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ABSTRACT
In this paper, the influence of the elastic foundation on the free vibration and buckling of
thin-walled piezoelectric-based functionally graded materials (FGM) cylindrical shells
under combined loadings is investigated. The equations of motion are obtained by using
the principle of Hamilton and Maxwell's equations and the Navier's type solution used to
solve these equations. Material properties are changed according to power law in the
direction of thickness. In this study, the effects of Pasternak elastic foundation coefficients
and also the effects of material distribution, geometrical ratios and loading conditions on
the natural frequencies are studied. It is observed that by increasing Pasternak elastic
medium coefficients, the natural frequencies of functionally graded piezoelectric materials
(FGPM) cylindrical shell always increases. The mode shapes of FGPM cylindrical shell
has been shown in this research and the results show that the distribution of the radial
displacements is more significant than circumferential and longitudinal displacements.
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1 INTRODUCTION

N the past two decades, researchers are always looking for materials that their properties can be optimized
according to the working conditions, so functionally graded piezoelectric materials (FGPM) have been the subject
of many investigations. At first in 1984, the idea of producing this materials was proposed by Japanese scientists
Yamanouchi et al. [1] and Koizumi [2]. FGPM used the benefits of functional graded materials (FGM) and
piezoelectric materials together. The unique characteristic of these materials is that their microstructure varies in the
thickness direction and by applying a potential difference their shape is changed and vice versa, also the high
thermal resistance of these materials makes them a good choice for high temperature working condition. Today
these materials are widely used in the electrical and electromechanical devices such as sensors, actuators and in
airspace industries including airplane flaps and so on.
Investigating free vibrations of thin-walled cylindrical shells made of FGPM is crucial in theoretical and
practical aspects. To reach a real model, we should consider the interaction of cylindrical shells and surrounded
medium with an appropriate model, the Pasternak model is a good choice for this purpose by Pasternak [3].
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At first, Loy et al. [4] investigated the effects of material distribution in thickness direction on the free vibrations
of functionally graded thin-walled cylindrical shell. Pradhan and co-workers [5] studied the vibration characteristics
of functionally graded cylindrical shells under various boundary conditions. Najafizadeh and Isvandzibaei [6]
presented a model for vibration of functionally graded cylindrical shells based on higher order shear deformation
plate theory with ring support. In these three mentioned works, the Rayleigh-Ritz method is used to obtain the
constitutive equations of thin cylindrical shells. Shah et al. [7] illustrated the vibrations of functionally graded
cylindrical shells based on Winkler and Pasternak foundations, which wave propagation method is used to solve
dynamic equations in cylindrical shells. Bhangale and Ganesan [8] simulated the free vibration of a simply
supported non-homogeneous functionally graded cylindrical shell in magneto-electro-elastic fields using finite
element method. Their results discovered the effects of magneto-electro fields and geometric parameters on natural
frequency. Kadoli and Ganesan [9] studied the buckling and free vibration analysis of functionally graded
cylindrical shells subjected to a temperature-specified boundary condition. According to numerical results of this
work in high temperature working condition, the natural frequencies are decreased dramatically.

Malekzadeh and Heydarpour [10] considered the free vibration of rotating functionally graded cylindrical shells
subjected to thermal environment based on the first order shear deformation theory (FSDT) of cylindrical shells.
They applied the differential quadrature method (DQM) to discretize the thermoelastic equilibrium equations and
the equations of motion. Ebrahimi and Najafizadeh [11] analyzed the free vibration of a two-dimensional
functionally graded circular cylindrical shell. Their results showed that the natural frequency of the material can be
modified in order to meet the expected results through manipulation of the constituent volume fractions. Sheng and
Wang [12] presented an analytical method for functionally graded cylindrical shells based on Hamilton’s principle,
von Karman’s non-linear theory and the FSDT, and subjected to thermal and axial loadings. Du and Li [13]
investigated the nonlinear vibrations of functionally graded cylindrical shells in thermal environments. In this work,
the effects of temperature change and volume fractions of constituent material on the amplitude response of the
system are discussed. Sofiyev and Kuruoglu [14] studied the torsional vibration and buckling analysis of cylindrical
shell with functionally graded coatings surrounded by an elastic medium. They used a Pasternak foundation model
to describe the shell-foundation interaction and derived the basic equations and solved using Galerkin method.
Sheng and Wang [15] applied the analytical method for smart functionally graded laminated cylindrical shells with
thin piezoelectric layers based on Hamilton’s principle and von Karman’s nonlinear theory. They solved the coupled
nonlinear equations of motion by the Runge—Kutta numerical method. Rafiee et al. [16] presented the nonlinear
vibration and dynamic response of the simply supported piezoelectric functionally graded material shells under
combined electrical, thermal, mechanical and aerodynamic loadings. They obtained the influences of the shell
geometry and piezoelectric thickness, temperature change, external constant electric voltage on the nonlinear
dynamic behavior of the piezoelectric functionally graded shells in details. Ghorbanpour Arani et al. [17] presented
electro-magneto-mechanical responses of a radially polarized rotating shaft made from FGPM and subjected to a
uniform magnetic field with mechanical loads and electric potentials. They derived exact solutions for electric
displacement, stresses, electric potentials, and perturbation of the magnetic field vector using the infinitesimal theory
of electro-magneto-elasticity. Their numerical results showed that the responses were strongly affected by power
law index B.

Motivated by these considerations, we aim to investigate the Winkler and Pasternak foundation effects on free
vibration and buckling analysis of cylindrical shells under combination of electric, thermal and mechanical loadings.
Also, in this research, mode shapes of FGPM cylindrical shells have been illustrated. Moreover, the properties of the
FGPM cylinder are assumed to vary as a power function in the thickness direction. The governing equations of
motion are obtained by using Hamilton's principle and Maxwell's equation. A Navier's type solution is presented to
solve the governing equations of motion.

2 MATHEMATICAL MODEL AND CONSTITUTIVE EQUATIONS

Fig. 1 shows a thin-walled piezoelectric-based FGM cylindrical shell which surrounded by a Pasternak foundation.
Geometry parameters such as R, &, and L are the mean radius, thickness, and length of cylindrical shell, respectively.
In this work, the cylindrical shell polarized in thickness direction. In Fig. 1, the cylindrical coordinate z, 8, x denote

the radial, circumferential, and longitudinal axes, respectively. The components of displacement vector in cylindrical
coordinate x, ¥, and z are shown by u, v, and w, respectively.
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gL Fig. 1

T A schematic of thin-walled FGPM cylindrical shell which

h surrounded by a Winkler and Pasternak foundation in the
cylindrical coordinate z,8, X .

Kp

The properties of FGPM are assumed to be a function of z in thickness direction as follows:
C,'j = Clj(Z), €; = e,j,‘(z), é,,:/ = é/ij(z)s k =k(z), P =PF(z), p=p(2), a; = aij(z) (1

In which C;,e; and g are elastic, piezoelectric, and dielectric constants, respectively. Also k, P, p and «; are
the thermal coefficients, pyroelectric constants, density, and thermal expansion coefficients, respectively.The
material properties vary between the inner and outer surface of FGPM cylindrical shell according to the following

power function:
B
z 1
F(z):Fi+(Fo—Fi)-(Z+Ej (0< B <), )

In which F, and F, are the properties of the inner and outer surfaces of cylindrical shell, respectively, and g is

a power of volume fraction.
For steady-state conditions with no heat generation, the appropriate form of the heat equation in radial
(thickness) direction yields [18]:

1 Ly h h
Z(ZI{(Z)T(Z)) =0, (—ESZSEJ (3)

Considering steady temperature conditions on the inner and outer surfaces of cylinder, the following equation is
obtained:

T dz
T@=T,-— 'J:ZﬁK( 2
d. 2 K@)z

[2-% 0)
*E K (Z) 4
In the Eq. (4), T, is temperature change between the inner and outer surfaces of cylindrical shell, T, =T, -T,.

According to plane stress assumption , the normal stress equals to zero. The constitutive equations of a
piezoelectric cylindrical shell are shown in the following form [19]:

o, Ci. Cip 0 0 0 & Ay, 0 0 e,

Oy Ch, Cy, 0 0 0 &y Ay, 0 0 €3, E,

tor=| 0 0 Cu 0 0 |dy,t-lo btr-l0o o o0 |]E (50)
Ty, 0 0 0 Cye 0 Vo- 0 0 ey, 0 E,

T, 0 0 0 0 Csso] |7, 0 es, O 0
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€y
Dx 0 0 0 0 €15, €p Rxe glle 0 0 Ex
DH = 0 0 0 €24 0 RVEY) + Pﬁe T+ 0 é/ZZe 0 ! EG (Sb)
D, e, € 0 0 0 Yoz P, 0 0 e |E,

V2

where C,,.¢;,
P

xe?

and ¢, are the equivalent values of elastic, piezoelectric and dielectric constants, respectively. Also
P, and P, are the components of equivalent pyroelectric constants, and «;,, and «,,, are the equivalent
thermal expansion coefficients, these equivalent values completely defined in Appendix A. Also ©,,0,,7,,,7, and

7. are components of the normal and shear stresses, &,,&,,%,.,7,. and 7., denote components of the normal and

shear strains, D ,D, and D, are electrical displacement components and E ,E, and E_ state the electrical field

components. Since, the stress in thickness direction is zero. Also, subscript "e" shows the equivalent values of
properties that are completely defined in Appendix A.
The electrical field intensity in Eqgs. (5a) and (5b) is as a function of electrical potential [20]:

k. =_8(p(x, Q,Z,l)’ £, = 1 6(p(x,6’,z,t)’ £ - o9/ x, 0,z,t)’ ©
Oox R+z 00 0z
2
9(x.,0,2,1) =%x,¢9,t)+{zz —(g) :ll//(x,H,t), 7

In which w(x,0,1),V(x,0,t), and ¢(x, 0,z,t ) denote the electrical potential distribution in thickness, the

electrical potential that imposed on the inner and outer surfaces of the cylindrical shell and the total electrical
potential, respectively, also R is the mean radius of cylindrical shell. In this work, the direction of polarization is
considered along x-direction. The linear strain-displacement relations are [21]:

Eq =U, ,eggz(vﬂ+w)/R, Vo =Ug! R+V . . Vo =@+twy/R, y.=¢ +w,,

XX

®)

Here, the comma indicates a partial derivative. According to the first-order shear deformation shell theory, the
displacement field of the shell is assumed to be [22]:

u(x,0,2)=i(x,0)+2¢.(x,0), v(x.0,2)=v(x.0)+2z¢,(x.0), W 0,2)=wx0), ©

Substituting Eq. (9) into Eq. (8) yields the relationship between general strains and mid surface strains in the
following form [21]:

£, g, g,
€9 & &
Veo [ =170: 1+2°3 Vo (» (10)
Yoz Ve 7):1
Yz 7o 7w
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z, N
z, (vy+w)/R
Vo: (=199 +Wo!R ¢, 1n
}7XZ ¢X + w,x
70 Uyl R+V,
€=x ¢X,X
‘9=6 ¢:9,:9 /R
Yoo (= 0 , (12)
7’62 0
7“9 ¢t‘),x + ¢x¢9 / R
The resultant forces, moments, and shears can be defined as follows:
Il h
{N,.Ny,N} = J.zh{ax,ag,aw}dz, (M, My M} = _[ 2{0,,0,,0,4}dz,
2 7
(13)
{0,.0,} =k jh 71Ty, bz,

Here, k, is the shear correction factor and is equal to 7% 112 [23]. Hamilton's principle is used to minimize the

Lagrangian (L) of the deformed cylindrical shell, so the equations of motion for the FGPM thin-walled cylindrical
shells surrounded by the Pasternak elastic foundation under combined loadings are obtained as [24, 25]:

SL=|!(6K~8U—8Vy oV, )di =0, 14

In which K, U, and V|, are the kinematic, strain, and potential energies of system, respectively, and V, is the

energy from elastic foundation forces and defined as follows [19]:
h
[3(te} e} -1p) {E})Rdz:ldﬁdx,

k-1 th(u - )Rdz}dedx oLt
v, =%L{(N(,—N:—Nf)[2:} }Rd@d 4 j{(NO NT N”)[ZVJ led&dx, (15)

=41 (2] {2

Here NO,NZ and N? are the mechanical, thermal, and electrical loadings in the axial direction, respectively,
and are defined in Appendix B, are also K, and K , are Winkler and Pasternak coefficients. Substituting Egs. (6),

(7), and (10) into Eq. (14), the equations of motion for FGPM thin-walled cylindrical shell under electrical, thermal,
and mechanical loadings with considering elastic foundation is expressed in the following form:
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ON, 10N, . . . 0N, 10N, 1 rooop\OV .
ou: o +E 0 =lii+1,¢,, Ov: ™ +E Y: +EQ9+(N07NX +Nx)ax—2—llu+12¢x,

00, 100, 1 N w1 w)
5W.a—x+EW*ENH+(NO*NX +Nx>ax2 *kW'W+kp' ('5)(_24_?% —II'W, (16)

oM 1 oM . oM 1 oM .
8p i —2+——2_Q =1,ii+l,p., Opy:—L+—"2LL-0Q,=1,V+1,¢,,
P, ox R 00 0, QU+154, Do ox R 00 Oy 2VH 154,
In Eq. (16), the mass inertia is defined as follows:

h

{11,12,13}:J.fﬁp'{l,z,zz}dz )

2

Substituting Egs. (5), (13) and (17) into Eq. (16), the governing equations of motion for the thin-walled
piezoelectric-based FGM cylindrical shell can be rewritten:

B, u+B,v+B,w+B,p ++Bsp,+ By +B =1ii+1,4,,

By u+ By v+ Byyw+ Byy . +Bys §y + By + B+ = 1,V + 1y,

By u+By v+ Byyw+ By @ +Bys @)+ Bygw + By =1, w, (18)
By u+By,v+Baw+Bud +Byspy + By +B, =1, ii+1,4,,

Bg u+Bs, v+ B w+By, , +Bss @y +Bsgw +Bs =1, v+1,4,,

The Maxwell's equation can be considered as follows [26]:

oD
J.h a&_kl%_k_z_i_il)ﬂ Z:O7 (19)
- o&x RO o0z R °

h
2

Substituting Eq. (5) into Eq. (19) yields:
B u+ Bg,v+Bgyw+ By, @, + Bos@y + By = By (20)

All coefficients B, (i,j=12,..,06) in Egs. (18) and (20) are defined in Appendix B.

Navier’s type solution is used to solve the governing equations of motion for FGPM thin-walled cylindrical shell
with the simply supported boundary conditions, then the components of displacements in Egs. (18) and (20) should
be considered as follows:

u(x,0,1) u,, (t)-cos(4,,x)-cos(nd)
v(x,0,1) VY, () -sin(4,x) - sin(nd)
w(x, 0,1) W, (1) -sin(4,,x) - cos(n@) @D
#.(x,0,1) @ (1)-cos(4,,x)-cos(nd) |’
$(x.0.0| |4 (1)-sin(2,,x)-sin(nd)
w(x,0,1) W (1) -sin(A,, X) - cOs(n6)

In which m and n are the half wave numbers in longitudinal and wave numbers in circumferential directions,

respectively and 2 " n Eqgs. (18) and (20), B.(i=1,2,...,6) is related to the thermal and electrical loadings can
m L

be expressed as double Fourier series:
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B, (x,0,1) B:m, (t)-cos(4,,x)-cos(nd)
B,(x,0,1)| |B.,(0)-sin(4,x)-sin(nd)
B, (x,6,1) B (1) -sin(4,,x) - cos(nb) 22)

mn

B, (x,0,1) B' (t)-cos(A x)-cos(nd)|

mn m

By(x,0,1) B’ (t)-sin(/, x)-sin(né)

mn

By(x.0.0] | B (1)-sin(4, x)-cos(nd)

mn

Substituting Egs. (21) and (22) into Egs. (18) and (20) yields:

L0 0 L 0[] [T Ty Ty Ty Ty T [tm] |Bu®
0 L, 0 0 L |hw| |Ty Ty Ty Ty Ty Ty| V| |Bu®
0014 0 Of Wom HEG Ty Ty Ty Ty T | (= @m(l) 23)
L 0 0L 0 ¢):m Ty Ty Ty Ty Ts T | | P Bf,'m(t)
0 5L 00 Lj|#| | I Iy Iy Ts T | ¢ B (1)
Tttt + T2V + TesWon + Teainn + TosBon + TegW o = Lo ()5 24

Coefficients T} are defined in Appendix C. Using Eq. (24), the electrical potential distribution can be written as

follows:

L(r)nn (t)
YV = —

1 x
_(TGI Upin + T62 vmnT63 Wi + T64 ¢mn + T65 ¢r5n )’ (25)
T66 T66

Substituting Eq. (25) into Eq. (23), the governing equations of motion for FGPM cylindrical shell is rewritten as:
[M]-{3}+[K]-{s} = {F}, (26)

where F, M and K are the external loadings vector, mass, and stiffness matrices of FGPM cylindrical shell,
respectively.

3 FREE VIBRATION OF FGPM CYLINDRICAL SHELLS CONSIDERNG PASTERNAK FOUNDATION

To obtain the natural frequencies and mode shapes, the homogenous solution of Eq. (26) have been considered. For
this purpose, the external loadings vector {F'} is considered to be zero,

I, 0 0 I, 0O Uy (1)
0 I, 0 0 I, Yy (1)
[M]-{5}+[K]-{s}={0o}, [M]=|0 O I, O O {s}=s"Wm®,
I, 0 0 I; O B (1) 27
01, 0 0 I ¢ ()
1

[K]=[Ku]=No K], =T, [K] = AVIK], =K} (K]
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where N, T,

io?

AV are the axial force, temperature change, and potential difference between the inner and outer

surfaces, respectively. Also, the other components of Eq. (26) and Eq. (27) are defined in Appendix D.
The solution of Eq. (27) is analytical and their displacements are in the following form:

u,,, (1) U,
an(z) vr(:m
W) b= 4300 L. e (28)
S| | g0
#. ] | g0

Substituting Eq. (28) into Eq. (27), the eigenvalue equations are obtained as follows:

((K]-o' D))"} =) (') =l v i o o 9

The natural frequencies and mode shapes of FGPM thin-walled cylindrical shell under thermal, electrical fields

and axial loadings is achieved by solving the eigenvalue Eq. (29).

4 BUCKLING ANALYSIS OF FGPM CYLINDRICAL SHELLS WITH PASTERNAK FOUNDATION

For buckling analysis, when the temperature change (Ti) and the voltage difference ( AV) between the inner and
outer surfaces are known, in Eq. (29) the natural frequency (®) vanishes and the static buckling load Ncr of the

FGPM cylindrical shell with Pasternak foundation can be stated as the following eigenvalue problem:

((K1]-N, -[K], )-{s"} = {0}, 30)
where
[K1]=[&,, )1, [&], ~aV{K], ~—— K.} [K a1

22

Eq. (30) is used to determine the critical buckling load N, for different geometry parameters and buckling modes
m and n.

5 NUMERICAL RESULTS

In this work, outer surface of FGPM thin-walled cylindrical shells is PZT_5A rich and the inner surface denotes
BaTio3 rich. Temperature field varies in the thickness direction of cylindrical shell. The mechanical, thermal, and
electrical constants of FGPM cylindrical shell are considered in Table 1. [27-29].

To validate the results of this work, the elastic coefficients of foundation equal to zero and the vibration
frequencies of cylindrical shell is compared with the obtained results by Sheng and Wang [19]. As it is seen from
Fig. 2, the results of this research are in a good agreement with the obtained results by [19]. The axial load and
natural frequencies are nondimensionalized as An=No/N; and Ao=a’@i, which @y, N, are the first natural frequency
and buckling mode, respectively for n=m=1.
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The influence of various values of the shear correction coefficient on the natural frequency of the piezoelectric-
based FGM cylindrical shell is investigated in this study. A constant value of K=5/6 is commonly used for the

isotropic material. A shear correction factor introduced by Mindlin and is equal to 7 /12 [23]. Timoshenko [30]
presented a shear correction factor that depends on the Poisson ration K, = (5 +v- 5) / (6 +v- 5), the corresponding

natural frequencies for three various shear correction factors (Ks) for FGPM cylindrical shells is presented in Table.
2. It can be concluded that by increasing shear correction factor, the natural frequencies of the FGPM cylindrical
shell increases, also for higher circumferential wave numbers, the influence of shear correction factor on natural
frequencies becomes more significant than lower circumferential wave numbers. Moreover, the difference between
four cases for higher circumferential wave numbers increases.

Fig. 3 shows that by increasing the circumferential wave numbers, the nondimensional natural frequencies at
first decreases and then increases. Also it is obvious that the frequency of system is dependent on the volume
fraction exponent, in general by increasing the volume fraction exponent, nondimensional natural frequencies
increases, also it is interesting that for wave number 5 the changes of nondimensional natural frequencies are
negligible. From the results of Figs. 2 and 3 concluded that when the volume fraction exponent ( ) is larger than

25, the natural frequencies are very close to those associated with £ =100, so in this range, FGPM properties exhibit
small variations and the cylindrical shell is BaTiO3 rich.

Table 1

The electro-thermo-mechanical constants of FGPM cylindrical shell
Material BaTio3 PZT _5A Material BaTio3 PZT _5A Material BaTio3 PZT _5A
C, (GPa) 166 99.201 C,, (GPa) 43 21.1 a, (/K)  113e-6  1.99-6
C,, (GPa) 77 54.016 C., (GPa) 43 21.1 a, (/K)  113e-6  1.99%-6
C,, (GPa) 78 50.778 C,; (GPa) 445 22.6 a, (/K)  113e-6  8.53e6
C,; (GPa) 78 50.778 g, ©Nm) 1269 1539 e (C) 1.6 12322
C,, (GPa) 77 54.016 o, ©Nm) 112e9 1539 ey, (C/md) 44 -7.209
C,(GPa) 166 99.201 g, ©Nm) 126e9 1509 ey (C/md) 44 7209
C,(GPa) 78 50.778 p (CM/K) 026 25e5 e, (CM)  1L6 12322
C,, (GPa) 78 50.778 p, (C/m*/K) 02e-6 2565 ey (C/m?) 186 15118
C,, (GPa) 162 86.856 p (C/m’/K) 02e-6  -2.5e-5 k (W/m/K) 2.72 0.72
p (kg/m?) 5800 7750

Table 2

The influence of shear correction factor (Ks) on natural frequencies of thin-walled piezoelectric-based FGM cylindrical shell
(m=1, R/h=100,DV =200v,4, =0.2, =1,T, =200k,K , = 5e6 N/m3,Kp =1e5 N/m)

Circumferential wave number (7)

K;
1 2 3 4 5 6 7 8 9 10
0 2400.6316  1573.2351 1208.4050 1078.5826 1049.0071 1068.9600 1122.7313 1206.2355 1318.6397 1459.6084
2
7= /12 2400.6316  1573.2351 1208.4051 1078.5832 1049.0093 1068.9666 1122.7476 1206.2697 1318.7036 1459.7176
3/6 2400.6316  1573.2351 1208.4051 1078.5832 1049.0093 1068.9667 1122.7478 1206.2701 1318.7044 1459.7190
5+v-5
6 5 2400.6316  1573.2351 1208.4051 1078.5832 1049.0094 1068.9670 1122.7485 1206.2715 1318.7070 1459.7235
+v-
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Fig. 2

Non-dimensional natural frequencies versus the
volume fraction exponent for FGPM cylindrical shell
without considering the elastic foundation (m=1, n=1,
L/R=2,R/h=100,AV=200v, N, =850 kN , T, =200k,

K,=0,K,=0).

Fig. 3
Non-dimensional natural frequencies versus the
circumferential wave number (m=1, L/R=2, R/h=100,

AV=200v, A, =0.2,T, =200k, K, =5¢6 N /m’,

K, =1e5 N /m) for various volume fraction exponents.

In Fig. 4, the effects of radius to thickness ratio on the cylindrical shell natural frequencies are shown. It can be
seen from the results that by increasing radius to thickness ratio, the natural frequencies decrease dramatically for
wave number more than 4, and for less than 5, the effect of aspect ratio (R/h) on the natural frequencies is negligible.
Fig. 5 shows the effect of length to radius ratio in the FGPM cylindrical shells. Unlike Fig. 4, increasing aspect ratio
(L/R) causes a reduction of the natural frequencies for number wave less than 10, and for more than this value, the
influence of aspect ratio on the natural frequencies are not significant. According to Fig. 6 for low temperature,
increasing the temperature change between the inner and outer surfaces of FGPM cylindrical shells is caused to the
natural frequency decreases. It is observed from this figure that the influence of the temperature change on the

natural frequency is negligible for low temperature.

23 —

. .
0 2 ¢ 5 2 10 12 14 15 I 20
Circumferential wave mamber fi)
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Fig. 4
Non-dimensional —natural frequencies versus the
circumferential wave number (m=1, L/R=1, AV=200v,

Ay =0.02,3=1T, =200k,K, =56 N /m’,)

K, =165 N/m ) for various radius to thickness ratios.
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Fig. 5

Non-dimensional natural frequencies versus the
circumferential wave number (m=1, R/h=100, AV=200v,
Ay =02.=1T, =200k,K, =5¢6 N/m'K,=1e5 N/m)

io
for various length to radius ratios.

Fig. 6
Non-dimensional natural frequencies versus the
circumferential wave number (m=1, R/h=100, L/R=2,

AV=200v, 2, =0.02,B=1K,=5¢6 N /m’ K, =1e5 N /m )

for various temperature changes.

The variation of natural frequencies versus the circumferential wave numbers is shown in Fig. 7. Also the effects
of potential on the dimensionless natural frequencies determined that by increasing the electric potential between the
inner and outer surfaces of cylindrical shells, the non-dimensional natural frequencies decrease.

In Fig. 8, the effect of axial force on the dimensionless natural frequencies is demonstrated. It is concluded from
the results that the natural frequency increases with increasing the axial force, and this increase is more noticeable at
the minimum of natural frequencies. In Fig. 9, the effect of Winkler coefficient on the natural frequencies is
indicated. By increasing Winkler coefficient, the natural frequencies of cylindrical shells raised as a function of
circumferential wave numbers. These changes are more significant at the minimum of natural frequencies.
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Fig. 7
Non-dimensional —natural frequencies versus the
circumferential wave number (m=1, R/h=100, L/R=2,

T, =200k, 4, =02, f=1K, =5¢6 N/m’,K,=1e5 N/m)

for various potential changes.
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Circumperential wave rumber (w)

Fig. 10 shows the variations of the natural frequencies versus the circumferential wave number. Also, the effects
of Pasternak coefficient on the natural frequencies are presented in this figure. The dimensionless natural frequency
of FGPM cylindrical shells increases with an increase in the Pasternak coefficient as a function of circumferential
wave numbers. These changes are more considerable as the circumferential wave number became greater.

The non-dimensional buckling load (Av) versus the circumferential wave number for different Pasternak
coefficients of elastic foundation is shown in Fig. 11. It is obvious that the critical buckling loads increases with
increasing the Pasternak coefficient. Also the critical buckling loads increases rapidly as circumferential wave
number (n) increases from 5 to 20. However, when n is <5, the critical buckling loads change very slowly, and the
critical buckling loads are almost the same for different Pasternak coefficient of elastic foundation. Fig. 12 illustrates
the non-dimensional buckling load (AN) versus the circumferential wave number for different Winkler coefficients
of elastic foundation. The buckling load increases rapidly as circumferential wave number (n) increases when n is
>10 . However, when n is <10, the buckling load changes slowly. In the Fig. 12, results show that by increasing
Winkler coefficients of elastic foundation, the dimensionless critical buckling load increases. Also it is noteworthy
that the effect of Winkler coefficients on the dimensionless critical buckling loads, are nearly equal for various
circumferential wave number (n).
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Non-dimensional buckling load versus the circumferential
wave number (m=1, R/h=100, L/R=2, T, =200k, AV=200v,
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elastic foundation.

Fig.12

Non-dimensional buckling load versus the circumferential
wave number (m=1, R/h=100, L/R=2, T, =200k, AV=200v,
=LK »= le5S N/m ,) for various Winkler coefficients of

elastic foundation.
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Fig. 13 presents the mode shapes versus circumferential angle (&) for middle surface of the FGPM cylindrical
shells at x=L/2. Also deformed cylindrical shells for various values of m and n are illustrated. The mode shapes
corresponds to the first natural frequencies of cylindrical shells. This figure reveals that the distribution of the radial
displacements (w) is more significant than circumferential (v) and longitudinal (z) displacements. The mode shapes
corresponds to the first natural frequencies of cylindrical shells. It should be mentioned that the first natural
frequency and buckling load do not necessarily correspond to the first possible mode.

6 CONCLUSIONS

This study considered the Pasternak foundation effects on the free vibration and buckling analysis for the thin-
walled piezoelectric-based FGM cylindrical shells under electrical, thermal, and mechanical loadings. For this
purpose, the effects of Winkler and Pasternak coefficients and other important parameters are investigated. Also
dimensionless critical buckling loads and mode shapes of FGPM cylindrical shells are plotted. To drive the
governing equations of motion, the Hamilton’s principle, the Maxwell equation, and first-order shear deformation
theory are used. The main results of this research can be listed as follows:

1. The dimensionless natural frequencies and buckling loads of FGPM cylindrical shells surrounded by the
elastic foundation increase with increasing the Pasternak and Winkler elastic foundation coefficients. The
effect of Pasternak coefficient on the non-dimensional critical buckling loads and natural frequencies
increases by increasing circumferential wave numbers (n). However, the effect of Winkler coefficients on
the dimensionless critical buckling loads and natural frequencies are more significant at the circumferential
wave numbers which minimum of the natural frequencies occurred at them.

2. With increasing the volume fraction exponent of the FGPM cylindrical shells, the nondimensional natural
frequencies increase, however for a specific circumferential wave number (n=5), the changes of
nondimensional natural frequencies are negligible.

3. Increasing the length to radius ratio (L/R) and radius to thickness ratio (R/h) decrease the natural
frequencies of FGPM cylindrical shells embedded on an elastic foundation.

4. The natural frequency of FGPM cylindrical shells decreases with an increase in the electric potential and
temperature change between the inner and outer surfaces of cylindrical shells, and increasing the axial force
increases the natural frequencies. Variation of the natural frequencies for different load conditions is more
noticeable at the circumferential wave numbers which minimum of the natural frequencies occurred at
them.

5. For the FGPM cylindrical shell resting on elastic foundation under combined loading, the distribution of
the radial displacements (w) are more significant than circumferential (v) and longitudinal (u)
displacements.

6. It can be concluded that by increasing shear correction factor, the natural frequencies of the FGPM
cylindrical shell increases, also for higher circumferential wave numbers, the influence of shear correction
factor on natural frequencies is more significant than lower circumferential wave numbers. Moreover, the
difference between four cases for higher circumferential wave numbers increases.
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APPENDIX A
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D, =ey - +ey-ggtey-e +035E +P T,

In this work, we consider thin-walled piezoelectric-based FGM cylindrical shell that this problem is the plane
stress state (o, =0 ), and then we have:

_=Gy8,-Cy 5 +(C3104) +Cyayy +Cy3a33 ) T +ess E,

&, = ’ .
2 Car (A2)

Substituting Eq. (A.2) in the constitutive equations of a piezoelectric cylindrical shell yields:
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3 33 3 3

Thus using Egs. (A.3) , one can define the equivalent values of material properties such as mechanical, electrical,
and thermal for plane stress state:
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where N , N, are temperature, and potential coefficients, respectively.

APPENDIX D
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