
 

© 2014 IAU, Arak Branch. All rights reserved.                                                                                                    

 

Journal of Solid Mechanics Vol. 6, No. 4 (2014) pp. 334-346 

Nonlocal DQM for Large Amplitude Vibration of Annular 
Boron Nitride Sheets on Nonlinear Elastic Medium 

A. Ghorbanpour Arani 1,2,*, R. Kolahchi1, S.M.R. Allahyari1 
1Faculty of Mechanical Engineering, University of Kashan, Kashan , Islamic Republic of Iran 
2Institute of Nanoscience & Nanotechnology, University of Kashan, Kashan, Islamic Republic of Iran 

Received 2 June 2014; accepted 4 August 2014 

 ABSTRACT 

 One of the most promising materials in nanotechnology such as sensors, actuators and 
resonators is annular Boron Nitride sheets (ABNSs) due to excelled electro-thermo-
mechanical properties. In this study, however, differential quadrature method (DQM) and 
nonlocal piezoelasticity theory are used to investigate the nonlinear vibration response of 
embedded single-layered annular Boron Nitride sheets (SLABNSs). The interactions 
between the SLABNSs and its surrounding elastic medium are simulated by nonlinear 
Pasternak foundation. A detailed parametric study is conducted to elucidate the influences 
of the nonlocal parameter, elastic medium, temperature change and maximum amplitude 
on the nonlinear frequency of the SLABNSs. Results indicate that with increasing nonlocal 
parameter, the frequency of the coupled system becomes lower. The results are in good 
agreement with the previous researches. 

                                                   © 2014 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 N recent years, a significant amount of research has been focused on nanostructured materials because of their 
interesting mechanical and physical properties. Carbon nanotubes (CNTs) have shown great potential for 

technological applications. It is well established that CNTs possess exceptional mechanical properties such as high 
strength to weight and stiffness to weight ratios, and enormous electrical conductivity [1]. However, their 
applications are limited in high strength and uniform electronic structures. This may be explained by the fact that the 
electrical properties of CNTs are unstable and range from metallic to semiconducting depending upon the radius and 
chirality of the tubes [2]. 

Boron nitride (BN) nanotubes, unlike CNTs, are all semiconductors with a constant wide band gap of 5.5 eV, 
when their diameter is greater than 9.5˚A. Also, small BN nanotubes show interesting size-dependent electronic and 
magnetic properties [3]. In the 1960s, Boron nitride sheets and relative structures in hexagonal state (h-BN) have 
been studied experimentally. It has been found that BN exists in several forms: fibers, nanomesh, nanotubes and 
nanosheets. Different types of BN include armchair, zigzag and chairal. BN nanostructures exhibit electrically 
insulated properties, strong chemical and thermal stability but, at the same time, excellent thermal conductivities and 
mass sensing capabilities [4]. These properties of BNs make them promising candidate materials in a large variety of 
nanosized electronic and photonic devices such as sensors, actuators and resonators. Furthermore, BNs can be used 
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for reinforcement in composite structures due to their high thermal conductivity, high resistance to oxidation at 
elevated temperatures, and outstanding mechanical properties [4]. 

Conducting experiments with nanoscale size specimens is found to be difficult and expensive. Therefore, 
development of appropriate mathematical models for nanostructures is an important issue concerning application of 
nano-structures. Vibration of nanostructures is of great importance in nanotechnology. Understanding vibration 
behavior of nanostructures is the key step for many NEMS devices like oscillators, clocks and sensor devices. 

Behfar and Naghdabadi [5] studied the nanoscale vibrational analysis of a multi-layered graphene sheets 
(MLGS) embedded in an elastic medium. Liew [6] proposed a continuum-based plate model to investigate the 
vibration behavior of MLGSs that are embedded in an elastic matrix. Pradhan [7] presented analytical solutions for 
vibration of the nanoplates such as graphene sheets. They employed nonlocal theories to bring out the effect of the 
nonlocal parameter on natural frequencies of the nanoplates. Shen [8] presented nonlinear vibration behavior for a 
simply supported, rectangular, single layer grapheme sheet (SLGS) in thermal environments. Ansari [9] developed a 
nonlocal plate model which accounts for the small scale effects to study the vibrational characteristics of MLGSs 
with different boundary conditions embedded in an elastic medium. On the basis of the constitutive equations of 
nonlocal elasticity, the Mindlin type equations of motion coupled together through the van der Waals interaction are 
derived. Pradhan [10] studied the small scale effect on the vibration analysis of orthotropic SLGSs embedded in 
elastic medium using nonlocal elasticity theory and DQM. Transverse nonlinear vibration of orthotropic double-
layered grapheme sheets (DLGSs) embedded in a nonlinear elastic medium under thermal gradient was studied by 
Ghorbanpour Arani et al. [11], using nonlocal elasticity orthotropic plate theory and DQM. Mohammadi et al. [12] 
studied the free vibration behavior of circular and annular graphene sheets using the nonlocal elasticity theory based 
on Bessel functions and new version of DQM. 

All of the aforementioned researches are related to non-smart material structures. Salehi-Khojin and Jalili [13] 
derived the equation of motion for BN nanotubes-based composites subjected to combined electro-thermo-
mechanical loadings using three-dimensional equilibrium equations. Based on nonlocal piezoelasticity theory, 
transverse vibration and instability of embedded double-walled boron nitride nanotubes (DWBNNTs) conveying 
viscose fluid was studied by Khodami Maraghi et al. [14] using DQM. They showed that the electric field effect on 
the frequency is approximately constant, while it decreases with increasing temperature change. Electro-thermo-
mechanical nonlocal wave propagation analysis of embedded DWBNNTs conveying fluid was presented by 
Ghorbanpour et al [15] via strain gradient theory. Also, Ghorbanpour et al. [16] applied DQM and nonlocal 
piezoelasticity theory for electro-thermal vibration of fluid-conveying DWBNNTs embedded in an elastic medium 
using cylindrical shell theory. 

However, to date, no report has been found in the literature on vibration analysis of annular ABNSs. Motivated 
by these considerations, in order to improve optimum design of smart nanostructures, we aim to investigate the 
nonlinear nonlocal vibration analysis of SLABNSs embedded in a nonlinear elastic medium using DQM. The 
influences of nonlocal parameter, aspect ratio, elastic medium coefficients on the frequency of the coupled system 
are taken into account. 

2    BASIC EQUATIONS 

A schematic of SLABNS resting on a Pasternak foundation is shown in Fig. 1. The geometrical parameters of  the 
SLABNS are inner radius a  , outer radius b  and thickness h . The elastic medium containing spring constants of 
Winkler-type ( 1 2,w wK K ) and shear constants of Pasternak-type ( PG ).  
 

 
 
 
 
 
 
Fig. 1  
A schematic of SLABNS resting on a Pasternak 
foundation. 
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2.1 Nonlocal piezoelasticity theory 

Based on the theory of nonlocal piezoelasticity, the stress tensor and the electric displacement at a reference point 
depend not only on the strain components and electric-field components at the same position but also on all other 
points of the body. The nonlocal constitutive behavior for the piezoelectric material can be given as follows [17, 18] 
 

( ) ( , ) ( ),nl l
ij ij

v
x x x dV x x V            (1) 

( , ) ( ),nl l
k k

v
D x x D dV x x V          (2) 

 
where nl

ij  and l
ij  are, respectively, the nonlocal stress tensor and local stress tensor, nl

kD  and l
kD  are the 

components of the nonlocal and local electric displacement. ( , )x x   is the nonlocal modulus. x x  is the 

Euclidean distance, and 0 /e a l   is defined that l is the external characteristic length, 0e  denotes a  constant 

appropriate to each material, and a  is an internal characteristic length of the material. Consequently, 0e a  is a 
constant parameter which is obtained with molecular dynamics, experimental results, experimental studies and 
molecular structure mechanics. The constitutive equation of the nonlocal elasticity can be written as [18] 
 

2(1 ) ,nl l
ij ij         (3) 

 
where the parameter 2

0( )e a  denotes the small scale effect on the response of structures in nanosize, and 2 is 
the Laplacian operator in the above equation. Similarly, Eq. (2) can be written to as: 
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2.2 Motion equations 

Based on the classical plate theory (CPT) which satisfy Kirchhoff assumption, displacement field is represented as 
[19] 
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where ( , ,r zu u u ) denote the total displacements of a point along radial ( r ), circumferential ( ) and axial ( z ) 

directions and ( 0 0 0, ,u v w ) are the displacements of the same points on the mid-plane. Using Eqs. (5)-(7), the 
nonlinear mechanical strains can be written in term of displacements as: 
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Constitutive equations for SLABNSs can be expressed as follows [15] 
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where      , , D  and  E  are classical stress, strain, electric displacement and electric field tensors, respectively. 

Also,    ,C h  and    denote elastic stiffness, piezoelectric and dielectric coefficients matrix, respectively. 

Considering radial polarization for SLABNS and using Eqs. (5)-(7), the above equations can be rewritten as: 
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where , , rE    and    are Young’s  modulus, Poisson’s  ratio, radial thermal expansion coefficient and 

circumferential thermal expansion coefficient, respectively. Also rE  in term of electric potential ( ) is given as 
follow 
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The total electrostatic (U ) and kinetic ( K ) energies of the SLABNS can be expressed as: 
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where BN  is density of SLABNS. The external work (W ) due to surrounding elastic medium is given as: 
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where 1wK , 2wK  and pG  are respectively, linear Winkler coefficient, nonlinear Winkler coefficient and Pasternak 

coefficient. The motion equations of embedded SLABNS can be derived by Hamilton’s principles as follows 
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  0.K U W dt      
 

   (19) 
 

Substituting Eqs. (16)-(18) into Eq. (19), the following motion equations can be derived 
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where the force resultants ( , , )rr rN N N  and the moment resultants ( , , )rr rM M M  can be defined as: 
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Furthermore, 0 2( , )I I are the mass moments of inertia which can be represented as: 
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Using the nonlocal piezoelasticity theory and Eq. (13), the nonlocal stress resultant can be rewritten as: 
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where G  is shear  modulus. Finally, substituting Eqs. (28) and (29) into Eqs. (20)-(23), yields 
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3    DQM 

In the DQM, the derivatives of a function are approximated with weighted sums of the function values at a group of 
grid points. Therefore, set of PDEs are converted to set of algebraic equations. For implementation of the DQM 
approximation, consider a function ( , )f R  which has the field on a circular domain ( 0 2   ) with rn n grid 
points along r  and   axes. According to DQM, the rth derivative of a function ( , )f R  can be defined as [12, 20] 
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where ijC  are weighting coefficient and defined as: 
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where ( )iM  is presented as: 
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The weighting coefficients for the second, third and fourth derivatives are defined as: 
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In a similar method, the weighting coefficients in  -direction can be obtained. The coordinates of Chebyshev–
Gauss–Lobatto grid points are chosen as: 
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   (42) 

 
where rN  and N  are number of grid points in radial and circumferential directions, respectively. Also, the 
clamped boundary condition in DQM form can be written as follows 
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Applying DQM to Eqs. (32)-(35), yield the following matrix equation 
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where  M  is the mass matrix,  LK  is the linear stiffness matrix,  NLK  is the nonlinear stiffness matrix and   is 

nonlinear frequency of the system. Also,  bY  and  dY  are boundary and domain points of the displacement which 

can be defined as: 
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This nonlinear equation can now be solved using a direct iterative method to obtain the nonlinear frequency of 

the SLABNS. 

4    NUMERICAL RESULTS AND DISCUSSION 

The results presented here are based on the following data used for geometry and material properties of SLABNS 
[11, 16 and 21]:  
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In order to show the effects of nonlocal parameter, surrounding elastic medium and temperature change, the 

frequency reduction percent and nonlinear frequency ratio are defined as follows 
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In the absence of similar publications in the literature covering the same scope of the problem, one can not 

directly validate the results found here. However, the present work could be partially validated based on a simplified 
analysis suggested by Mohammadi et al. [12] on vibration of the annular graphene sheets. For this purpose, an 

annular graphene sheet with 1.06 TPaE  , 0.33  , 32300 /Kg m  , 0.34 nmh  , 1 10r nm  is considered. 
Assuming CPT for vibration of the annular graphene sheet and ignoring the nonlinear elastic medium, electric field 
and electric displacement in Eqs. (3) and (4), the results obtained here are compared with those of [12]. The results 
are shown in Table 1. in which dimensionless frequency (i.e. 2

1 11/r h D   ) for different nonlocal parameters 

and two boundary conditions ( i.e. simply support and clamped support) are shown. As can be seen, the results of the 
present work have a good agreement with the Refs. [12], indicating validation of the present study. 

The convergence and accuracy of the DQM in evaluating the dimensionless nonlinear frequency of the SLABNS 
is shown in Table 2. for different nonlocal parameters. Fast rate of convergence of the method are quite evident and 
it is found that twelve DQM grid points can yield accurate results.  
 
 
Table 1 
Comparison of the present results with annular graphene sheets for the first natural frequency 

Nonlocal parameter 
( 0 ( )e a nm ) 

Simply support  Clamped support 

Mohammadi et al. [12] Present work  Mohammadi et al. [12] Present work 
0    4.9345 4.9345 10.2158 10.2158 
0.5 4.8997 4.8995  10.1283 10.1285 

   1       4.7979 4.7980    9.8784   9.8789 
1.5 4.6409   4.64011   9.4999   9.5002 
2     4.4455 4.4459   9.0348   9.0353 

 
 
 
Table 2 
Convergence behavior and accuracy of the dimensionless nonlinear frequency against the number of DQM grid points 
Number of grid points ( rN ) Nonlocal parameter ( 0 ( )e a nm ) 

0  5.0  1  5.1  2  
5 1.6523 0.4140 0.1509 0.1437 0.0984 
7 1.7469 0.5491 0.2249 0.2094 0.1136 
9 1.8215 0.6202 0.3324 0.2419 0.1573 

11 1.8618 0.6586 0.3573 0.2617 0.1731 
12 1.8619 0.6588 0.3574 0.2618 0.1733 
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Fig. 2 illustrates the FRP versus the nonlocal parameter for four cases including: 
Case1: linear vibration analysis of SLABNS 
Case2: Nonlinear vibration analysis of SLABNS 
Case3: linear vibration analysis of SLAGS 
Case4: Nonlinear vibration analysis of SLAGS 
As can be seen, the FRP increases with increasing  . It means that with increasing  , the frequency of the 

coupled system becomes lower. This is due to the fact that the increase of nonlocal parameter decreases the 
interaction force between SLABNS atoms, and that leads to a softer structure. It is also concluded that the FRP (or 
frequency) of SLABNS is lower (or higher) than SLAGS. It is due to the fact that SLABNSs are subjected to the 
electric field and thermo-mechanical loading while SLAGSs are subjected to thermo-mechanical loading only. On 
the other hand, the electric field in SLABNS can increase the frequency of the system. Hence, application of 
SLABNS in nanostructures based vibration analysis is better than SLAGS. Furthermore, the FRP of SLABNS and 
SLAGS in nonlinear vibration response is lower than linear one. It is due the fact that in nonlinear analyzing the 
accuracy of the obtained results is higher than linear one.  

The effect of elastic medium on the FRP versus the nonlocal parameter of SLABNS, respectively is shown in 
Fig. 3. Three different cases of elastic medium are considered. Case 1, Case 2 and Case 3 depict the (i) without 
elastic medium (ii) with Winkler medium (iii) with Pasternak medium, respectively. As can be seen, the FRP (or 
frequency) increases (or decreases) with increasing nonlocal parameter. It can be observed that the FRP for Cases 1 
and 3 is maximum and minimum, respectively. In the other words, the frequency of the system for the case of 
SLABNS embedded in elastic medium is higher than other cases. It is because considering elastic medium increases 
the stiffness of the system. It is also obvious that the FRP (or frequency) of the Case 3 is lower (or higher) than Case 
2. It is due to the fact that in Winkler medium, a proportional interaction between pressure and deflection of 
SLABNS is assumed, which is carried out in the form of discrete and independent vertical springs. Where as, 
Pasternak medium considers not only the normal stresses but also the transverse shear deformation and continuity 
among the spring elements. 

Fig. 4 demonstrates the influence of thermal gradient on the FRP with respect to the nonlocal parameter. It could 
be said however, that FRP increases slightly as thermal gradient is increased. This is perhaps because increasing 
thermal gradient decreases the structure stiffness. In addition, the effect of thermal gradient on the FRP becomes 
more prominent at higher nonlocal parameter. The effect of nonlocal parameter on the NFR versus maximum 
amplitude of the SLABNS is plotted in Fig. 5. As can be seen, NFR increase with increasing maximum amplitude. 
Furthermore, the NFR (or linear frequency) is increased (or decresed) with increasing nonlocal parameter. This is 
most likely due to the fact that the increase of nonlocal parameter decreases the interaction force between SLABNS 
atoms, and that leads to a softer structure. Fig. 6 shows the effect of elastic medium on the NFR as a function of the 
maximum amplitude. Three cases for elastic medium is considered the same as Fig. 3. Obviously, the effect of 
elastic medium type on the NFR is similar to FRP in Fig. 3. It is also found that the elastic medium effect of the 
NFR becomes more remarkable at higher maximum amplitude. The effect of temperature change on the NFR versus 
the maximum amplitude is depicted in Fig. 7. Increasing temperature change decreases the structure stiffness and 
that leads to increase (or decreases) of the NFR (or linear frequency). Moreover, the change rate of the NFR 
becomes more prominent with increasing maximum amplitude.  

 
 
 

 

 
 
 
 
 
 
 
 
 

Fig. 2  
FRP versus the nonlocal parameter for linear and nonlinear 
vibration of SLABNS and SLAGS. 
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Fig. 3  
The effect of elastic medium on the FRP versus the nonlocal 
parameter. 
 

 

 

 
 
 
 
 
 
 
 
Fig. 4 
The effect of thermal gradient on the FRP versus the 
nonlocal parameter. 
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Fig. 5 
The effect of nonlocal parameter on the NFR versus 
maximum amplitude. 

 
 
 

 

 
 
 
 
 
 
 
 
 

Fig. 6  
The effect of elastic medium on the NFR versus maximum 
amplitude. 
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Fig. 7  
The effect of temperature change on the NFR versus the 
maximum amplitude. 

5    CONCLUSIONS 

Based on nonlocal piezoelasticity theory, nonlinear vibration response of SLABNSs surrounded by Pasternak 
medium was investigated. Electro-thermo-mechanical coupled motion equations were solved using DQM in order to 
obtain the nonlinear frequency of the system. The effects of the nonlocal parameter, elastic medium, temperature 
change and maximum amplitude on the nonlinear frequency of the SLABNSs were taking into account. Numerical 
results show that the frequency of SLABNS was higher than SLAGS. It was also concluded that the FRP of 
SLABNS and SLAGS in nonlinear vibration response was lower than linear one. Furthermore, with increasing 
nonlocal parameter, the frequency of the coupled system becomes lower. In addition, considering elastic medium 
increases the stiffness of the system which leads to higher frequency. Moreover, increasing temperature change 
increases the NFR. The results of this study were validated as far as possible by Ref. [12]. This work was presented 
in order to design the SLABNSs based on nano-optomechanical and nano-electro-mechanical systems. 
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