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 ABSTRACT 

 In the present study, the boundary value problems in generalized thermodiffusive elastic medium 
has been investigated as a result of inclined load. The inclined load is assumed to be a linear 
combination of normal load and tangential load. Laplace transform with respect to time variable 
and Fourier transform with respect to space variable are applied to solve the problem. As an 
application of the approach, distributed sources and moving force have been taken. Expressions of 
displacement, stresses, temperature and concentration in the transformed domain are obtained by 
introducing potential functions. The numerical inversion technique is used to obtain the solution in 
the physical domain. Graphical representation due to the response of different sources and use of 
angle of inclination are shown. Some particular cases are also deduced. 

        © 2010 IAU, Arak Branch. All rights reserved. 

 Keywords: Generalized thermodiffusion; Inclined load; Distributed sources; Moving force; 
Concentration.  

1    INTRODUCTION 

 ANILOUSKAYA [1] was the first to solve a problem in the theory of elasticity with non-uniform heat 
known as theory of uncoupled elasticity. In this theory, the temperature change is governed by a partial 

differential equation which doesn't contain any elastic terms. Later on, many attempts were made to remove the 
shortcomings of this theory. Thermoelasticity theories, which admit a finite speed for thermal signals, have been 
receiving a lot of attention for the past four decades. In contrast to the conventional coupled thermoelasticity theory 
based on a parabolic heat equation Biot [2] which predicts an infinite speed for the propagation of heat, these 
theories involve a hyperbolic heat equation and are referred to as generalized thermoelasticity theories. 

Considered in [3] is a wave-type heat equation by postulating a new law of heat conduction (the Maxwell-
Catlaneo equation) to replace the classical Fourier law. Because the heat equation of this theory is of wave type, it 
automatically ensures finite speeds of propagation of heat and elastic waves. The remaining governing equations for 
this theory, namely, the equations of motions and constitutive relations remain the same as those for the coupled and 
the uncoupled theories. Diffusion can be defined as the random walk, of an ensemble of particles, from regions of 
great concentration to regions of lower concentration. There is now a great deal of interest in the study of this 
phenomenon, due to its many applications in geophysics and industrial applications. In integrated circuit fabrication, 
diffusion is used to introduce “dopants” in controlled amounts into the semiconductor substrate. In particular, 
diffusion is used to form the base and emitter in bipolar transistors, form integrated resistors, form the source/drain 
regions in MOS transistors and dope poly-silicon gates in MOS transistors. 

Nowacki [4-7] developed the theory of coupled themoelastic diffusion. This implies infinite speeds of 
propagation of theromelastic waves. Olesiak and Pyryev [8] discussed a coupled quasi-stationary problem of 
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thermodiffusion for an elastic cylinder. They studied the influence of cross effects. The thermal excitation results in 
an additional to mass concentration and the mass concentration generates the additional filed of temperature. Sherief 
et. al [9] developed the theory of generalized thermoelastic diffusion with one relaxation time, which allows the 
finite speed of propagation of waves. Sherief and Shaleh [10] investigated a half space problem in the theory of 
generalized thermoelastic diffusion with one relaxation time. Singh [11, 12] investigated the reflection of P and SV 
waves at the free surface of generalized thermoelastic diffusion. Aouadi [13-17] investigated the different types of 
problems in thermoelastic diffusion. Sharma et.al [18, 19] and Kumar and Kansal [20] study various types of 
problem in thermoelastic diffusion. Kumar and Rani [21], Kumar and Ailawalia [22] and Kumar and Gupta [23] 
investigated various problems in different medium due to inclined load. Recently, Sharma et al. [24, 25] and Sherief 
and El-Maghraby [26] discussed different source problems in generalized thermoelastic diffusion. The deformation 
at any point of the medium is useful to analyze the deformation field around mining tremors and drilling into the 
crust of the earth. It can also contribute to the theoretical consideration of the seismic and volcanic sources since it 
can account for the deformation field in the entire volume surrounding the source region.  

The present investigation seeks to determine the components of stress, temperature distribution and 
concentration due to distributed and moving sources due to inclined load in generalized thermodiffusive elastic 
medium. The results of the present problem may be applied to a wide class of geographical problems involving 
temperature shape and concentration. Physical applications are found in the mechanical engineering, geophysical 
and indusrial activities. 

2    BASIC EQUATIONS 

Following Sherief et al. [9], the governing equations for an isotropic homogeneous elastic solid generalized 
thermodiffusive elastic solid in the absence of body forces, diffusive mass and heat sources include: 

The constitutive relations: 
 

    ij ij ij kkt e e T C1 2= 2 ( )+ - -  (1)
 

 kkP e bC aT2= - + -  (2)
 

 
The equations of motion: 

 
     i jj j ij i i iu u T C u, , 1 , 2 ,( ) =+ + - -  (3)

 

 
The equation of heat conduction:  

        E iiC T T T e e aT C C KT0 1 0 0 0 0 ,( ) ( ) ( ) =+ + + + +  (4)
 

 
Equation of mass diffusion:  

  
ii ii iiD e DaT C C DbC0

2 , , ,( ) = 0+ + + -  (5)
 

 
where 
 

       

ij i j j i

t c

e u u i j, ,

1 2

1
= ( ), ( , = 1,2,3)

2

= (3 2 ) , = (3 2 )

+

+ +
  

 
where   and   are Lame's constants, t  is coefficient of linear thermal expansion, c  is coefficient of linear 

diffusion expansion, T T T0= - , where T is absolute temperature and T0  is temperature of the medium in the 

natural state assummed to be such that T T0| / |< 1 , ijt  is component of the stress tensor, iu  is component of the 
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displacement vector,   is density, ije  is components of the strain tensor, kke e= , P is chemical potential per unit 

mass, C is concentration, EC  is specific heat at constant strain and K is coefficient of thermal conductivity , D  is 

thermoelastic diffusion constant. 0  is thermal relaxation time,  0  is diffusion relaxation time, a and b- constants, 

the superposed dots denote derivatives with respect to time.  ij  is the Kronecker delta. 

3     FORMULATION AND SOLUTION OF THE PROBLEM 

Consider an isotropic, homogeneous generalized thermodiffusive elastic medium in the undeformed state at 
temperature T0 .  The rectangular cartesian co-ordinate system x x x1 2 3( , , )  having origin on the surface x3 0=  with 

x3 - axis pointing normally into the medium is introduced. Suppose that an inclined line load , per unit length, is 

acting on the x2 -axis and its inclination with the x3 -axis is   in Fig. 1 as shown in Appendix A. For two 

dimensional problem, we take 
 
u u u1 3= ( ,0, )  (6)

 

 
The initial and regularity conditions are given by 
 

 




u x x u x x u x x u x x

T x x T x x C x x C x x

P x x P x x x x

u x x t u x x t T x x t C x x t P x x t

1 1 3 1 1 3 3 1 3 3 1 3

1 3 1 3 1 3 1 3

1 3 1 3 3 1

1 1 3 3 1 3 1 3 1 3 1 3

( , ,0) = 0 = ( , ,0), ( , ,0) = 0 = ( , ,0),

( , ,0) = 0 = ( , ,0), ( , ,0) = 0 = ( , ,0),

( , ,0) = 0 = ( , ,0) for 0, < <

( , , ) = ( , , ) = ( , , ) = ( , , ) = ( , , ) =

³ -¥ ¥

0

  

 
for t > 0  when x3 ¥ . To facilitate the solution, following dimensionless quantities are introduced:  

 

   


 
   

        


x x x x u u u u t t
c c c c

t t C
t t T T C

T T c c

P
P

1 1 1 1
1 1 3 3 1 1 3 3 1

1 1 1 1

31 33 1 2
31 33 2 2

1 0 1 0 1 1

' 0 0
1 0 1 0 1

2

' = , ' = , ' = , ' = , = ,

= , = , = , = ,

= , = , = , =

* * * *
*

¢* *

¢

¢ ¢ ¢ ¢

¢ ¢

 (7)
 

 
where 
 

  


EC c
c

K

2
2 1
1 1

2
= and =*+

  

 
The displacement components, u x x t1 1 3( , , )  and u x x t3 1 3( , , ) , may be written in terms of the potential functions 

 x x t1 3( , , )  and  x x t1 3( , , )  in dimensionless form are given by  

 
   

u u
x x x x1 3

1 3 3 1

= , =
¶ ¶ ¶ ¶

- +
¶ ¶ ¶ ¶

 (8)
 

 
Laplace and Fourier transformsare defined as  
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

st

o

i x

f x x s e f x x t dt

f x s e f x x s dx

1 3 1 3

1
3 1 3 1

ˆ( , , ) = ( , , )

ˆ( , , ) = ( , , )

¥
-

¥

-¥

ò

ò
 (9)

 

 
Applying Laplace and Fourier transform defined by Eq. (9) on Eqs (3)-(5), after using Eqs. (6)-(8)(suppressing 

the primes for convenience) and eliminating  , T , C  and   from the resulting expressions, we obtain  

 

 d d d
R Q S T C

dx dx dx

6 4 2

6 4 2
3 3 3

( )( , , ) = 0+ + +  (10)
 

 d

dz

2
2
42

( ) = 0-  (11)
 

 
where 

     

     


    

   
       E E

F E G F E F G H E
R Q S

E E E

s
E F f a f s f a a f

G a f f s f s f a H a s f f

Ta K
a a

bD C C

2 2 4 4 2 6

2
2 2 2 2
4 2 2 1 2 2 1 1 2 1 1 1

2 2 2 2
2 2 2 1 1 1 1 2 1 1 2 2 1 2

2
1 0

1 2 1
1 2

3 2 3
= , = , = ,

= , = 1 , = ( ) ( 2 ) ,

= [ ( ) ( )], = ,

( 2 )
= , = , = , = ,

2 ( 2 )

- - + - + -

+ - + + + + + -

- + + + +

+
+ +

   


b
f s s f s s0

2 1 0 22
2

( 2 )
= , = (1 ), = (1 )

+
+ +

  

 
The roots of Eq.(10) are i i( = 1,2,3)  and the root of Eq. (11) is 4 . Making use of the radiation conditions 

that    T C, , , 0  as x3 ¥ , the solutions of Eqs .(10) and (11) can be written as  

 
   x x x

A e A e A e1 3 2 3 3 3
1 2 3=

- - -
+ +  (12)

 

   x x x
T d A e d A e d A e1 3 2 3 3 3

1 1 2 2 3 3=
- - -

+ +  (13)
 

   x x x
C e A e e A e e A e1 3 2 3 3 3

1 1 2 2 3 3=
- - -

+ +  (14)
 

 x
A e 4 3

4=
-

 (15)
 

 
where 

 

   
  i i i i

i i i i
P P P P P

d e P P P
P P

4 2 6 4
4 21 2 3 4 5

12 2 10 11
12 12

= , = , = , (i=1,2,3)
- + + +

- +   

     

      

      

P a f P P P P P P P P

P P P P a f f P f a f a f

P a f f P f a P P f P P P

2 4 2 2
1 1 1 2 1 2 1 6 3 1 6 4 5

4 2 4 2
5 9 9 6 1 2 2 1 2 7 2 1 2 2 1 1 1

2 4 2
8 2 2 1 2 9 1 1 1 10 7 2 1 11 2 7 8

= ( ), = 2 , = , = 3 ,

= 3 2 , = , = ( ) ,

= , = ( 1), = 2 , =

+ + + -

- + + +

- + + +
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4    BOUNDARY CONDITIONS 

Consider a normal line load F1  per unit length, acting in the positive x3 -axis on the plane boundary x3 0=  along 

the x2 -axis and a tangential line load F2  per unit length, acting at the origin in the positive x1 - axis, then boundary 

conditions are  
 

33 1 1 1( ) = ( ) ( )i t F x H t-  (16)
 

31 2 2 1( ) = ( ) ( )ii t F x H t-   (17) 

3

( ) = 0
T

iii
x

¶
¶

  (18) 

3

( ) = 0
C

iv
x

¶
¶

  (19) 

 
where H t( ) = 1  for t 0³ , H t( ) 0=  for t < 0  , F1  and F2  are the magnitude of forces,  x1( )  and  x2 ( )  specify 

the vertical and horizontal load distributions respectively as shown in appendix I , Fig.2. H(t) is the Heavy step unit 
function. Making use of Eqs.(7) and (8) in the boundary conditions Eqs. (16)-(19) and applying the Laplace and 

Fourier transforms defined by Eq. (9), then substituting values of    T C, , ,  from the Eqs. (12)-(15), we obtain the 

expressions of displacement stresses, temperature distribution and concentration as 
 

     x x x x
u i A e A e A e A e1 3 2 3 3 3 4 3

1 11 12 13 4 14= ( )
- - - -

- + + +  (20)
 

       x x x x
u A e A e A e i A e1 3 2 3 3 3 4 3

3 1 11 2 12 3 13 14= ( )
- - - -

- + + +   (21) 
    x x x x

t S A e S A e S A e S A e1 3 2 3 3 3 4 3
33 1 11 2 12 3 13 4 14=

- - - -
+ + +   (22) 

    x x x x
t R A e R A e R A e R A e1 3 2 3 3 3 4 3
31 1 11 2 12 3 13 4 14=

- - - -
+ + +   (23) 

   x x x
T d A e d A e d A e1 3 2 3 3 3

1 11 2 12 3 13=
- - -

+ +   (24) 
   x x x

C e A e e A e e A e1 3 2 3 3 3
1 11 2 12 3 13=

- - -
+ +   (25) 

 
where 
 

       

     
  

   

 

 





   

 

 

i i i

W R F S F W R F S F
A A

W R F S F c
A g g g

T T T

F W R W R W R F W S W S W S
A

Si g g a b

1 4 1 1 4 2 2 2 4 1 1 4 2 2
11 12

2
3 4 1 1 4 2 2 1

13 1 2 3
1 0 1 0 1 0

1 1 1 1 2 2 3 3 2 2 1 1 2 2 3 3
14

2 2
1 2

( ( ) ( )) ( ( ) ( ))
= , = ,

( ( ) ( ))
= , = , = , = ,

( )( ) ( )( )
=

= ,

- + -

- +

- + - - +

- + - -    
     

i iS g g R g R g

d e d e d e d e d e d e
W W W

s s s

2 2
4 4 2 1 3 4 3 4

2 3 2 3 3 2 1 3 1 3 3 1 1 2 1 2 2 1
1 2 3

= ( ), = 2 , = ( )

( ) ( ) ( )
= , = , =

- - +

- - -

 
 

 
and 
 

  
  



S S S S

R R R R

d d d

e e e

1 2 3 4

1 2 3 4

1 1 2 2 3 3

1 1 2 2 3 3

=
0

0
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5    PARTICULAR CASE 

Neglecting diffusion effect 2( = = = 0)b a : in Eqs. (20)-(25), we obtain the corresponding expression for 

thermoelastic medium.  

    x x x
u i B e B e B e1 3 2 13 4 3

1 11 12 4 13= ( )
- - -

- + +  (26)
 

     x x x
u B e B e i B e1 3 2 3 4 3

3 1 11 2 12 13= ( ( )
- - -

- + +   (27) 
   x x x

t S B e S B e S B e1 3 2 3 4 3
33 1 11 2 12 4 13=

- - -
+ +   (28) 

   x x x
t R B e R B e R B e1 3 2 3 4 3
31 1 11 2 12 4 13=

- - -
+ +   (29) 

  x x
T d B e d B e1 3 2 3

1 11 2 12=
- -

+   (30) 
 
where 

       

   

 
  

  

 



   

 

i i i

i i

X F R F S X F R F S
B B

F R X R X F S X S X
B

d d
X X S g g a S g g

s s

R g R g

1 1 4 1 2 4 2 2 1 4 1 2 4 2
11 12

0 0

1 1 12 2 11 1 2 2 11 1 12 2
13

0

2 22 2 1 1
1 2 1 2 4 4 2 1

2 2
3 4 3 4

[ ( ) ( )] [ ( ) ( )]
= , =

( )[ ] ( )[ ]
= ,

= , = , = , = ( ),

= 2 , = ( )

- - +
-

- + -

- + - -

- +

  

 
for i= 1,2 

 


S S S

R R R

d d

11 12 4

0 11 12 4

1 1 2 2

=

0

  

 
Case 1. Uniformly distributed force:  

The solution due to uniformly distributed force applied on the half-space is obtained by setting 
 

 x x H x a H x a1 1 2 1 1 1[ ( ), ( )] = ( ) ( )+ - -  (31)
 

 
Applying Laplace and Fourier transforms defined by (9) on Eq. (31) yield  

   


  a
1 2

sin( )
[ ( ), ( )] = 2  (32)

 

 
Case 2. Linearly distributed force:  
The solution due to linearly distributed force over a strip of non-dimensional width 2d, applied on the half-space is 
obtained by setting 

 
x

x x d
1

1
1 1 2 2

1

| |
1 if |x | d

[ ( ), ( )]
0 if |x |>d

ìïï - £ïï=íïïïïî

 (33)
 

 
In Eqs. (16)-(17), applying Laplace and Fourier transforms defined by (9) on Eq. (33) gives  
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    


  d

d
1 2 2

2(1 cos( ))
[ ( ), ( )] = , 0

-
¹  (34)

 

 
Case 3. Moving force: 
The solution due to an impulsive force, moving along the x1 -axis with uniform speed V at x3 = 0  is obtained by 

setting 
 
   x x H t x t x Vt1 1 2 1 1 1[ ( ), ( )] ( ) = ( , ) = ( )-  (35)

 

 
In Eqs. (16)-(17). Applying Laplace and Fourier transform's defined by Eq .(9) on the Eq. (35) yield 
 

     


  s s
s i V1 2

1
[ ( ), ( )] / = ( , ) =

-
 (36)

 

 
Substituting the values of     1 2( ), ( )  from Eqs. (32), (34) and (36) in Eqs. (20)-(25), the corresponding 

expressions for uniformly distributed force, linearly distributed force and moving force, respectively are obtained. 

6    APPLICATIONS 

Inclined line load: for an inclined line load F0 , per unit length, we have 

 F F F F1 0 2 0= cos , = sin  (37)
 

 
Using Eq. (37) in Eqs. (20)-(25) and with the aid of Eqs . (32),(34) and (36) we obtain the expressions for 

uniformly distributed force, linearly distributed force and moving force respectively. 

7    SPECIAL CASE 

For the case of coupled thermoelasticity, the thermal relaxation times vanish, i.e   0
0 = = 0  and consequently, we 

obtain the corresponding expressions of thermoelastic diffusion and thermoelasticity by putting these values in Eqs. 
(20)-(25).  

8    INVERSION OF THE TRANSFORM 

The transformed stresses and temperature distribution are functions of x2 , the parameters of Laplace and Fourier 

transforms s and  , respectively, and hence are of the form f x s2( , , ) . To obtain the solution of the problem in the 

physical domain, we must invert the fourier transform in Eqs. (20)-(25) using 
 

 


  


i x

e

f x x s f x s e

f x x s f x if x

1
1 2 2

1 2 2 0 2

1
( , , ) ( , , ) d

2

1
( , , ) [ cos( , ) sin( , )]d

2

¥
-

-¥
¥

-¥

=

= -

ò

ò
 (38)
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where ef  and of  are respectively even and odd parts of the function f x p2( , , ) . Thus, Eq. (38) give us the Laplace 

transform f x s2( , , )  of the function f x x t1 2( , , ) . Now, for the fixed values of , x1  and x2 , the function 

f x x s1 2( , , )  in the Eq. (38) can be considered as the Laplace transformed function g p( )  of some function g t( ) . 

Following Honig and Hirdes [27], the Laplace transformed function g p( )  can be converted as given below. The 

function ( )g t  can be obtained by using 



c i

st

c i

g t e g s s
i

1
( ) ( ) d

2

+ ¥

- ¥

= ò  (39)
 

 
where c  is an arbitrary real number greater than all the real parts of the singularities of g p( ) . Taking s c ix2= +  

we get 
 



ct
itxe

g t e g c ix x
i

2
2 2( ) ( ) d

2

¥

-¥

= +ò  (40)
 

 

Now, taking cte g t( )-  as h(t) and expanding it as a Fourier series in [0, 2L], we obtain approximately the formula 

 

Dg t g t E( ) ( ) '¥= +   
 
where 

 
 ik tct
L

k k
k

c e ik
g t c t L c e g c

L L
0

1

( ) , 0 2 , [ ( )]
2

¥

¥
=

= + £ £ = Â +å  (41)
 

 

DE  is the discretization error and can be made arbitrarily small by choosing c  large enough .The values of c  and 

L  are chosen according to the criteria outlined by Honig and Hirdes [27]. Since the infinite series in Eq. (41) can be 
summed up only to a finite number of N terms, the approximate value of ( )g t  becomes 

 
N

N k
k

c
g t c t L0

1

( ) , 0 2
2

=

= + £ £å  (42)
 

 
Now, we introduce a truncation error TE  that must be added to the discretization error to produce the total 

approximation error in evaluating g(t) using the above formula. Two methods are used to reduce total error. The 
discretization error is reduced by using the 'Korrecktur' method and ‘ -algorithm' described in Honig and Hirdes 
[27]. 

The 'Korrecktur' method formula, to evaluate the function ( )g t  is 

 
cL

Dg t g t e g L t E2
'( ) ( ) (2 )-

¥ ¥= - + +   

 
where D DE E' << . Thus the approximate value of g(t) becomes 

k

cL
N N Ng t g t e g L t2

'( ) ( ) (2 )-= - +  (43)
 

 
where N '  is an integer such that N N'< . 
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We shall now describe the  -algorithm which is used to accelerate the convergence of the series in Eq. (42). Let 

N be a natural number and 
m

m k
k

S c
1=

=å be the sequence of partial sums of Eq. (42). We define the  -sequence by 

   
 m m m n m n m

n m n m

S n m0, 1, 1, 1, 1
, 1 ,

1
0, , , , =1,2,3,...+ - +

+

= = = +
-

  

 
It can be shown by Honig and Hirdes [27] that the sequence   N1,1 3,1 ,1, , ...,  converges to 0( ) / 2Dg t E c   

faster than the sequence of partial mS , m 1,2,3,... .= The actual procedure to invert the Laplace Transform reduces 

to the study of Eq. (43) together with the -algorithm. The last step is to calculate the integral in Eq. (38). The 
method for evaluating this integral is described in Press et al. [28], which involves the use of Romberg's integration 
with an adaptive step size. This also uses the results from successive refinements of the extended trapezoidal rule 
followed by extrapolation of the results to the limit when the step size tends to zero. 

 

9    NUMERICAL RESULT AND DISCUSSION 

With the view of illustrating theoretical results obtained in preceding section, we now present some numerical 
results. The material parameter chosen for this purpose are Eringen [29] and Thomas [30] 

 

  

 

E

t c

C K T

a

b D

10 -2 10 2 3 3

1 o -1 2 -1 -10 o -1 o
0

5 -1 4 3 -1 4 2 -2 -1

6 5 -1 -2

= 9.4 10 dyn cm , = 4.0 10 dyn cm , = 1.74 10  g cm ,

= 1.0 Cal gm  c , = 0.435 10  Cal cm sec  c , = 20 c,

= 1.78 10  k , = 1.98 10  m kg , = 1.2 10  m s k ,

= 0.9 10  m kg s , = 0.85

- -

-

- -

´ ´ ´

´

´ ´ ´

´ ´  8 -3 0
010  kg s m , = 0.02 s, = 0.01 s-

 

 
The values of normal stress 33( )t , tangential stress 31( )t , temperature distribution T and mass Concentration C are 

presented graphically for L-S theory with thermoelastic diffusion and without diffusion effects with distance x in the 
range x0 10£ £ . The solid line, dashed line and small dashed line corresponds for thermoelastic diffusion 
(LSWD) and solid line, dash line and small dashed line with centre symbols corresponds for thermoelastic theory 
(LSD) due to various sources for  = 0  (Initial angle),  = 45  (Intermediate angle),  = 90  (Extreme angle) 

9.1 Uniformly distributed force  

Fig. 3 depicts the variations of t33  with distance x. It is noticed that values of LSWD at  = 0, 45,90  increase in 

range x0 2£ £ , magnitude of LSWD at  = 0,90  is greater as compared at  = 45 , whereas values for LSD show 
opposite behavior as compared to LSWD at  = 45,90.  Also value of LSWD at  = 0  increases near the point of 

application of source, then exhibits small variations about zero. The variations for t31  with x is shown in Fig. 4. It is 

evident that the values for LSWD and LSD at  = 0,45,90  increases initially in the range x0 2£ £ , magnitude for 
LSWD is greater as compared to those for LSD and in remaining range values show variation about origin except 
for LSWD at  = 0 , which shows oscillatory behavior with decreasing magnitude. It is evident from Fig. 5 that the 
values of temperature distribution for LSWD and LSD at  = 0, 45  show opposite behavior near the point of 
application of source, whereas value of LSWD and LSD for  = 90  shows similar behavior i.e. their values 
decreases in range x0 2£ £ , with further increase in x, values for LSWD and LSD converges toward origin. As 
clear by Fig. 6 which is a plot of variation for mass concentration C with distance x, which indicate that values of 
LSWD for  = 0, 45  shows similar behavior in entire range with significant difference in their magnitude, while 
steady state is observed in case of  = 90  for LSWD. 
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Fig. 3 
Variation of normal stress t33 with distance x (uniformly 
distributed normal force). 
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Fig. 4 
Variation of tangential stress t31 with distance x (Uniformly 
distributed force). 
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Fig. 5 
Variation of temperature distribution T with distance x 
(uniformly distributed normal force). 
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Fig. 6 
Variation of mass concentration C with distance x (uniformly 
distributed normal force). 
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Fig. 7 
Variation of normal stress with distance x (Linearly distributed 
normal force). 
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Fig. 8 
Variation of tangential stress t31 with distance x (linearly 
distributed force). 
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Fig. 9 
Variation of temperature distribution T with distance x 
(linearly distributed normal force). 

9.2 Linearly distributed force  

It is noticed from Fig. 7 variations of t33  with distance x that values of t33  for LSWD at  = 0, 45  show opposite 

behavior as observed for LSD i.e. values for LSWD increase abruptly whereas values for LSD decrease in range 
x0 2£ £ . Also trend of variations of t33  for LSWD and LSD are similar i.e. their value increases initially. 

Magnitude of LSWD being greater than LSD with further increase in distance x, values for both LSWD and LSD at 
 = 0, 45  exhibit variations about zero value. The trend of variations of t31  is shown by Fig. 8. It is noticed that 

values of t33  for LSD increase with greater magnitude in range x0 2£ £  as compared to LSWD, then with 

increase in distance x values converges towards zero value.  
Fig. 9 shows the variations of T with distance x. It is noticed that values of T for LSWD at  = 0,45,90  and for 

LSD at  = 90  decreases in range x0 2.5,£ £  whereas opposite behavior is noticed for LSD at  = 0, 45,  which 
reveals the impact of diffusion. With increase in x, Values of LSWD for  = 0, 45,90  oscillates with decreasing 
magnitude, while rest of them shows steady state about zero value. As clear by Fig.10 which is a plot for mass 
concetration C with distance x. It is noticed that values of C for LSWD at  = 0, 45  shows similar behavior 
magnitude being greater at whereas steady state is noticed at  = 90.  
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Fig. 10 
Variation of mass concentration C with distance x (linearly 
distributed force). 
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Fig. 11 
Variation of normal stress t33 with distance x (moving force) 
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Fig. 12 
Variation of tangential stress t31 with distance x (moving 
force). 

9.3 Moving force  

It seems from Fig. 11 which is plot for t33  with distance x, values of t33  for LSWD at  = 0,90  oscillate with 

greater magnitude as compared to values of LSWD at = 45  and for LSD at = 90 , while values for LSD at 
= 0,45  decrease in entire range. Fig. 12 depicts the variations of t31  with distance x. It is observed that values of 

t31  for LSWD at all  ,  show opposite behaviour except at  = 0  in the interval x0 1.5£ £  and in second half of 

range. Also values for LSD at  = 0  decreases, while for  = 45,90 , values increases in the interval x0 2£ £ , in 
remaining range values converges towards small variations.  

It is evident by the Fig. 13 which is plot for T with x that the value of T for LSWD for all   and for LSD at 
 = 90  show oscillatory behaviour, magnitude being greater for LSD, which reveals the impact of diffusion. Also 
values of T for LSD at  = 0,45  increases abruptly in entire range and converges towards origin. Fig. 14 shows the 
variations of C with x. It is noticed that values of C for LSWD at all   decreases sharply in range x0 2,£ £  with 
increase in x, values for LSWD increases and decreases alternately. 
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Fig. 13 
Variation of temperature distribution T with distance x 
(moving force). 
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Fig. 14 
Variation of mass concentration C with distance x (moving 
force). 

10    CONCLUSIONS  

It is observed from figures that the trends of variations of t t33 31, , T and C on the application of distributed sources 

are similar in nature with significant difference in degree of sharpness. The present theoretical results provide useful 
information for experimental researches/ seismologist working in the field of mining tremors and drilling into crust 
of the earth. Also phenomenon of diffusion is studied. Therefore it can be used for improving the conditions of oil 
extraction. Therefore, this theory has practical utilities in investigating various types of geophysical and industrial 
applications. 

APPENDIX A 

 
Fig. 1 
Inclined load over thermodiffusive elastic half-space. 
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Fig. 2 
Normal and tangential loadings. 
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