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 ABSTRACT 

 This paper studied Buckling analysis of porous truncated conical shell subjected to 

axial load. It is considered that a fluid undrained between porous material and the 

Porous material properties vary across the thickness of shell with a specific function 

also assumed that the edge of the shell is simply supported. The governing equations 

are based on the Sanders kinematics equations and the first-order shell theory and by 

using of variational formulations. The general mechanical non-linear equilibrium 

and linear stability equations are derived. At the end, the result of dimensionless 

buckling critical load ratio dimensionless thickness in different condition such as 

variation in thickness, porosity and angle of conical shell is investigated. The 

mechanical load results are verified by the known results in the literature. 

                                       2017 IAU, Arak Branch.All rights reserved. 

 Keywords : Axisymmetric; Porous material; Buckling analysis; Conical shell; Axial 

load.  

1    INTRODUCTION 

 HE biot model of a fluid-filled porous material is composed on the conceptual model of a coherent solid 

structure and a freely moving pore fluid (in other words both solid and fluid or gas phases are fully connected). 

Porous material frequently found in nature, such as wood, stone, and layers of dust. Detournay and Cheng [1] 

studied fundamentals of poroelasticity. Seide [2,3] studied the buckling of conical shells under the axial loading. 

Singer [4] considered the buckling of conical shells under the axisymmetrical external pressure. Buckling of the 
stiffened conical shells under hydrostatic pressure is studied by Baruch and Singer [5]. Baruch et al. [6] studied the 

buckling of conical shells under the hydrostatic pressure and the buckling loads of axially compressed conical shells 

for different sets of boundary conditions [7]. Singer [8,9] analyzed the buckling of orthotropic conical shells. 

Weigarten and Seide [10] studied the stability of conical shells under the axial compression and external pressure. 

The same authors considered the stability of conical shells under the combined axial compression and internal 

pressure [11]. Ari-Gur et al. [12] analyzed the buckling of cylindrical shell under combined loading. They 

considered a cylindrical shell under axial preload, nonuniform heating and torque. Lu and Chang [13] studied the 

thermal buckling of conical shells. They used the Galerkin method for integrating the equilibrium equations in their 

analysis. Tani [14] presented a solution on the buckling of conical shell under combined pressure and heating loads. 

Free vibration and buckling behavior of FG truncated conical shells subjected to thermal loads is investigated by 

Bhangale et al. [15] based on the first order shear deformation theory. The effects of initial stresses on the 

frequencies of the FG shells are studied. Thermoelastic stability analysis of FG truncated conical shells is presented 

by Sofiyev [16]. Modified Donnell type stability and compatibility equations are derived and the Galerkin method is 
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applied to obtain the closed-form solution. The instability of FG truncated conical shells subjected to thermal and 

mechanical loads is analyzed based on the classical shell theory and the Sanders nonlinear kinematics relations by 

Naj et al. [17]. In a series of works Sofiyev studied the buckling of FG truncated conical shells under various 
mechanical loads, including hydrostatic pressure, external pressure, and combined axial tension and hydrostatic 

pressure (Sofiyev et al. [18] and Sofiyev [19,20]). By applying the Galerkin method to stability and compatibility 

equations, the critical buckling load of the shell is obtained. Recently, Sofiyev [21, 22] presented the thermal and 

mechanical buckling analysis of FG circular shells resting on a two-parameters elastic foundation by solving the 

eigen-value problem. The critical buckling loads with and without elastic foundation are obtained using the Galerkin 

method. Bich et al. [23] studied the instability of FG conical panels based on the classical thin shell theory under 

axial compression, external pressure, and combination of them. The effects of the initial imperfections on the 

buckling behavior of FG truncated conical shells are illustrated by Sofiyev [24]. Superposition and Galerkin 

methods are applied to the modified nonlinear Donnell type stability and compatibility equations and the upper and 

lower critical axial loads are obtained. Applying the Galerkin method to the governing equations which are based on 

higher order shear deformation shell theory, results in a closed form solution for the critical buckling temperature 

difference. In another study, Mirzavand and Eslami [25] Using the variational approach, equilibrium and stability 

equations are obtained based on the classical shell theory and the Sanders nonlinear kinematics relations. Jabbari et 

al. [26] studied the buckling analysis of soft ferromagnetic FG circular plates made of poro material. Jabbari et al. 

[27] studied the thermal buckling of radially solid circular plate made of porous material with piezoelectric actuator 

layers presented. Jabbari et al. [28] studied the buckling analysis of radially solid circular plate made of porous 

material bounded with the layers of piezoelectric actuators.  Studied axi-symmetrical deflection and buckling of 

circular porous-cellular plate by Magnucka-Blandzi [29]. Studied failure by buckling mode of the pore-strut for 

isotropic three-dimensional reticulated porous metal foams under different compressive loads [30]. Presented 

mechanical and thermal stability of eccentrically stiffened functionally graded conical shell panels resting on elastic 

foundations and in thermal environment [31] the shell is a porous material that a fluid undrained between Porous 

and simply supported at both ends and it is assumed to be subjected to a uniform axial load. The prebuckling forces 

are obtained by considering membrane solutions of linear equilibrium equations. Applying the Galerkin method to 

the stability equations results in an eigen-value problem which provides the critical buckling axial load and finally 

results are presented.  

2    DERIVATION OF THE GOVERNING EQUATIONS 

Consider a truncated conical shell of thickness h and half apex angle β made of porous material where the 

curvilinear coordinate system is defined as (x,θ,z), and the displacement components of the middle surface are u, v 

and w along the meridian, tangential and lateral directions, respectively. The geometry of shell is shown in Fig.1 the 

relationship between E and z for porous shell is assumed functionally. 
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where 1e  is the coefficient of shell porosity 10 1e  , 1E  and 0E  Young’s modulus of elasticity at 2z h  and 

2z h , respectively, and 1G  and 0G  are the shear modulus at 2z h  and 2z h , respectively. The 

relationship between the modulus of elasticity and shear modulus for 0j   and 1 is 2 (1 )j jE G v  and ν is 

Poisson’s ratio, which is assumed to be constant across the shell thickness. Mechanical properties of the porous 

material vary across the thickness of the shell, (
0 1G G ). 
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Fig.1 

Coordinate and Geometry system of a porous conical shell. 

2.1 Basic equations 

The linear poroelasticity theory of Biot has two features 
1. An increase of pore pressure induces a dilation of pore. 

2. Compression of the pore causes a rise of pore pressure. 

The stress–strain relation for porous material of the shell are written as following: 
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Here, pp  is pore fluid pressure, M is Biot’s modulus, 
uv  is undrained Poisson’s ratio 0.5uv v  ,   is the 

Biot coefficient of effective stress 0 1  , K is bulk modulus ( 2 (1 / 3(1 2 )))u uK G v v   ,   is variation of fluid 

volume content, and   is the volumetric strain. The two dimensional stress-strain law for plane-stress condition in 

the curvilinear coordinates for the undrained condition ( 0  ) is given by 

 

[ ]jjpp M    (6) 

 

And by simplification, Eq. (2) in curvilinear coordinates can be written as: 
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where the constants are 
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(8) 

 

The shell is assumed to be thin, and according to the Love–Kirchhoff assumptions, planes normal to the median 

surface are assumed to remain plane after deformation. Thus, shear deformations normal to the shell are 

disregarded. Using first-order shell theory, strain components at distance z  from the middle plane are given in 

matrix form as: 
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where ,xx    and 
x  are the strain components along the x, θ and z-directions, respectively. Here, ,xx    and 

x  

are the middle plane strain components and ,xxk k  and 
xk  are bending and twisting curvatures with respect to the 

x- and θ-axes, respectively. The relations between the middle plane strains and curvatures with the displacement 

components according to the Sanders assumption strain–displacement relations, are obtained as: 
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where (u,v,w) represent the corresponding components of the displacement of a point on the middle shell  surface 

and (,) indicates partial differentiation. The force and moment resultants of conical shell according to the first order 

shell theory are 
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Substituting Eqs. (7) in Eqs. (11) yield 
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The coefficients are given in the Appendix. 

2.2 Strain energy 

The total potential energy for porous conical shell can be written as: 
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where E

ij  is elastic strain. Elastic strain energy for porous materials is comprised of elastic strain energy for solid 

body and fluid in pores. Substituting Eq. (4) into Eq. (2) in the undrained condition, strain energy is obtained as: 
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Here, (1 )B  is relation between drained bulk modulus and undrained bulk modulus, B  is coupling between 

pore fluid effects and macroscopic deformation and B is skepton coefficient. By substituting 3
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The total potential energy for porous conical shell can be written as: 
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And by substituting strain-stress relations 
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In which 
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2.3 Stability equations 

The equilibrium equations are derived using the functional of potential energy equation of U Eq. (18) and employing 

the Euler equations. In the functional of total potential energy, the membrane and bending are included. For a 

conical shell the equilibrium equations, using the variational principle, are derived as: 
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In Eqs. (20)   and 
x are the rotations of the normal to the middle surface about the x and θ-axes, respectively. 

The stability equations of the conical shell are derived using the adjacent equilibrium criterion. We assume 
0 0,u v  

and 
0w  as the displacement components of the equilibrium state and 

1 1,u v  and 
1w  as the virtual displacements 

corresponding to a neighboring state. The displacement components of the neighboring state are 
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According to the adjacent equilibrium criterion in the neighboring state of equilibrium, the stability equations are 

found. Similar to Eqs. (21), the stress and moment resultants are found to be the sum of those related to the 

equilibrium and neighboring states as: 
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Substituting relations (21) and (22) in Eqs. (19), collecting the second order terms, the stability equations are 

obtained as: 
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(23) 

 

The subscript 0 refers to the equilibrium state and subscript 1 refers to the stability state. The terms with the 

subscript 0 are the solution of the equilibrium equations for the given load. In which the linear forms of strains and 

curvatures are given as: 
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(24) 

 

For simplicity, the membrane solution of the equilibrium equations are considered [32]. For this aim, all the 

moment and rotation terms must be set equal to zero in the equilibrium equations. By solving the membrane form of 

Equilibrium equations, it is found that 
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(25) 

 

Substituting Eqs. (24), (20) into Eqs. (12), and (12), (25) into Eqs. (23), the stability equations in terms of the 

displacement components are derived.  

2.4 Axisymmetric buckling  

Up to this point, it was assumed that the buckling mode is not axisymmetric. In this section we will consider the 

axisymmetric mode in which v, the displacements of mid-surface in circumferential direction is equated to zero.  

2.5 Boundary conditions 

Consider a conical shell with the simply supported boundary edges. The boundary conditions are assumed as [6] 
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(26) 

 

where 1,2,3,...m  is the numbers of the meridional wave, and A and C are constant coefficients. The approximate 

solutions (26) are substituted in Eqs. (23), using the Galerkin minimization technique, to yield 
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(27) 

 

where the coefficients 
ija are functions of geometric parameters of the conical shell. In order to obtain the critical 

axisymmetric buckling axial load one should set the determinant of the coefficient matrix to zero and solve the 

resulting equation. As seen from the definitions of constants 
ija , only 

33a  contains the axial load resultant that the 

coefficients 
ija  are in Appendix. 
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(28) 

 

Therefor the critical axisymmetric buckling axial load is 
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(29) 

3    RESULTS AND DISCUSSION 

Consider a porous truncated conical shell. The geometry is shown in Fig.1 the Young’s Modulus and Poisson’s ratio 

are,
0 70.6 , 0.3E Gpa v  , respectively. Simply supported boundary conditions are assumed. Show the 

dimensionless buckling axial compressive load versus the dimensionless parameter 
1/L R . The classical buckling 

axial compressive load suggested by Seide and 
0E E  [2]  
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(30) 

 

For the problem under consideration, the axisymmetric stability for mechanical buckling load of a porous conical 

shells presented. Fig.2 and Fig.3 show the variation of the buckling axial compressive load versus the dimensionless 



346                               Axisymmetric Buckling Analysis of Porous Truncated… 

 
 

© 2017 IAU, Arak Branch 

parameter 
1/L R  for different semi-vertex angles and coefficient porosity, respectively. The curves in Fig.2 show 

the critical axial loads increase as the semi-vertex angle decreases also the curves in Fig.3 show the critical axial 

loads increase when the coefficient of shell porosity decreases. From these figures they are found that by increasing 

values of 
1/L R , the critical axial compressive load is decreased. Fig.4 indicated that increasing the thickness of the 

porous conical shell increase stability and buckling axial compressive load of porous conical shell. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Variation of the dimensionless critical axial compressive 

load versus dimensionless parameter 
1/L R for stability of 

the porous conical shells in different semi-vertex angles 

(beta), 30  and 60  . 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Variation of the dimensionless critical axial compressive 

load versus dimensionless parameter 
1/L R for stability of 

the porous conical shells in different coefficient porosity 

(
1e ). 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.4 

Variation of the dimensionless critical axial compressive 

load versus dimensionless parameter 
1/L R for stability of 

the porous conical shells in different dimensionless 

parameter radius versus thickness (
1 /R h ). 

 

Fig.5 shows variation of the dimensionless critical axial compressive load versus dimensionless parameter 1/L R  

for stability of the porous conical shells that increasing numbers of the meridional wave decrease the stability and 
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critical axial compressive load. Fig.6 illustrated variation of the dimensionless critical axial compressive load versus 

dimensionless parameter 
1/L R  for stability of the porous conical shells in different undrained Poisson’s ratio (

uv ), 

as decreasing undrained Poisson’s ratio decreased the stability and critical axial compressive load. 
 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 

Variation of the dimensionless critical axial compressive 

load versus dimensionless parameter 
1/L R for stability of 

the porous conical shells in different numbers of the 

meridional wave (m). 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.6 

Variation of the dimensionless critical axial compressive 

load versus dimensionless parameter 
1/L R for stability of 

the porous conical shells in different undrained Poisson’s 

ratio (
uv ). 

 

4   CONCLUSIONS 

In the present article, the energy method is used for the mechanical buckling analysis of shell made of pore material 

and derivation is based on the first-order shell theory, Sanders kinematics equations and by using of variational 

formulations. The boundary condition of the shell are assumed to be clamped. The effects of coefficient porosity, 

semi-vertex angle, the meridional wave, undrained Poisson’s ratio, thickness on critical load of truncated conical 

shell are presented and the conclusions are: 

1. The critical axial load decreases and the shell will be unstable by increasing the porosity ( 1e ). 

2. By increasing semi-vertex angles (  ) critical axial load will be reduced. 

3. The critical axial load increases by increasing the shell thickness (h). 

4. The critical axial load decreases as the undrained Poisson’s ratio decreased (
uv ). 

5. As the meridional wave (m) increase the critical axial load will be decreases. 

6. By increasing dimensionless parameter 1/L R The critical axial load decreases.  
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