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 ABSTRACT 

 In this paper, vibration analysis of multiple-stepped Bernoulli-Euler and Timoshenko beams 
carrying point masses is presented analytically for various boundary conditions. Each 
attached element is considered to have both translational and rotational inertias. The method 
of solution is “transfer matrix method” which is based on the changes in the vibration modes 
at the vicinity of any discontinuity in geometrical and natural parameters; these changes are 
shown by transfer matrices depended on the geometry of each step or value of the 
translational and rotational inertias of each attached element. First, natural frequencies and 
corresponding normal mode shapes are obtained by implementation of the compatibility 
conditions and external boundary conditions; Then, the precision of the proposed method is 
checked by comparison of the results with other exact solutions; Finally, the effect of the 
translational and rotational inertias and position of the attached elements on the natural 
frequencies of multi-stepped beams are investigated for various boundary conditions.  

                                                    © 2013 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

TUDYING the dynamic characteristics of systems with flexible links or components is an essential research 
endeavour that can provide successful design of mechanisms, robots, machines, and structures. Extensive 

researches have been carried out with regard to the vibration analysis of the structures carrying concentrated masses 
at arbitrary positions. Chen [1] introduced the mass by the Dirac delta function and solved analytically the problem 
of a vibrating simply supported beam carrying a concentrated mass at its middle section. Laura et al. [2] studied the 
cantilever beam carrying a lumped mass at the top, introducing the mass in the boundary conditions. Laura et al. [3] 
used Rayleigh–Ritz method to analyze beams subjected to axial forces and carrying concentrated masses. Gurgoze 
[4, 5] used the normal mode summation technique to determine the fundamental frequency of a cantilever beam 
carrying masses and rotational springs. Liu et al. [6] used the Laplace transformation technique to formulate the 
frequency equation for the beams with elastically restrained ends, carrying concentrated masses. Rosa et al. [7] 
investigated dynamic behaviour of the beams with elastic ends carrying a concentrated mass. Rossit and Laura [8] 
presented a solution for vibration analysis of a cantilever beam with a spring-mass system attached on the free end. 
In all studies mentioned above, authors used Bernoulli-Euler beam theory to model simple structures, which is 
reliable just for slender beams. In order to increase accuracy and reliability of the studies, especially for the short 
beams, Rao et al. [9] used coupled displacement field method to study about natural frequencies of a Timoshenko 
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beam with a central point mass. Rossit and Laura [10] extended their previous research [8] for Timoshenko beam 
theory. 

In most of the studies mentioned above, the influence of the rotary inertia of the attached mass is not taken into 
account. Laura et al. [11] considered the rotary inertia of concentrated masses attached to the slender beams and 
plates and obtained fundamental frequencies of the coupled systems by means of the Rayleigh–Ritz and Dunkerley 
methods. Rossi and Laura [12] focused on vibrations of a Timoshenko beam clamped at one end and carrying a 
finite mass at the other. They considered both the translational and rotational inertia of the attached mass. Chang 
[13] studied a simply supported beam carrying a mass on its middle point and considered its rotary inertia. He 
determined the natural frequencies and normal modes of the system, but he kept the position of the mass fixed. Maiz 
et al. [14] presented an exact solution for the transverse vibration of Bernoulli–Euler beam carrying point masses 
and taking into account their rotary inertia. Lin [15] used numerical assembly method to determine the exact natural 
frequencies and mode shapes of the multi-span Timoshenko beam carrying a number of various concentrated 
elements including point masses, rotary inertias, linear springs, rotational springs and spring–mass systems. 
Demirdag and Murat [16] and Demirdag and Yesilce [17] used fuzzy neural network and differential transform 
method respectively to study about elastically supported Timoshenko columns with tip mass having rotary inertia. 
Guitirrez et al. [18] studied stepped Timoshenko beam, elastically restrained at one end and carrying a mass having 
rotary inertia at the other one. 

Stepped beam are widely used in various engineering fields, such as turning shaft, robot arm and tall building, 
etc. The free vibration analysis of one or multiple stepped beams are investigated by many researchers and plentiful 
achievements are obtained. No attempt will be made here to present a bibliographical account of previous work in 
this area. Just a few selective recent papers [19-22] which provide further references on the subject are quoted. 

The purpose of this study is to present a general solution for the vibration analysis of multiple-stepped Bernoulli-
Euler and Timoshenko beams, carrying concentrated masses having rotary inertia at arbitrary points, for various 
boundary conditions. Effect of the value of translational and rotational inertias of attached masses and their positions 
on the frequencies of vibration will be studied in this paper for both uniform and multiple-stepped beams. 

2    BERNOULLI-EULER BEAM THEORY 

Bernoulli-Euler beam theory is the simplest model which can be used to study about static and dynamic behaviour 
of structures. The accuracy and reliability of this model are acceptable just for slender beams. Because of simplicity, 
this model is investigated before the Timoshenko one. 

2.1 Governing equation 

As shown in Fig. 1, an elastic beam, having some discontinuities located on its domain like steps or concentrated 
masses is considered. Translational and rotational inertias of the attached masses are indicated by notations "m" and 
"j", respectively. Also each step is modeled by two parameters ( &  ) which would be defined later.  

Governing equation of free bending vibration analysis of a bare beam can be written as [23] 

       2 22

2 2 2

, ,
0,

w x t w x t
EI x A x

x x t
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where w(x,t), A(x), I(x),   and E are vertical displacement, cross-sectional area, area moment of inertia about the 

neutral axis, mass density and Young's modulus of material, respectively. Let indicate any property of the beam at 
ith segment with index ''i''; Notice that as shown in Fig. 1, there is no difference between steps and concentrated 
masses in numbering sub-beams. For ith segment of the beam, Eq. (1) can be rewritten as:  
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where n is the number of all discontinuities (including both steps and concentrated masses). The vertical 
displacement wi(x,t) can be assumed as the product of the function vi(x) depended on the spatial coordinate x and a 
time dependent harmonic function as: 

( , ) ( ) ,j t
i iw x t Lv x e   (3) 

 
In which   is the natural frequency of vibration and j is the imaginary unit (j2= -1). Substitution of the separated 

form provided by Eq. (3) into the governing Eq. (2) yields the following differential equation: 

4 0,i i iv v    (4) 

 
where the prime indicates the derivative with respect to the dimensionless spatial variable ( ) and following 
dimensionless parameters are defined: 
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Solution of Eq. (4) can be found as: 
 
         cosh sinh cos sin ,i i i i i i i i iv A B C D             (6) 

 
in which Ai-Di are unknown constant coefficients. 

 

 
 
 
 
 
 
 
 
 

Fig. 1  
Geometry and parameters of the system. 

2.2 Compatibility conditions 

In the vicinity of ith discontinuity, Eq. (6) can be written as: 
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(7) 

 
where ei is dimensionless spatial coordinate of ith discontinuity. 

2.2.1 Stepped section 

Suppose that ith discontinuity is a step, the compatibility conditions at the stepped section can be assumed as 
continuity of vertical displacement, slope, bending moment and shear force. According to the definitions of the 
bending moment and shear force in Bernoulli-Euler beam theory as [23] 
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Compatibility conditions at the stepped section can be rewritten as: 
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Using Eqs. (7) and (9), the constant coefficients after ith discontinuity are related to those before it as: 
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(12) 

2.2.2 Concentrated mass 

Now suppose that ith discontinuity is a concentrated mass. Compatibility conditions can be considered as continuity 
of vertical displacement and, slope and, discontinuity of bending moment, and shear force. Using Eq.(8), 
compatibility conditions can be rewritten as: 
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It's obvious that 1i i    when ith discontinuity is a concentrated mass. In a similar manner, one can derive Eqs. 
(11) and (12), where 
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Table 1 
Mathematical model for boundary conditions in Bernoulli-Euler beam theory. 

Boundary conditions Mathematical model( =1-en) 

Simply supported(SS)    1 10 0 0v v       1 1 0n nv v    

Simple–Clamped(SC)    1 10 0 0v v       1 1 0n nv v    

Clamped- Clamped(CC)    1 10 0 0v v       1 1 0n nv v    

Cantilever(CF)    1 10 0 0v v       1 1 0n nv v    

 
 
Table 2 
Definition of matrix     for various boundary conditions in Bernoulli-Euler beam theory. 

Boundary conditions of the right side of the beam      
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2.3 Implementation of external boundary conditions 

In what follows, four common boundary conditions are considered to derive frequency equation. Mathematical 
model of these boundary conditions is presented in Table 1. Boundary conditions at the right side of the beam (ζ=1) 
can be written in a matrix form as: 
 

  1 1 1 1
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,
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(16) 

 

In which definition of the matrix    is presented in Table 2.  for various boundary cases. 

 
By substitution of Eq. (11) into the Eq. (16) for i=n, n-1,…,2,1, next relation appears as: 
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where 
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For beams which their left side (ζ=0) is simply supported, implementation of boundary conditions at this side 

leads to A1=C1=0; therefore one can simplify Eq. (17) as: 
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(19) 

 
But, when left side of the beam is clamped, implementation of external boundary conditions at the left side of the 

beam leads to A1+C1=0 and B1+D1=0; hence, frequency equation can be derived as: 
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(20) 

 
In order to find non-trivial solutions of Eqs. (19) or (20), the determinant of coefficient matrices should be put 

equal to zero. 

3    TIMOSHENKO BEAM THEORY 

As Timoshenko beam theory considers transverse deformation and rotational inertia of the beam, this model is much 
accurate than Bernoulli-Euler one, especially for the short beams. This model is investigated here as it was presented 
in previous section for Bernoulli-Euler beam. 

3.1 Governing equations 

The governing set of equations of free bending vibration of a bare Timoshenko beam are written as [23] 
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(21) 

 
where (x,t) is the rotation due to bending, G is the shear modulus of material and k is called “shear correction 
factor” introduced to make up the geometry-dependent distribution of shear stress. This factor depends on the shape 
of section and Poisson's ratio of material [24]. 

For ith segment of the beam, Eq. (21) can be rewritten as: 
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(22) 

 
The vertical displacement wi(x,t) and rotation due to the bending i (x,t) can be assumed as the product of the 

functions vi(x) and i (x) depended on the spatial coordinate x and a time dependent harmonic function as: 
 

( , ) ( ) ( , ) ( ) .j t j t
i i i iw x t Lv x e x t x e     (23) 

 
Substitution of the separated form provided by Eq. (23) into the governing Eqs. (22) and also using Eq. (5) and 

new dimensionless parameters defined as: 
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yields the following set of differential equations: 
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4 2 2 4 2 20 (1 ) 0i i i i i i i i i i iv s v s v s r            
 

(25) 

 
Using the new variables given by 
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Solution of the set of Eqs. (25) can be found as: 
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3.2 Compatibility conditions 

In the vicinity of ith discontinuity, Eq. (27) can be written as: 
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3.2.1 Stepped section 

According to the definitions of the natural parameters in Timoshenko beam theory as [23] 
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The compatibility conditions at the stepped section can be written as: 
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Using Eqs. (28) and (30), one can obtain Eqs. (11) - (12), where 
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(32) 

3.2.2 Concentrated mass 

Using Eq. (29), compatibility conditions at the location of the attached mass can be written as: 
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It's obvious that 1 1,  i i i ir r   and 1i is s when ith discontinuity is a concentrated mass. In a similar 

manner, one can obtain Eqs. (11) – (12), where 
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(34) 

3.3 Implementation of external boundary conditions 

In Timoshenko beam theory, mathematical model of the above mentioned boundary conditions is presented in   
Table 3. 
 

Table 3 
Mathematical model for external boundary conditions in Timoshenko beam theory. 

Boundary conditions Mathematical model( =1-en) 

Simply supported(SS)    1 10 0 0   v     1 1 0   n nv  

Simple–Clamped(SC)    1 10 0 0   v     1 1 0   n nv  
 

Clamped-Clamped(CC)    1 10 0 0  v     1 1 0   n nv  

Cantilever(CF)    1 10 0 0  v      1 1 1 0      n n nv 
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Table 4 
Definition of matrix [  ] for various boundary conditions in Timoshenko beam theory. 

Boundary conditions of the right side of the beam [  ] 
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In a similar manner, for beams which their left side is simply supported, frequency equation can be obtained as: 
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and for beams which their left side is clamped following equation can be derived: 
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(36) 

 
where definition of matrix [ Γ ] is presented in Eq. (18) and matrix [ ] is presented in Table 4. for various boundary 
conditions. 

4   DERIVATION OF MODE SHAPES 

For both the Bernoulli-Euler and Timoshenko beam theories, using obtained eigenvalues, one can evaluate 
eigenvectors using Eqs. (7) or (28), (11) and (19), (20), (35) or (36) and calculate mode shapes using Heaviside 
function as follow: 
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Finally it should be stated than in order to normalize mode shapes, each mode will be normalized as: 
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5   NUMERICAL RESULTS AND DISCUSSIONS  

In what follows, the numerical results of the solution of the frequency equation are presented and discussed for 
various cases. 

Consider a stepped cantilever Bernoulli-Euler beam with three steps at ζ =0.25, 0.55 and 0.8, constant thickness 
and variable height as h2/h1=0.8, h3/h1=0.65 and h4/h1=0.25. First four dimensionless frequencies are calculated and 
tabulated in Table 5 and corresponding normal modes are illustrated in Fig. 2. A comparison between the results and 
the ones proposed by Mao [22], confirms the accuracy of the proposed method. 
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Fig. 2 
First four normalized modes of three stepped cantilever 
Bernoulli-Euler beam. 

 
 
Table 5 
First four dimensionless frequencies of three stepped cantilever Bernoulli-Euler beam. 

 1  (1) 1  (2) 1  (3) 1 (4) 

present 2.1786 4.2354 5.9213 8.4620 
Mao [22] 2.1785 4.2357 5.9220 8.4620 

 
 
Table 6 
First three dimensionless frequency of a simply supported Bernoulli-Euler beam with two symmetric concentrated masses. 

 
c1=c2=0.01 c1=c2=0.1 

present Maiz et al. [14] present Maiz et al. [14] 

1 (1) 3.0010 3.0012 2.9888 2.9892 

1 (2) 5.7742 5.7745 5.7745 5.7745 

1 (3) 9.0555 9.0559 8.6819 8.6820 

 
 
Table 7 

Values of [ 2
1 (1)-  2

1 (3)] for a cantilever Timoshenko beam with a tip mass. 

 c M=0.2 M=0.4 M=0.6 
present 0 2.5666 16.1755 41.6629 2.1343 15.3349 40.6289 1.8645 14.9380 40.1851 

Rossi and Laura [12] 2.567 16.177 41.673 2.135 15.335 40.632 1.865 14.940 40.190 
present 

0.1 
2.5556 15.4376 37.7985 2.1208 14.1701 34.0834 1.8512 13.4052 31.4396 

Rossi and Laura [12] 2.556 15.438 37.804 2.121 14.172 34.094 1.852 13.406 31.441 
 
 

Now consider a uniform simply supported Bernoulli-Euler beam carrying two symmetric concentrated masses 
(M1=M2=0.1) located at ζ =0.25 and 0.75 with two values of rotary inertia (c1=c2=0.01 and 0.1). In Table 6. , the 
first three frequencies are presented and are compared with exact closed-form solution proposed by Maiz et al. [14]. 
This comparison confirms the versatility of the proposed solution. 
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A cantilever Timoshenko beam with a tip mass and properties have been mentioned in [12] is considered, Table 
7. shows square value of the first three frequencies for various amounts of mass and rotary inertia. Comparison of 
the results reveals the high accuracy of presented solution. 

After validation of the proposed solution, effect of the various parameters on the frequencies can be investigated 
for all the boundary conditions. In what follows, all results are derived for a Timoshenko beam with dimensionless 
parameters as r=0.03 and s=0.05. Also, in order to be able to show all frequencies simultaneously, each frequency is 
divided to the corresponding value of a uniform one without any attachment ( ), in other words 

1 1( ) ( ) / ( )T j j j   . 
To study the effect of the value of translational inertia on the natural frequencies, consider simply supported and 

clamped-clamped beams with a concentrated mass located at ζ =0.25, one simple-clamped beam with a concentrated 
mass located at the middle section and a cantilever one with a tip mass; Fig. 3 shows the effect of value of mass on 
the first five frequencies. As shown for all boundary conditions, when the value of mass increases, all frequencies 
decrease. 
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Fig. 3 
First five frequency of simply supported and clamped-clamped beams with a concentrated mass located at ζ =0.25, a simple-
clamped beam with a concentrated mass located at middle section and a cantilever one with a tip mass. 

 

Now, a uniform beam with a concentrated mass (M=0.1) is considered. Value of the first two frequencies are 
depicted versus the position of the mass for variable values of rotary inertia for different boundary conditions in 
Figs. 4-7. As shown in these figures, when value of rotary inertia increases, value of the frequencies decreases. Figs. 
4-7 also show that in each mode, there are some points that when mass is located on them, there is no decrease in the 
frequencies for c=0; on the other hand for high value of inertia, maximum decrease in frequencies happens when the 
mass is located at these points. In other words, when mass located at these points, all decrease in corresponding 
frequency is effected by rotary inertia whereas translational inertia has no effect on corresponding frequency. These 
points are the nodes in corresponding mode, e.g. center point for even frequencies of symmetric beams. Also, there 
are some points that when the mass is located on them, value of decrease in frequency is independent from rotary 
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inertia. in other words, when the mass located at these points, all decreases in corresponding frequency is effected by 
translational inertia whereas rotary inertia has no effect on the corresponding frequency. These points are antinodes 
of corresponding mode shape, e. g. center point for odd frequencies of symmetric beams. 

To investigate stepped beams with concentrated masses, consider a simply supported shaft. The value of 
diameter decreases to half in ζ =0.8, with a gear (M=0.1) located before step; Fig. 8 shows the effect of the position 
of the gear and the value of its rotary inertia on the first four frequencies. Similar results with the case of uniform 
beam can be obtained. 
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Fig. 4 
First two frequency versus position of mass for variable values of rotary inertia, for a simply supported beam. 
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Fig. 5 
First two frequency versus position of mass for variable values of rotary inertia, for a clamped-clamped beam. 
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Fig.6 
First two frequency versus position of mass for variable values of rotary inertia, for a simple-clamped beam. 
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Fig. 7 
First two frequency versus position of mass for variable values of rotary inertia , for a cantilever beam. 
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Fig. 8 
First four frequency of simply supported stepped beam with a concentrated mass having rotary inertia. 

6    CONCLUSIONS 

Using transfer matrix method, vibration analysis of multi-step beam carrying concentrated masses was presented 
analytically. Both Bernoulli-Euler and Timoshenko beam theories was used to model a beam mathematically. 
Generally, in analyzing the vibration of the beams carrying attached masses, only the translational inertia of the 
mass is considered. In those cases, it is generally observed that natural frequencies decrease with respect to the 
values of the mass, except for the cases in which the masses are located at nodal points of the corresponding normal 
mode. On the other hand, when the model takes into account the rotary inertia of the mass too, all the natural 
frequencies of vibration decrease for all cases. The effect of the translational inertia has its highest influence over a 
natural frequency, when the mass is located at an antinode of the corresponding normal mode. In that situation the 
rotary inertia has no effect. The effect of the rotary inertia has its highest influence over a natural frequency when 
the mass is located at a node of the normal mode. In that situation the translational inertia has no effect. These 
results are valid for both uniform and multiple-stepped beams. 
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