the results from FEM software. The mechanical and 
electrical boundary conditions are shown in Fig. 4 and considered as: 

 
( , ) 1 cos 2  ,                  ( , ) 0,                                                  

( , ) 0                                    ( , ) 0,  

( , ) 10 sin 2  / ,                  ( , )

rr

r

a MPa u b

a v b

a W A b


     

    

       0.

 

 
(62) 

 
The material chosen for this example is PZT-4 and the material constants are [22]: 
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(63) 

 
 

 

 
 
 

 

 
Fig. 4 
Piezoelectric hollow cylinder subjected to two-
dimensional electro mechanical fields. 

 
Fig.5 shows the radial and shear stress in the thickness of piezoelectric hollow cylinder due to the given 

boundary conditions. To compare the results, Fig.6 shows the results in the radius in midpoint of the thickness of 
cylinder (R= 1.1 m) for various degrees. It can be seen that the results show good agreement between the analytical 
and FEM results.  
 
 

 
 

  
 

Fig. 5 
Radial (a) and shear (b) stresses in the thickness of piezoelectric hollow cylinder. 
 
 

  

Fig. 6 
Radial and shear stresses from FEM and analytical solution in R=1.1. 
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In the third example, the same thick-walled cylinder is subjected to two-dimensional three phase electric 
potential, thermal and mechanical loads. To investigate the effects of combining the in-phase and opposite-phase of 
electro thermo mechanical loads to control the electrical and mechanical parameters, four various boundary 
conditions are considered as: 

 
Case 1: All boundary conditions are in-phase 
 

( , ) cos2  C,                           ( , ) 50 cos 2  / ,

( , ) 0,                                       ( , ) 0,

( , ) 10 cos 2  ,                ( , ) 0,                        

( , ) 0
rr

r

T a a W A

T b b

a MPa u b

a

       
    

     

                                       ( , ) 0.v b  

 

 
 

(64) 

 
Case 2: Electric potential is in opposite-phase 
 

( , ) cos2  C,                           ( , ) 50 sin 2  / ,

( , ) 0,                                       ( , ) 0,

( , ) 10 cos 2  ,                ( , ) 0,                    

( , ) 0    
rr

r

T a a W A

T b b

a MPa u b

a

       
    

     

                                   ( , ) 0.v b  

 

 
 

(65) 

 
Case 3: Pressure is in opposite-phase 
 

( , ) cos2  C,                           ( , ) 50 cos 2  / ,

( , ) 0,                                       ( , ) 0,

( , ) 10 sin 2  ,                ( , ) 0,                       

( , ) 0 
rr

r

T a a W A

T b b
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    
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(66) 

 
Case 4: Temperature is in opposite-phase 
 

( , ) sin 2  C,                           ( , ) 50 cos 2  / ,

( , ) 0,                                       ( , ) 0,

( , ) 10 cos 2  ,                ( , ) 0,                      

( , ) 0  
rr
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(67) 

 
Fig.7 shows the temperature distribution across the wall thickness of cylinder along the radius and 

circumferential directions for the proposed cases. The temperature at the inner and outer radius of cylinder satisfies 
the given thermal boundary conditions. Since the thermal equation is solved separately, the electro mechanical loads 
have no effect on temperature distributions across the thickness of cylinder and only in case 4, due to different 
thermal boundary conditions from other cases, the temperature has different shape from the others. 
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Fig. 7 
Temperature distributions due to electro thermo mechanical load. 

 
 
 

 
 

  

Fig.8 
Electric potential distributions due to electro thermo mechanical load. 
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Fig.8 shows the electric potential distribution across the cylinder wall thickness. It can be seen that, due to the 
given boundary conditions, the electric potential follow the pattern of the electric potential distribution at the internal 
surface of the cylinder. It is also perceived that the variation between the phases of electro thermo mechanical loads 
effectively alters the electric potential along the radial and circumferential direction. From figure 5 one can see that 
if the electric potential at inner boundary be in opposite-phase with the other boundary loads, the maximum value of 
electric potential occurs in the middle of thickness. If the mechanical loads be in opposite phase with other boundary 
conditions, the electric potential vary sharply along the circumferential direction but the values of pick points have 
inconsiderable difference from the values of pick point in other cases. The radial, shear and circumferential stresses 
are shown in Figs. 9  to 11 respectively. Obviously the stresses in these figures satisfy the proposed boundary 
conditions for each case. It can be seen from Figs. 9 and 11 that the various phases of loads have inconsiderable 
effects on values of radial and circumferential stresses. But in case 3 from Figs. 9 and 11, we can find that the shape 
of radial and circumferential stresses across the thickness of cylinder are different from other cases due to different 
boundary conditions. As one can see in Fig. 10, if the pressure be in opposite-phase with other conditions, the shape 
and values of shear stress changes. 

 
 
 

 
 
 

 
 

Fig. 9 
Radial stress distributions due to electro thermo mechanical load. 
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Fig. 10 
Shear stress distributions due to electro thermo mechanical load. 
 
 
 

 
 

  

Fig. 11 
Circumferential stress distributions due to electro thermo mechanical load. 
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Fig. 12 
Radial displacement distributions due to electro thermo mechanical load. 
 
 
 

  

  

Fig.13 
Circumferential displacement distributions due to electro thermo mechanical load. 
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Fig.14 
Radial electric displacements due to electro thermo mechanical load. 
 
 

  

  

Fig.15 
Circumferential electric displacements due to electro thermo mechanical load. 
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Fig. 12 and 13 show the radial and circumferential displacements across the thickness of cylinder respectively. It 
can be seen that except case 3, that the pressure is in the opposite phase, the various phases have no great effect on 
radial displacement but Fig. 13 shows that the opposite phase of pressure and thermal condition can increase the 
values and changes the shapes of the circumferential displacement along the thickness of cylinder. Figs. 14 and 15 
demonstrate the electric radial and circumferential displacements respectively. It can be seen from these figures that 
in any cases, the electric radial displacements have no effective variations except in case 3, that due to presented 
boundary conditions, the shape of electric radial displacements changes. Also changes in the phase of pressure can 
change that value and shapes of electric circumferential displacements. From the above discussions, it can be 
concluded that by considering the special boundary conditions and combination of them, the mechanical and 
electrical displacements and stresses can be changed, controlled and optimized along the thickness of cylinder for 
better design while using this kind of structures. 

7    CONCLUSIONS 

This paper presents the analytical solution for two-dimensional electro thermo mechanical behavior of a 
piezoelectric hollow cylinder as a sensor or actuator. The method of solution is based on the direct method and by 
using the complex Fourier series, the Navier equations were solved. The advantage of this method is its generality 
and from mathematical point of view, any type of the thermo mechanical and electrical boundary conditions can be 
considered without any restrictions. Three types of examples are considered to validate our solution and investigate 
the effect of two-dimensional electro thermo mechanical behavior of cylinder under the effect of combination 
boundary conditions in the in-phase and opposite-phase of electro thermo mechanical loads. The numerical 
examples have revealed that by using  this method and considering the special boundary conditions, the mechanical 
and electrical displacements and stresses in a piezoelectric hollow cylinder can be controlled and optimized to 
design and work efficiency under the various loads.  
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