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 ABSTRACT 

 This paper aims at presenting a new efficient element for free vibration and 

instability analysis of Axially Functionally Graded Materials (FGMs) non-prismatic 

beams using Finite Element Method (FEM). Using concept of Basic Displacement 

Functions (BDFs), two- node element extends  to three-node element for obtaining 

much more exact results using FEM. First, BDFs are introduced and computed using 

energy method such as unit-dummy load method. Afterward, new efficient shape 

functions are developed in terms of BDFs during the procedure based on the 

mechanical behavior of the element in which presented shape functions benefit 

generality and accuracy from stiffness and force method, respectively. Finally, 

deriving structural matrices of the beam with respect to new shape functions; free 

vibration and instability analysis of the FGM beam are studied using finite element 

method for all types of AFGM beams and the convergence of FEM has been studied. 

The results from both free vibration and instability analysis are in perfect agreement 

with those of previously published. 

                                                 © 2016 IAU, Arak Branch.All rights reserved. 

 Keywords : Axially functionally graded materials (AFGM); Finite element method 
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1    INTRODUCTION 

 UNCTIONALLY graded materials (FGMs) are a new class of advanced composite materials possessing 

continuous variation of material properties with respect to the spatial coordinates. Unlike laminated composites, 

which are prone to interfacial stress concentration, leading to delamination and propagation of cracks, FGMs exhibit 

smooth and gradual vary in material properties. This can be achieved by either continuous change in thickness 

direction or smooth change of in-plane materials. During the past two decades the idea of FGMs has had a vast 

range of application in optics, human implants, engine components, turbine blades, and other engineering fields, as 

same as, received considerable attention by researchers. This is due to their distinguished characteristics such as 

high thermal resistance and toughness as well as improved strength. Most of researchers have focused on the FG 

beams while material properties fluctuate along the dimensions of cross-section  all together or independently  for 

beam or plate [1-4]. However, a few of these studies deal with FGMs with materials indices varying through the 

beam’s length [5-33].  

The majority of researches conducted in this field are concerned with presenting closed-form solutions. For 

example, Elishakoff et al.[5-24] have applied the semi inverse method in which the closed-form solution of the 
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problem is applicable to the particular problems; the semi-inverse method is only useable for the beams with specific 

required displacement and a physical property such as mass density. Moreover, other physical property which 

mainly is the modulus of elasticity, is derived through the satisfying the governing differential equation of the 

problem. Huang and Li [25] have studied free vibration of axially FG beam with non-uniform cross-sectional area 

for various flexural rigidity and mass density cases by transforming differential equation into Fredholm integral 

equation. Alsharbagy et al.[26] adopted FEM to investigate the dynamic characteristics of axially FG beam. Singh et 

al.[27] also probed stability of non-uniform axially FG beam through modeling non-prismatic beams as an 

assemblage of several uniform segments. Furthermore, Shahba & Rajasekaran [28] employed two different 

numerical methods to investigate the free vibration and instability analysis of axially functionally graded beam.  

Attarnejadet al. [29-32] have analyzed axially FG Euler-Bernoulli and Timoshenko beam using FEM in which 

new functions, namely Basic Displacement Functions (BDFs) have been introduced. First, a two-node element has 

been considered. Then, Basic Displacement Functions (BDFs) are defined and derived for this element considering 

each node. Afterwards, new shape functions are expressed in terms of BDFs and obtained from a mechanical point 

of view. Finally, structural stiffness and consistent mass matrix are derived and presented static and free vibration 

analysis of the FG beams using finite element method. In addition, Shahba et al. [33] have used shape functions of 

the homogeneous uniform beams to analyze free vibration and instability of non-uniform FG beams with different 

boundary conditions. 

The paper is an extension of already published so called Basic Displacement Functions (BDFs) method for 

derivation of the shape functions in the FE method. The method is applied to non-uniform tapered beams with 

axially functionally graded material accounting for the property change along the beam. The method leads to 

improved convergence of the FE method and the extension to3-node BDFs has even better convergence. The 

development of the BDF method to 3-node functions and elements results much more accurate natural frequencies, 

which has been validated through several numerical examples. Counting the advantages of the present method; first, 

combining of stiffness and force method, a new element is developed which benefits its generality from stiffness 

method and its accuracy from force method; second, applying the new element, static analysis exactly carried out 

with one or few elements, consequently the time and cost of analysis considerably decreases; also this method 

considers the possibility of applying with different boundary conditions and attachments, e.g. concentrated mass and 

spring. 

2    NODE BASIC DISPLACEMENT FUNCTION    

2.1 BDFs definition 

BDFs are mathematical functions derived from fundamental mechanical concepts. For 2-Node element’s BDFs, a 

cantilever beam is considered [34],while for 3-Node element’s BDFs, a beam with one free node is considered while 

its other nodes are clamped. A BDF is defined as nodal displacement of the free node as a result of unit load at 

distance x; consequently, BDFs for 3-Node beam elements have the following characteristics: 

wmb  : Vertical displacement of the m
th

 node due to a unit lateral load at distance x  when the beam is clamped at 

the other nodes (Fig. (1a), (1e) and (1c)). 

mb : Rotation angle of the m
th

 node due to a unit lateral load at distance x when the beam is clamped at other 

nodes (Fig. (1b), (1d) and (1f)). 

umb  : Axial displacement of the m
th

 node due to a unit axial load at distance x when the beam is clamped at other 

nodes (Fig. (1g), (1h) and (1i)). 

According to reciprocal theorem, the equivalent definition of BDFs can be defined as follows:   

wmb : Vertical displacement of a point at distance x due to a unit vertical load at the m
th

 node when the beam is 

clamped at the other nodes (Fig. (2a),(2c) and (2e)). 

mb : Rotation angle of a point at distance x due to a unit load at the m
th

 node when the beam is clamped at the 

other nodes (Fig. (2b),(2d) and (2f)). 

umb : Axial displacement of a point at distance x due to a unit axial load at the m
th

 node when the beam is 

clamped at the other nodes (Fig. (2g),(2h) and (2i)). 
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Fig.1 

Definition of BDFs: (a) 1wb  ;(b) 1b  ;(c) 2wb  ;(d) 2b  ;(e) 

3wb ;(f) 3b (g) ; 2ub  (h) ; 2ub  ;(i) 3ub . 

 

  

 

 

 

 

 

 

 

 

Fig.2 

Equivalents to BDFs: (a) 1wb ;(b) 1b ;(c) 2wb ;(d) 2b ;(e) 

3wb ;(f) 3b ;(g) 2ub ;(h) 2ub ;(i) 3ub . 

2.2 BDFs computation 

2.2.1 Node 1 and 3 

BDFs for node 1 and 3are obtained using unit load method: 
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2.2.2 Node 2 

For midpoint node, reactions at node 1 are determined according to a unit vertical load at distance x , as shown in 

Fig. 3: 
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(5b) 

 

From which the moment through the beam,
sM   (corresponding to a unit vertical load at distance x) is obtained: 
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Following a similar procedure, support reactions due to a unit vertical load at distance / 2l  are estimated (Fig. 

4): 
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(7b) 

 

From which the moment through the beam, 
sM  (corresponding to a unit vertical load at distance / 2l  )is defined 

as: 
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The moment reaction corresponding to unit moment at distance / 2l  could be calculated similarly (Fig. 5): 
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(9b) 

 

From which the moment through the beam, sM   (correlated to unit moment at distance x ) is derived: 
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Finally, BDFs of mid-point are derived using virtual work principle as follows: 
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Similarly, support reaction to a unit longitudinal load at distance x is achieved (Fig. 6):  
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Thus axial load through the beam,
sN is evaluated as follows: 

 

1 ( )sN N H s x    (14) 

 

Afterward, support reaction due to a unit longitudinal loadat distance / 2l  is calculated according to Fig. 7: 
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Axial load through the beam (deal with a unit longitudinal load at distance x ) is obtained: 
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Finally, BDF associated with axial displacement of mid-point is derived as: 
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Fig.3 

Calculating support reactions of node 1 when a vertical 

unit load is exerted at distance x. 

  

 

 

Fig.4 

Calculating reactions of node 1 when a vertical unit load is 

exerted at distance l/2. 
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Fig.5 

Calculating reaction of node 1 when unit moment is 

applied at distance l/2. 

  

 

 

Fig.6 

Calculating support reaction of node 1 when an axial unit 

load is exerted at distance x. 

  

 

 

Fig.7 

Calculating support reaction of node 1 when an axial unit 

load is exerted at distance l/2. 

2.3 Nodal flexibility matrices 

According to the definitions of nodal flexibilities and equivalent definitions of BDFs, nodal flexibility matrices are 

derived as: 
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where subscripts 1, 2 and 3 refer to first, middle and end node of the element. Also, the nodal stiffness matrices are 

inverses of the nodal flexibility matrices. 

3    NEW SHAPE FUNCTIONS    

Consider a general tapered FG beam element, which is clamped at first, middle, and end nodes where it is subjected 

to external loading, such structure can be divided into two structures as shown in Fig.8. In structure (8b), regarding 

the BDFs definitions, nodal displacement at the point (3) due to external load can be obtained as follows: 
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where 
3 3,u w and 

3  are the axial deformation, lateral deflection and rotation angle at the point (3), respectively. In 

structure (8c), nodal displacement at the point (3) can be evaluated by using the flexibility matrix: 
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Imposing boundary conditions on the displacement of point (3), the following equations would be resulted: 
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Substituting Eqs. (19) and (20) into Eq. (21), the reactions at the point (3) are obtained: 
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In the same way, the reactions at point (1) and (2) are derived:  
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Considering the structural analysis, the nodal equivalent forces are negative of the supporting reactions. Hence, 

Eqs. (22), (23) and (24) could be rewritten according to axial and flexural deformation as follows: 
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, 1,2,...,6iF i  are the equivalent nodal forces as shown in Fig. 9, aG and fG can be calculated using nodal axial 

and flexural stiffness matrices, respectively: 
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
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(26b) 

 

Axial and lateral shape functions yields, respectively: 

 

a aN b GT

u   (27a) 

 

f fN b GT

w   (27b) 

 

 

 

 

 

 

 

Fig.8 

Resolution of3-node clamped beam by superposition 

principle. 

 

  

 

 

 

 

 

Fig.9 

Nodal degree of freedom and positive direction at each 

node. 

3.1 Structural matrices 

In order to perform a structural analysis, structural matrices must be computed. Hence, axial and vertical stiffness 

matrices ( a fK ,K ), geometrical matrix ( gK ), consistent mass matrices ( a fM ,M ) and axial and vertical equivalent 

nodal forces ( a fF ,F ) are evaluated by the following equations: 

 

   a u u

0

K N N

l

T E x A x dx    
 

(28a) 
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   f w w

0

K N N

l

T E x I x dx    
 

(28b) 

 

g w w

0

K N N

l

T P dx    
 

(28c) 

 

   a u u

0

M N N

l

T x A x dx   
 

(28d) 

 

   f w w

0

M N N

l

T x A x dx   
 

(28e) 

                                                                                                                  

 a u

0

F N

l

Tn x dx   
 

(28f) 

 

 f w

0

F N

l

Tq x dx   
 

(28g) 

  
In which (′) denotes differentiation in respect to x, and subscript a and f are presented as axial and flexural 

deformation, respectively.
wN and Nu

are two vectors representing the shape functions of the beam which correspond 

to the lateral and axial deformations, respectively, so : 

 

   

1

1

2
1 1 2 2 3 3
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3

3

w w w
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w
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w

  
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



 
 
 

  
 
 
 

 

 

 

(29a) 
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3

u u u

u
u x N N N u

u

  
  

  

 

 

(29b) 

 

when the shape functions are calculated, the structural matrices and the vectors are presented in terms of BDFs as 

follows: 

 

   a a u u a

0

K G b b G

l

T E x A x dx
 

   
 
  

 

(30a) 

 

   f f w w f

0

K G b b G

l

T E x I x dx
 

   
 
  

 

(30b) 

                                                                                                            

g f w w f

0

K G b b G

l

T P dx
 

   
 
  

 

(30c) 

 

   a a u u a

0

M G b b G

l

T x A x dx
 

  
 
  

 

(30d) 
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   f f w w f

0

M G b b G

l

T x A x dx
 

  
 
  

 

(30e) 

   

 a a u

0

F G b

l

Tn x dx
 

  
 
  

 

(30f) 

 

 f f w

0

F G b

l

Tq x dx
 

  
 
  

 

(30g) 

3.2 Structural analysis 

In order to investigate free vibration and instability analyses of beam, eigenvalue of these following equations must 

be obtained: 

Free longitudinal vibration: 

 
g 2 g

a aK ML    (31) 

 

Free transverse vibration: 

 
g 2 g

f fK MT    (32) 

 

Instability analysis: 

 

 g g

f gK K 0    (33) 

 

Static analysis: 

 

a aF / Kx   (34) 

 

f fF / Ky   (35) 

 

where ,L T   are the longitudinal and transverse natural frequencies of beam, respectively and   is the mode shape 

of the beam. Also, the superscript g designates the global structural matrix which is obtained through assembling the 

elemental matrices and imposing the boundary conditions and   is eigenvalue in the instability analysis equation. 

So the critical load can be obtained as: 

 

crP P  (36) 

 

where P is the constant compressive load.Therefore, to derive structural matrices of the FG beam, the following step 

by step procedure is suggested: 

a) Calculating axial and flexural BDFs for first and end nodes using Eqs.(1-4). 

b) Computing flexural BDFs for mid-point node using Eqs.(11&12). 

c) Calculating axial BDFs for mid-point node using Eq.(17). 

d) Determining aG  and fG using Eqs.(26a & 26b). 

e) Derivation of shape functions using Eqs. (27a & 27b). 

f) Computing the structural matrices using Eqs.(30a-30g). 

In order to elucidate the above step by step procedure, a numerical example is been carried out for a prismatic 

beam with unit length: 
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Step (a): 

 

   

     

   
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2 2
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2 2
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2 1 2 1
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2 2

1 2 1 1 2 1
( ) (0.5 ) sgn(0.5 )

24 24

2 1 2 1
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8 8
2 1 2 1
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u
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w

x x
b x H x x
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x x
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   
   

   
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   
   
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
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b x H x x

E I E I


     
  

 
   

 

 

 

Step (b & c): 

 

 

    

    

2
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w
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

 
   

  
   

  
   

 

 

 

Step (d): 

 

a 0 0 0 0

96 24 0 0 0 0
8 0 0 0 0

 2 0 0
192 0 0 0

G 4 0 G
16 0 0

. 2
96 24

. 8

fE A E I
Sym

Sym

 
 

   
    

    
  

 

 

 

Step (e): 

 

   
 

   
   
   
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2

3
3 2 3 2

1

3 2 3 2

1

2
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u

u

u

w

w
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N H x x x x x x
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

     
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      
   
   
   

3 2

2 3 2

2

3 2 3 2

3

3 2 3 2

3

.5) 16 36 24 4

(0.5 )2 2 1 ( 0.5) 4 10 8 2

( 0.5) 16 36 24 5 sgn( 0.5) 16 36 24 5

( 0.5) 4 8 5 1 sgn( 0.5) 4 8 5 1

w

x x x

N H x x x H x x x x

N H x x x x x x x x

N H x x x x x x x x





  
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           

         

 

 

 

Step (f) : 

All structural matrices have been presented in Appendix A. 
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4    NUMERICAL EXAMPLES  

This section intends to comprehensively study the exactness and convergence of the proposed method in free 

vibration and instability analysis of the beam by providing illustrative example in which mechanical properties vary 

along the beam axis followed up exponential functions. 

Considering variation of the beam’s area, A , moment of inertia, I , modulus of elasticity, E and mass density,   

as: 

 

   
3

0 0 0 01 , 1 , ,A A c I I c e E E e            

 

where /x l  , and l  is the entire length of the beam and coefficient c is considered as taper ratio ( 0 1c   ). To 

do a numerical integration, 10 – point Gauss quadrature rule has been established. To illustrate different boundary 

conditions, some symbols are utilized: C, S, F and G stand for Clamped, Simple, Free and Guided boundary 

conditions, respectively. 

The following criterion will help determine i sufficient element to hold desirable accuracy: 

 

( ) ( 1)

( 1)

T i T i

T i

W W
Error

W






  

 

 

where TiW  implies estimated non-dimensional natural frequency or instability analysis of the beam with respect to i 

element, and ( 1)T iW  is correlated with 1i  element. 

4.1 Static analysis 

In what follows, A cantilever axially FG nonuniform beam is considered, which is subjected to constant distributed 

axial and lateral loadings. This beam is statically analyzed for determination of the tip axial and lateral 

displacements. The results are given in Table 1. 

 
Table 1 
Static analysis of a cantilever axially FG tapered beam subjected to constant distributed axial and lateral loadings. 

4.2 Free transverse vibration 

Non-dimensional free transverse frequencies of the beam, which is a key parameter in structure design and analysis 

process, have been calculated by dividing the beam to 5 finite elements. Also, the results are compared with those of 

Shahba et al. [29] through the Table 2. and Fig. 10. 

 

 

 

 

 

 

  Axial displacement of the free end 

( 0 0

2

0

E A
U u

n l
  ) 

 Lateral displacement of the free end 

( 0 0

4

0

E I
W w

q l
 ) 

Taper ratio  Present 

NE=1 

FEM 

NE=500 

 Present 

NE=1 

FEM 

NE=500 

0.1  0.3787 0.3787  0.1095 0.1095 

0.3  0.4040 0.4040  0.1237 0.1237 

0.5  0.4362 0.4362  0.1435 0.1435 

0.8  0.5105 0.5105  0.1967 0.1967 
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Table 2 

The first three non-dimensional transverse frequencies ( 4

0 0 0 0/T T A l E I   ) of an axially FG tapered beam. 

 

 
 

 
 

 

 

 

 
 

 

Fig.10 

Comparing the effects of three methods’ (solid line: 3-node BDFs, Dashed line: 2-node BDFs, Dotted line: P-version FEM) 

convergence of the free transverse frequency for a cantilever axially graded taper beam ( 0.1c  ). 

4.3 Free longitudinal vibration  

Dividing the considered beam to 10 finite elements, the first three free longitudinal frequencies have been calculated 

and the results have been tabulated in Table 3. and Fig. 11 and compared with those obtained by  Shahba et al.[29]. 

 
 

  S-S C-C C-F C-S 

Taper 

ratio 
 Present  [29] Present  [29] Present  [29] Present  [29] 

 NE 5 10 5 10 5 10 5 10 

C=0.1 1T    9.3144  9.3144   21.2898  21.2898  2.6059  2.6060 13.8471 13.8471 

 2T  37.5388 37.5388   58.6306  58.6306 19.4129 19.4129 46.7576 46.7576 

 3T  84.4591 84.4591 114.9654 114.9654 57.1918 57.1918 98.3704 98.3704 

C=0.3 1T   8.3366  8.3366  18.7484  18.7484  2.7083  2.7083 12.7123 12.7123 

 2T  33.3231 33.3231  51.8608  51.8608 18.1001 18.1001 41.8410 41.8410 

 3T  74.9813 74.9813 101.8847 101.8847 51.5914 51.5914 87.6699 87.6699 

C=0.5 1T   7.2448  7.2448  16.0271 16.0271  2.8563  2.8563 11.4426 11.4426 

 2T  28.8372 28.8372  44.5698 44.5698 16.6882 16.6882 36.5472 36.5472 

 3T  64.8336 64.8336  87.7671 87.7671 45.6088 45.6088 76.1390 76.1390 

C=0.8 1T   5.1747  5.1747 11.2653 11.2653  3.2923  3.2923  9.0249  9.0249 

 2T  21.0856 21.0856 31.6911 31.6911 14.3621 14.3621 27.2088 27.2088 

 3T  47.1324 47.1324 62.7280 62.7280 35.4046 35.4046 55.798 55.7982 
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Table 3 

The first three non-dimensional longitudinal frequencies (
2

0 0/L L l E   ) of an axially FG tapered beam. 

 

 

 

 
 

 

 

 

 

Fig.11 

Evaluating the effects of three different methods (solid line: 3-node BDFs, Dashed line: 2-node BDFs, Dotted line: P-version 

FEM) convergence of the free longitudinal frequency for a clamped-clamped axially graded taper beam ( 0.1c  ). 

4.4 Instability analysis 

Similarly to the two previous sections, the instability analysis of the beam element when subject to an axial load are 

presented. The considered beam has been into 10 finite elements and the results are compared to those of Shahbaet 

al.[29]. Good agreement between the calculated results and those are in the literature has been illustrated through the 

Table 4. and Fig. 12. 

  C-C C-F 

Taper ratio  Present  [29] Present  [29] 

 NE 10 20 10 20 

c=0.1 1L  3.1757 3.1757 1.2988 1.2988 

 2L  6.3247 6.3247 4.6478 4.6478 

 3L  9.5228 9.5228 7.8592 7.8592 

c=0.3 1L  3.1514 3.1514 1.3722 1.3722 

 2L  6.3123 6.3123 4.6656 4.6656 

 3L  9.5144 9.5144 7.8698 7.8698 

c=0.5 1L  3.1120 3.1120 1.4710 1.4710 

 2L  6.2916 6.2916 4.6983 4.6983 

 3L  9.5002 9.5005 7.8899 7.8899 

c=0.8 1L  2.9780 2.9780 1.7168 1.7168 

 2L  6.2113 6.2113 4.8486 4.8486 

 3L  9.4427 9.4427 7.9958 7.9958 
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Moreover, the nine shape functions for different values of taper ratio, c and modulus of elasticity, E are 

presented in Fig. 13. According to Fig. 13, taper ratio and modulus of elasticity affect perceptibly on the shape 

functions.  

 
Table 4 

Non

-

dime

nsio

nal 

criti

cal 

load 

(
2

0 0/crP l E I  ) of an axially FG tapered beam-column. 

 

 

 

 

 

 

Fig.12 

Comparing the effects of three different methods’ (solid 

line: 3-node BDFs, Dashed line: 2-node BDFs, Dotted line: 

P-version FEM) convergence of the non-dimensional 

critical load of a clamped-clamped axially graded taper 

beam ( 0.5c  ). 

    

   
 

  
  

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.13 

Deriving the shape functions of axially graded FG beams 

with different mechanical properties(Solid line: 

0.2, xc E e  ,Dashed line: 0.8, xc E e  , Dotted line: 
20.2, xc E e  ,  Dash-Dot line: 20.2, xc E e  ). 

5   CONCLUSIONS 

This paper aims at presenting an efficient 3-node element for analysis of FG beams using Finite Element Method 

(FEM). First, Basic Displacement Functions (BDFs) are defined and then derived using unit-dummy load. 

Afterwards, new shape functions are expressed in terms of new BDFs and obtained from a mechanical point of 

view. Finally, structural stiffness and consistent mass matrix are derived and presented free transverse/longitudinal 

vibration  and stability analysis of the considered beams using finite element method. Several numerical examples 

have been carried out to illustrate the accuracy and economy of the present method and results have been showed 

through the tables and graphs. The advantages of this new method could be listed as: 

  S-S C-C C-F C-S 

Taper 

ratio 

 Present  [29] Present  [29] Present  [29] Present  [29] 

 NE 5 10 5 10 5 10 5 10 

0.1  13.7680 13.7680 55.2302 55.2302 2.9963 2.9963 28.2149 28.2149 

0.3   9.9308 9.9308 39.2586 39.2286 2.4919 2.4919 20.1647 20.1647 

0.5  6.5134 6.5134 25.1404 25.1404 1.9590 1.9590 13.0091 13.0091 

0.8  2.2325 2.2335 7.9289 7.9289 1.0393 1.0393 4.1755 4.1755 
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1. Any variation for beam’s taper ratio and mechanical properties can be considered through the presented 

method i.e. extended BDFs. 

2. Combining of stiffness and force method, a new 3-node element is developed which benefits its generality 

from stiffness method and its accuracy from force method. 

3. New shape functions could be derived on both static and dynamic basis. Although 3-node BDFs were 

exactly obtained on the basis of static deformation, the new element could be efficiently used in free 

vibration analysis, as well. But, the new shape functions could be achieved based on dynamic deformation. 

As a result, their application in dynamic analysis yields more accurate results rather than the application of 

current static shape functions. 

4. Applying the new element, free vibration/instability analysis exactly carried out with few elements rather 

than existing 2-node BDFs, consequently the time and cost of analysis considerably decreases. 

5. BDFs for 3-node element can be extended to BDFs for N-node element in analysis of different beams using 

finite element method. 

6. The concept of 3-node BDFs has proved its competency in different structural applications. Therefore, the 

authors are extending 3-node BDFs to the other complex and versatile structural elements such as plates 

and shells. 

7. As shown in Table 1. this method is good convergence compared to traditional FEM. 

8. This method could be used for solving free vibration of blade rotating beam and modelling of beam in 

structure. 

9. The method is being extended to analysis of plates and shells. 

10. This method could be used in computational program for analysis of structures. 

11. Results are compared with p-version FEM in Figs .10-12 to show the convergence of this method. 

APPENDIX A 
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