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 ABSTRACT 

 In this study, two-dimensional electro-mechanical analysis of a composite rotating shaft 
subjected to non-axisymmetric internal pressure and applied voltage is investigated where 
hollow piezoelectric shaft reinforced by boron nitride nanotubes (BNNTs). Composite structure 
is modeled based on piezoelectric fiber reinforced composite (PFRC) theory and a 
representative volume element has been considered for predicting the elastic, piezoelectric and 
dielectric properties of the composite rotating shaft. Distribution of radial, circumferential, 
shear and effective stresses and electric displacement in composite rotating shaft are 
determined based on Fourier series. The detailed parametric study is conducted, focusing on 
the remarkable effects of angular velocity, electric potential, volume fraction and orientation 
angle of BNNTs on the distribution of stresses. The results show that properties of the 
piezoelectric shaft as matrix have significant influence on the electro-mechanical stresses 
where the PZT-4 has less effective stresses against PVDF. Therefore, PZT-4 could be 
considered for improving optimum design of rotating piezoelectric shaft under electric field 
and non-axisymmetric mechanical loadings. 
                                                                             © 2012 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 OMPOSITES offer advantageous characteristics of different materials with qualities that none of the 
constituents possess. Smart composite shaft addressed in this paper has been attracted more attention amongst 

researchers due to provision of new properties and exploiting unique synergism between materials. Piezoelectric 
materials produce an electric field when deformed, and undergo deformation when subjected to an electric field. The 
coupling nature of piezoelectric materials has attracted wide applications in electro-mechanical and electrical 
devices, such as actuators, sensors and transducers. PZT_4 is an ideal piezoelectric matrix due to excellent 
mechanical properties. In this work, BNNTs are selected as the matrix reinforcements, apart from having high 
mechanical, electrical, thermal conductivity and chemical properties, present more resistant to oxidation than other 
conventional nano-reinforcements such as carbon nanotubes (CNTs). 
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In recent years, most of the research works are concentrated on the analytical electro-thermo- mechanical stress 
solutions of disks and shafts. Mechanical and thermal stresses in a FG rotating disk with variable thickness due to 
radially symmetry loads reported by Bayat et al. [1] who considered a rotating FG disk with variable thickness under 
a steady temperature field. They found that maximum values of radial stresses due to thermo-mechanical loading in 
FG hollow disks with variable thickness under free–free condition remain in between the maximum values for 
homogenized disks. Contrary to this, radial stresses for FG disks due  to  thermal  load  may  not  occur  in  between  
the  radial stresses for full-ceramic and full-metal disks. Hojjati et al. [2] developed the Semi-exact solution of non-
uniform thickness and density rotating disks. Their study demonstrated that more efficient and economical design 
can be achieved by permitting elastic–plastic deformation and by an appropriate choice of the thickness parameters 
in the applications. Babaei et al. [3] presented analytical solution for a radially piezoelectric functionally graded 
piezoelectric (FGP) rotating hollow shaft subjected to electrical and mechanical loads. They showed that for rotating 
shaft with specific radial stress boundary conditions, changes in the electric boundary conditions cannot decrease the 
hoop stress value below a fixed amount. Ghorbanpour Arani et al. [4] investigated the effect of material in-
homogeneity on electro-thermo-mechanical behaviors of functionally graded piezoelectric rotating shaft. They 
found that the material in-homogeneity has a significant influence on the electro-thermo- mechanical stresses, radial 
displacement and electric potential and hence should be considered in optimum design. Also, Ghorbanpour Arani et 
al. [5] investigated the nonlinear vibration and stability analysis of a polymeric composite smart micro-tube 
reinforced by BNNTs. They found that stability of the micro-tube is strongly dependent on imposed electric 
potential, where increasing the imposed positive electric potential significantly increases the stability of the system. 
Also, their results showed using BNNTs as a piezoelectric fiber and its orientation angle with respect to micro-tube 
axis have significant effects on the vibration response and stability of the system. The stress response and onset of 
yield of rotating FGM hollow shafts is studied by Akis et al. [6]. Their study revealed that a rotating FGM hollow 
shaft may yield at one or both of the free surfaces or somewhere inside the shaft. Nevertheless, considerable 
improvement in the performance of an FGM hollow shaft is possible if the modulus of elasticity is an increasing, 
and the yield strength is a decreasing function of the radial coordinate. Electro-magneto-mechanical responses of a 
radially polarized rotating functionally graded piezoelectric shaft are presented by Ghorbanpour Arani et al. [7] who 
focused on the   exponent in functionally graded materials. Their result showed that the   exponent significantly 

affected the radial and circumferential stress distributions, electric potential and magnetic field. This implies that the 
electro-magneto-mechanical fields in the rotating shaft should be optimized for any specific application by selecting 
the appropriate   exponent. The analytical solution of FG piezoelectric hollow cylinder which is under radial 

electric potential and non-axisymmetric thermo-mechanical loads are presented by Atrian et al. [8] who used  
complex Fourier series to indicate distributions of stresses, displacement and the effect of electric potential field on 
the cylinder behavior. 

However, to date, no report has been found in the literature on the stress analysis of piezoelectric rotating shaft 
reinforced by BNNTs under non-axisymmetric internal pressure. Motivated by these considerations, the need for the 
investigation of a BNNTs fiber is applied as reinforcement in rotating shaft where PZT-4 has been selected for 
matrix as piezoelectric material. Composite rotating shaft subjected to uniform electric potential and non-
axisymmetric internal pressure. Higher order governing equations are derived analytically and effects of non-
axisymmetric internal pressure, electric potential, volume fraction and orientation angle of BNNTs on the stresses 
are investigated. Results of this research could be used for optimum design of composite rotating shaft under electric 
field and non-axisymmetric mechanical loadings. 

2    STRESS ANALYSES 

Composite rotating shaft reinforced by BNNTs subjected to non-axisymmetric internal pressure and applied voltage 
has been demonstrated in Fig. 1. The strain-displacement relations in cylindrical coordinate can be written as [9]: 
 

1 1 1
, ( ) , ( ) .

2rr r
u v u u v v

r r r r r r 
                 

 
 

(1) 

 
where u and v  are components of displacement in radial and circumferential, respectively. 
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Fig. 1  
The schematic of composite rotating shaft subjected to non-
axisymmetric internal pressure and applied voltage a . 

 
 

 

2.1 Micro-electro-mechanical model 

 
To model smart composite structures, a micromechanical model  known  as ‘‘XY  PEFRC’’  or  ‘‘YX  PEFRC’’,  
using approach adopted by Tan and Tong [10], is employed. Based on this modeling, the reinforced BNNTs are 
considered as longitudinal straight fibers placed in PZT-4 matrix. In general case, to evaluate the effective properties 
of a PFRC unit cell in all directions, first the properties of the required strip is obtained in which an appropriate ‘X 
model’ in association with the ‘Y model’ (or vice versa), i.e., ‘XY (or YX) rectangle model’ has been employed. In 
this modeling, both matrix and reinforcements are assumed to be smart and polarization have been made along the 
fiber direction. According to the XY PEFRC micromechanical method, the constitutive equations for the electro-
thermo-mechanical behavior of the selected RVE are expressed as [12]: 

.
T
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(2) 

 
where  ,  , D  and E  are stress, strain, electric displacement and electric field vectors, respectively and  e  and 

    are matrices of piezoelectric and dielectric parameters respectively. Eq. (2) can be expanded as follows: 
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Assuming plane strain condition and unidirectional electric field along the radius of rotating shaft Eq. (3) 

reduced to [5]: 
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where matrix  Q  is defined as [5]: 
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(5) 

 
Electric field in radial direction of cylindrical coordinate for piezoelectric materials is [9]: 
 

.rE
r


 


 

 
(6) 

 
where   denotes the scalar function of electric potential. To consider the effects of orientation angle of the BNNTs 

with respect to longitudinal axis, the following transformation matrix can be employed as [5]: 
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The transformation matrix  T  is: 
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(8) 

 
where   is the angle of BNNTs with respect to longitudinal axis of rotating shaft.  

2.2 Equilibrium equations 

The equilibrium equations of the composite rotating shaft in the radial and circumferential directions, irrespective of 
the body force and the charge equation of electrostatic are expressed as [7,9]: 
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Using Eqs. (9), (1) and (4), the final equilibrium equations in terms of displacements and electrical potential can 

be determined as follows: 
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where the constants 1d  to 20d are given in the Appendix A. 

 3    SOLVING PROCEDURE 
3.1 General solution 

Eqs. (10a) to (10c) are governing equations for a composite rotating shaft under electro-mechanical fields. In general 
solution of Eqs. (10), the radial, circumferential displacements and electric potential are presumed according to 
complex Fourier series form [9]:  
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where ( )nu r and ( )nv r are the coefficients of complex Fourier series of ( , )u r  and ( , )v r  , respectively, that can be 

expressed as: 
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and electric potential just depend on radius of composite rotating shaft. Therefore, Eq. (10c) confirms only for 

0n  and will be omitted from the system of relations (10) for 0n  [8].  
For 0n  , substituting Eq. (11) into Eq. (10) gives: 
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The solution of the above equations is assumed as [9]: 
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where A and B  are constants and obtain from boundary conditions. Substituting Eq. (14) into Eqs. (13), yields: 
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To obtain the nontrivial solution of Eqs. (15), the determinant of system should be equal to zero [9]. So four 

roots, 1n  to 4n  , are achieved and the general solutions are: 
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For 0n  , the equilibrium Eqs. (10) are reduced to: 
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where the subscript zero indicates the solution for 0n  . Two Eqs. (18a) and (18c) are a system of ordinary 
differential equations and the solution of this system is considered as [9]: 
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Substituting Eq. (19) into Eqs. (18a) and (18c) yields: 
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To obtain the nontrivial solution of Eq. (20), the determinant of system should be equal to zero. So the four roots, 

01 to 04 , are achieved and the general solutions are: 
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For 0n   Eq. (18b) is a decoupled ordinary differential equation and the solution of this equation is considered 
as: 
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Finally substituting Eqs. (16) into Eq. (11) and using Eqs. (21) and (23), the general solutions for ( , )gu r  , 

( , )gv r  and ( )g r  are expressed as: 
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3.2 Particular solution 

For 0n  , the particular solutions ( )pu r  and ( )pv r   are assumed as: 
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Substituting Eq. (26) into Eq. (13) and Equating the coefficients of the identical powers and using Cramer’s 

method, 1nD and 2nD  are obtained. 
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Substituting Eqs. (28-a)- (28-c) into Eq. (1), the strains are obtained as: 
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(29c) 

 
Substituting Eq. (28c) into Eq. (6) and using Eqs. (29a)-(29c), the stress components and the electrical 

displacement in radial direction are calculated that presented in Appendix B. 
It is recalled that stress components contain six unknown constants ( 1,...,6)njA j  and therefore to evaluate 

these constants, six boundary conditions that may be either the given displacements or stresses, or combinations are 
required. Expanding the given boundary conditions in complex Fourier series gives [9]: 
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j j

n
g G n e j
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(30) 

where 

 

1
( ) ( ) , 1,..., 6.

2
in

j jG n g e d j


 


   

   
 

(31) 

 
Constants njA

 
are calculated using Eqs. (30) and (31). 

4    NUMERICAL RESULTS  

Consider a thick-walled rotating shaft with inner and outer radius 1a m  and 1.2b m , respectively [9]. In this 
study, the PZT-4 has been considered as smart matrix and BNNT has been taken into account for fiber of the 
composite. In order to examine the selected matrix, the stress analysis for composite rotating shaft made of PVDF is 
performed and the results are compared with PZT-4. Mechanical and electrical properties of PZT-4, BNNT and 
PVDF are listed in Table 1 [3, 5, 13]. 

In order to examine the proposed solution, it is considered the effect of two-dimensional mechanical behavior of 
piezoelectric composite rotating shaft. The inside and outside boundary conditions are expressed as [8]: 
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Table 1 
Material and electrical properties for PZT-4, PVDF and BNNT 
 PZT-4 [3] PVDF [5, 14] BNNT [5] 

11( )C GPa  139 238.24 2035 

13( )C GPa  74.3 2.19 692 

33( )C GPa  115 10.64 2035 

2
31( )e C m  -5.2 -0.13 0 

2
33( )e C m  15.1 -0.276 0.95 

33 0   634.728 11.98 1250 

3( )g cm  7.5 1.78 1.37 

12
0 8.854185 10 ( )F m    
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Fig. 2  
Distribution of radial stress in composite rotating shaft 
subjected to non-axisymmetric internal pressure. 
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Fig. 3  
Distribution of circumferential stress in composite rotating 
shaft subjected to non-axisymmetric internal pressure. 
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Fig. 4 
Distribution of shear stress in composite rotating shaft 
subjected to non-axisymmetric internal pressure. 
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Fig. 5  
Distribution of effective stress in composite rotating shaft 
subjected to non-axisymmetric internal pressure. 
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Fig. 6 
Distribution of radial electric displacement in composite 
rotating shaft subjected to non-axisymmetric internal 
pressure. 
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(32) 

 
Figs. 2-4 demonstrate the distribution of radial, circumferential and shear stresses. It is evident that all 

components of stresses follow from a harmonic pattern. Also, it is found from these figures that the boundary 
conditions in inner and outer surfaces of composite rotating shaft have been satisfied. Effective stress that is 
calculated by Von-Mises yield criterion has been illustrated in Fig. 5. As expected, effective stress follows from a 
harmonic pattern. 

Fig. 6 shows electric displacement distribution along the radius and circumferential directions. It is also noted 
that the patterns of Figs.2-6 are consistent with reference [9].According to general boundary conditions Eq. (32), the 
inside and outside boundary conditions have been simplified to study the effect of angular velocity, volume fraction 
and orientation angle of BNNTs and electric potential on Von-Mises stress in composite rotating shaft, as follows: 
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(33) 

 
Figs. 7 and 8 depict the effect of angular velocity on radial and circumferential stress distribution in composite 

rotating shaft made of PZT-4 and PVDF for three different values of . It can be seen from these figures that the 
magnitude of stresses for composite shaft made of PVDF is more remarkable than PZT-4. Nevertheless, the 
behavior of stresses for two kind of composite matrix is similar. 
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Fig. 7  
Comparison of radial stress distribution in composite 
rotating shaft made of PZT-4 and PVDF for three different 

values of .   
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Fig. 8 
Comparison of circumferential stress distribution in 
composite rotating shaft made of PZT-4 and PVDF for 

three different values of .  

 
 
Table 2 
Maximum effective stress for composite rotating shaft made of PZT_4 and PVDF 

Angular velocity 
Maximum Effective Stress 

PZT-4 PVDF 
Magnitude Position Magnitude Position 

0   1.7510×108 inner radius 3.1396×108 outer radius 

300
rad

s
  6.6455×108 inner radius 2.0982×109 outer radius 

600
rad

s
  2.5868×109 inner radius 7.4509×109 outer radius 

1000
rad

s
   8.3534×109 inner radius 2.0139×1010 outer radius 
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Fig. 9  
The effect of angular velocity on radial stress in composite 
rotating shaft made of PZT-4 reinforced by BNNTs. 
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Fig. 10 
The effect of angular velocity on circumferential stress in 
composite rotating shaft made of PZT-4 reinforced by 
BNNTs. 
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Fig. 11 
The effect of angular velocity on effective stress in 
composite rotating shaft made of PZT-4 reinforced by 
BNNTs. 

 
 

Table 2 shows the maximum effective stress at inner and outer radius of composite rotating shaft made of PZT-4 
and PVDF. By comparison with the results it can be found that maximum effective stress for composite shaft made 
of PVDF occurs in outer radii while for composite shaft with PZT-4 matrix takes place on inner radius of rotating 
shaft. Figs. 9-11 illustrate the effect of angular velocity on radial, circumferential and effective stresses in composite 
rotating shaft. It can be seen from these figures that increasing angular velocity leads to increase all components of 
stresses and decrease stability of this structure. 

Fig. 12 shows the effect of volume fraction on Von-Mises stress in composite rotating shaft. It can be seen from 
this figure that increasing volume content of BNNTs causes to decrease Von-Mises stress and has a significant effect 
on strength of composite structure. Designers could meet their purposes by selecting the suitable percent of fiber in 
composite cylinder. Fig. 13 illustrates the effect of orientation angle of BNNTs on effective stress in composite 
rotating shaft. The orientation angle of fiber in composite is very important because it can be affected on mechanical 
behavior of composite. This composite structure has been reinforced by BNNTs that can be aligned in different 
direction. Since the purpose is stress analyzing, the angle is the best at which stress is reduced. In addition, it can be 
concluded from this figure that due to the significant radial piezoelectricity effect of BNNT, the effective stress of 
the composite is declined by increasing angle of BNNTs with respect to longitudinal axis of rotating shaft. 
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Fig. 12  
The effect of volume fraction of BNNTs on the effective 
stress in composite rotating shaft. 
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Fig. 13 
The effect of orientation angle of BNNTs on the effective 
stress in composite rotating shaft. 
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Fig. 14 
The effect of electric potential on the effective stress in 
composite rotating shaft. 

 
 
The effect of electric potential on the Von-Mises stress in composite rotating shaft is investigated in Fig. 14. where 
the presence of positive electric potential has been considered as a factor for decreasing effective stress and 
increasing resistance of composite structure. 

5    CONCLUSION 

General theoretical analysis of two-dimensional non-axisymmetric mechanical stresses for a thick-walled composite 
rotating shaft reinforced by BNNT is developed, where BNNTs are arranged in a radial direction inside of PZT-4 
matrix. Higher order governing equations were solved analytically by Fourier series and the results illustrate 
distribution of mechanical stresses. Regarding reinforcement of composite, it can be observed that using BNNTs as 
a fiber and its orientation angle with respect to composite shaft axis have significant effects on the mechanical 
behavior of the system. The results indicated  that the effective stress is strongly dependent on the angular velocity 
so that decreasing the magnitude of angular velocity significantly decreases the Von-Mises stress. Also it is 
concluded that imposing positive electric potential caused to decrease effective stress and increase stability of 
system. Therefore applying the positive electric potential can be used as well as controlling parameters to improve 
the fatigue life of the composite rotating shaft. In addition, the results of this study show considering the special 
boundary conditions for a composite rotating shaft, the mechanical stresses and electrical displacement can be 
controlled and optimized to design and use this kind of structures. 
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APPENDIX A 
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