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 ABSTRACT 

 This paper deals with free vibration analysis of thick Laminated curved panels with 

finite length, based on the three-dimensional elasticity theory. Because of using two-

dimensional generalized differential quadrature method, the present approach makes 

possible vibration analysis of cylindrical panels with two opposite axial edges 

simply supported and arbitrary boundary conditions including Free, Simply 

supported and Clamped at the curved edges. The material properties vary 

continuously through the layers thickness according to a three-parameter power-low 

distribution. It is assumed that the inner surfaces of the FG sheets are metal rich 

while the outer surfaces of the layers can be metal rich, ceramic rich or made of a 

mixture of two constituents. The benefit of using the considered power-law 

distribution is to illustrate and present useful results arising from symmetric and 

asymmetric profiles. The effects of geometrical and material parameters together 

with the boundary conditions on the frequency parameters of the laminated FG 

panels are investigated. The obtained results show that the outer FGM Layers have 

significant effects on the vibration behavior of cylindrical panels. This study serves 

as a benchmark for assessing the validity of numerical methods or two-dimensional 

theories used to analysis of laminated curved panels. 
                                                            © 2016 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 UNCTIONALLY graded cylindrical panels, as important structural components, have widely been used in                       

different branches of engineering such as mechanical, energy and aerospace engineering. However, in 

comparison with the isotropic and conventional laminated cylindrical panels, the literature on the free vibration 

analysis of FG cylindrical panels is relatively scarce. In addition, in the most of the existing researches in this 

regards, single layer FG cylindrical panels have been analyzed. In the following, some of these research works are 

briefly reviewed. Due to the mismatch of stiffness properties between the face sheets and the core, sandwich plates 

and panels are susceptible to face sheet/core debonding, which is a major problem in sandwich construction, 

especially under impact loading [1]. Various material profiles through the functionally graded plate and panel 
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thickness can be illustrated by using three-parameter power-low distribution. In fact, by using this power-low 

distribution, it is possible to study the influence of the different kinds of material profiles. Recently, Viola and 

Tornabene [2] used three-parameter power-low distribution to study the dynamic behavior of functionally graded 

parabolic panels of revolution. Though there are research works reported on general sandwich structures, very little 

work has been done to consider the vibration behavior of FGM sandwich structures [3,4]. Li et al. [5] studied free 

vibrations of FGSW rectangular plates with simply supported and clamped edges. Zenkour [6,7] presented a two-

dimensional solution to study the bending, buckling and free vibration of simply supported FG ceramic-metal 

sandwich plates. Kamarian et al. [8] studied free vibration of FGSW rectangular plates with simply supported edges 

and rested on elastic foundations using differential quadratic method. The natural frequencies of FGM circular 

cylindrical shells are investigated [9], which was later extended to cylindrical shells under various end supporting 

conditions [10]. Patel et al. [11] carried out the vibration analysis of functionally graded shell using a higher-order 

theory. Pradyumna et al. [12] studied the free vibrations analysis of functionally graded curved panels by using a 

higher-order finite element formulation. Free vibration and dynamic instability of FGM cylindrical panels under 

combined static and periodic axial forces were studied by using a proposed semi-analytical approach [13]. Elastic 

response analysis of simply supported FGM cylindrical shell under low-velocity impact was presented by Gang et 

al. [14]. Vibrations and wave propagation velocity in a functionally graded hollow cylinder were studied by Shakeri 

et al. [15]. They assumed the shell to be in plane strain condition and subjected to an axisymmetric dynamic loading. 

The free vibration of simply supported, fluid-filled cylindrically orthotropic functionally graded cylindrical shells 

with arbitrary thickness was investigated by Chen et al. [16]. Recently, Tornabene [17] used four-parameter power-

law distribution to study the dynamic behavior of moderately thick functionally graded conical and cylindrical shells 

and annular plates. In his study, the two-constituent functionally graded isotropic shell was consisted of ceramic and 

metal, and the generalized differential quadrature method was used to discretize the governing equation. Static and 

free vibration analyses of continuously graded fiber-reinforced cylindrical shells using generalized power-law 

distribution are presented by Sobhani Aragh and Yas [18]. Also, these authors [19] investigated three-dimensional 

free vibration of functionally graded fiber orientation and volume fraction of cylindrical panels. Paliwal et al. 

[20,21] have investigated the free vibration of whole buried cylindrical shells with simply supported ends in contact 

with Winkler and Pasternak foundations using direct solution to the governing classical shell theory equations of 

motion. Yang et al. [22] have investigated the behavior of whole buried pipelines subjected to sinusoidal seismic 

waves by the finite element method. Cai et al. [23] have investigated free vibration of a cylindrical panel supported 

on Kerr foundation. Kerr model can be reduced to either a Pasternak model or a Winkler one by selecting certain 

values of foundation parameters. Gunawan et al. [24] examined the free vibrations of cylindrical shells partially 

buried in elastic foundations based on the finite element method. The shells are discretized into cylindrical finite 

elements, and the distribution of the foundation in the circumferential direction is defined by the expansion of 

Fourier series. Farid et al. [25] have studied three-dimensional temperature-dependent free vibration analysis of 

functionally graded material curved panels resting on two-parameter elastic foundation subjected in thermal 

environment. The curved panels was made of isotropic material, and in order to discretize the governing equations, 

the differential quadrature method in the thickness direction and the trigonometric functions in longitudinal and 

tangential directions in conjunction of the three-dimensional form of the Hamilton’s principle have been used. Free 

vibration and stability of functionally graded shallow shells according to a 2-D higher order deformation theory 

were investigated by Matsunaga [26]. Civalek [27] has investigated the nonlinear dynamic response of doubly 

curved shallow shells resting on Winkler–Pasternak elastic foundation using the harmonic differential quadrature 

(HDQ) and finite differences (FD) methods. 

To the authors’ best knowledge, Studies about free vibration of thick FGSW structures are very limited in 

numbers. Furthermore, this paper is motivated by the lack of studies in the technical literature concerning to the 

effect of the parameters of power-law distributions on the vibration behavior of functionally graded laminated 

curved panels. Frequency parameters are obtained by using numerical technique termed the generalized differential 

quadrature method (GDQM), which leads to a generalized eigenvalue problem. The differential quadrature method 

(DQM) is found to be a simple and efficient numerical technique for vibration analysis of structures [28-33]. 

2    FUNCTIONALLY GRADED SANDWICH PROPERTIES    

Consider an FGSW curved panel as shown in Fig. 1. A cylindrical coordinate system (r, θ, z) is used to label the 

material point of the panel. The panel has continuous grading of fiber reinforcement through radial direction. h, hc 
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and hs are the thickness of panel, core and face sheets, respectively.  In the present work, the fiber volume fraction of 

laminated curved panel is assumed as follows: 
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(1) 

 

where the power-law index p (0 )p    and the parameters b and c dictate the fiber variation profile through the 

radial direction of the panel. According to the above-mentioned relation the core of sandwich panel and the inner 

surfaces of the FG sheets are metal rich. The outer surfaces of the sheets can be metal rich, ceramic rich or made of a 

mixture of two constituents. The through-thickness variations of the fiber volume fraction of sandwich panel are 

shown in Figs. 2, 3, 4 and 5. 

 
  

 

 

 

 

 

Fig.1 

The sketch of a thick laminated curved panel with three-

parameter FG outer layers and setup of the coordinate 

system (two opposite axial edges simply supported and 

arbitrary boundary conditions at the curved edges). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Variation of the fiber volume fraction (Vc) through the 

thickness of the FG graded sheets (b=0, c=2). 

  

 

 

 

  

 

 

 

 

 

 

 

 

Fig.3 

Variation of the fiber volume fraction (Vc) through the 

thickness of the FG graded sheets (b=1, c=2). 
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Fig.4 

Variation of the fiber volume fraction (Vc) through the 

thickness of the FG graded sheets (b=1, c=6). 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 

Variation of the fiber volume fraction (Vc) through the 

thickness of the FG graded sheets (c=2). 

                                                                                                                          

The relevant material properties for the constituent materials are as follows [15]  

  Metal (Aluminum, Al): 

 

m70*109 Pa, 2702 Kg / m3, 0.3m mE       

   

Ceramic (Alumina, Al2O3): 

 

c380*109 Pa, 3800 Kg / m3, 0.3c cE       

3    GOVERNING EQUATIONS  

The mechanical constitutive relation that relates the stresses to the strains are as follows: 
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(2) 

 

In the absence of body forces, the governing equations are as follows: 
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Strain-displacement relations are expressed as: 
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(4) 

 

where ur , uθ and uz are radial, circumferential and axial displacement components, respectively. Upon substitution 

Eq. (4) into (2) and then into (3), the equations of motion in terms of displacement components with infinitesimal 

deformations can be written as: 
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(5) 

 

where coefficients Fij  are given in Appendix A. 

The boundary conditions at the concave and convex surfaces, r=ri  and ro , respectively, can be described as 

follows: 

 
0r rz r       (6) 

                                                  

In this investigation, three different types of classical boundary conditions at edges z=0 and Lz of the finite panel 

can be stated as follows:                                                                                                                                                              

Simply supported (S): 
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Clamped (C):  
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Free (F):  
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4    SOLUTION PROCEDURE    

For the curved panels with simply supported at one pair of opposite edges, the displacement components can be 

expanded in terms of trigonometric functions in the direction normal to these edges. In this paper, it is assumed that 

the edges θ=0 and θ=Ф are simply supported. Hence,  
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where m is the circumferential wave number,   is the natural  frequency and i ( 1  ) is the imaginary number. 

Substituting for displacement components from Eq. (10) into Eq. (5), and then using GDQ method  to discretize the 

equations of motion (Eq. 5), one can get the following equations [A brief review of GDQ method is given in 

Appendix B]: 
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In the θ direction: 
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In the z direction: 
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In the above-mentioned equations i=2,…, Nr-1 and j=2,…, Nz-1. ,r zA A
ij ij

 and ,r zB B
ij ij

 are the first and second order 

GDQ weighting coefficients in the r- and z-directions, respectively. Substituting for displacement components from 



                                                       Semi-Analytical Solution for Free Vibration Analysis of Thick Laminated ….                        340 
 

© 2016 IAU, Arak Branch 

Eq. (10) into Eq. (6), and then using GDQ  method  to discretize the boundary conditions, one can get the following 

equations: 
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where i=1 at r=ri and i=Nr at r=ro, and j=1,2,…,Nz. By following the same procedure the boundary conditions at 

z=0 and Lz stated in Eqs. (7-9), become 

Simply supported (S):  
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Clamped (C):  
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Free (F):  
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In the above equations i=2,…,Nr-1; also j=1 at z=0 and j=Nz at z=Lz. In order to carry out the eigenvalue 

analysis, the domain and boundary nodal displacements should be separated. In vector forms, they are denoted as 

{d} and {b}, respectively. Based on this definition, the discretized form of the equations of motion and the related 

boundary conditions can be represented in the matrix form as: 

Equations of motion, Eqs. (11-13): 
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Boundary conditions, Eq. (14) and Eqs. (15-17): 

 

       0K d K bbd bb   (19) 

 

Eliminating the boundary degrees of freedom in Eq. (18) using Eq. (19), this equation becomes,   
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where         -
-

1
K K K K Kdd db bb bd . The above eigenvalue system of equations can be solved to find the 

natural frequencies and mode shapes of the curved panel.  

5    NUMERICAL RESULTS AND DISCUSSION     

To verify the proficiency of presented method and three-parameter model for volume fraction of FG materials, 

several numerical examples are carried out for comparisons. The results of the presented formulations are given in 

the form of convergence studies with respect to Nr and Nz, the number of discrete points distributed along the radial 

and axial directions, respectively. To validate the proposed approach its convergence and accuracy are demonstrated 

via different examples. The obtained natural frequencies based on the three-dimensional elasticity formulation are 

compared with those of the power series expansion method for FGM curved panels [12, 25, 26]. In these studies the 

material properties of functionally graded materials are assumed as follows: 

Metal (Aluminum, Al): 

 

  70*109 Pa, 2702 Kg / m3, 0.3Em m m      

 

Ceramic (Alumina, Al2O3): 

 

380*109 Pa, 3800 Kg / m3, 0.3Ec c c      

      

Subscripts M and C refer to the metal and ceramic constituents which denote the material properties of the outer 

and inner surfaces of the panel, respectively. To validate the analysis, results for FGM cylindrical shells are 

compared with similar ones in the literature, as shown in Table 1. The comparison shows that the present results 

agreed well with those in the literatures. Besides fast rate of convergence of the method is quite evident, and it is 

found that only thirteen grid points (Nr= Nz=13) along the radial and axial directions can yield accurate results. 

Further validation of the present results for isotropic FGM cylindrical panel is shown in Table 2. In this Table, 

comparison is made for different Lz/R and Lz/h ratios, and as it is observed there is good agreement between the 

results. After demonstrating the convergence and accuracy of the present method, parametric studies for 3-D 

vibration analysis of thick FG sandwich curved panels with considering a three-parameter power-low distribution, 

length-to-mean radius ratio and different combinations of Free, Simply supported and Clamped boundary conditions 

at the curved edges, are computed. The boundary conditions of the panel are specified by the letter symbols, for 

example, S-C-S-F denotes a curved panel with edges θ=0 and   simply supported (S), edge z=0 clamped (C), and 

edge z= Lz free (F). The non-dimensional natural frequency, Winkler and shearing layer elastic coefficients are as 

follows:   

 

10h Emn mn c c    (21) 

 
where ρc,Ec and Gc represent the mass density, Young’s modulus and shear modulus of the ceramic, respectively. 

The influence of the index p on the natural frequency is shown in Figs. 6 and 7. According to these figures the 

frequency parameter of laminated panels with ceramic layers rich is more than the natural frequency parameter of 

the limit cases of homogeneous layers of metal. It should be noticed that with the increase of ceramic volume 

fraction, the frequency parameter of the panels does not increase necessarily, so by considering suitable amounts of 

power-law index p (0 )p    and the parameters b and c, one can get dynamic characteristics similar or better 

than the isotropic ceramic limit case for laminated FG curved panels. Fig. 6 shows that for p>3 and (0 1)b  , The 

discrepancy between the natural frequencies of the panels, increase with the increase of p for different types of 

boundary conditions. For p<1 and (0 1)b  , increasing of parameter b does not have significant effect on the 

amount of discrepancy between the natural frequencies of the panels. As can be seen from Fig. 7, with the increase 

of p, Firstly, the natural frequencies of the panels for different amounts of parameter c sharply increases and for the 

bigger amount of power-law index (p >3) decreases. 
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Table 1 

Comparison of the normalized natural frequency of an FGM composite curved panel with four edges simply supported 

( , 12(1 ))3 2
11 11R h D D E hm m m       . 

P (volume 

fraction index) 

 R/Lz     

 0.5 1 5 10 50 

0 Nr=Nz=5 69.9774 52.1052 42.7202 42.3717 42.2595 

 Nr=Nz=7 69.9722 52.1052 42.7158 42.3718 42.2550 

 Nr=Nz=9 69.9698 52.1003 42.7159 42.3700 42.2553 

 Nr=Nz=11 69.9700 52.1003 42.7160 42.3677 42.2552 

 Nr=Nz=13 69.9700 52.1003 42.7160  42.3677  42.2553 

 Ref. [12] 68.8645 51.5216 42.2543 41.908   41.7963 

0.2 Nr=Nz=5 65.1470 47.9393 39.1282 38.8010 38.7020 

 Nr=Nz=7 65.4449 48.0456 39.1008 38.7366 38.6834 

 Nr=Nz=9 65.4526 48.1340 39.0836 38.7568 38.6581 

 Nr=Nz=11 65.4304 48.1340 39.0835 38.7568 38.6580 

 Nr=Nz=13 65.4304 48.1340 39.0835 38.7568 38.6581 

 Ref. [12] 64.4001 47.5968 40.1621 39.8472 39.7465 

0.5 Nr=Nz=5 60.1196 43.5539 36.1264 35.8202 34.7341 

 Nr=Nz=7 60.2769 43.7128 36.1401 35.7964 35.0677 

 Nr=Nz=9 60.3574 43.7689 36.0944 35.7890 35.7032 

 Nr=Nz=11 60.3574 43.7688 36.0943 35.7891 35.7032 

 Nr=Nz=13 60.3574 43.7689 36.0944 35.7891 35.7032 

 Ref. [12] 59.4396 43.3019 37.287 36.9995 36.9088 

1 Nr=Nz=5 54.1034 38.5180 31.9860 30.7065 30.6336 

 Nr=Nz=7 54.6039 39.1477 32.1140 31.6982 31.5397 

 Nr=Nz=9 54.7141 39.1620 32.0401 31.7608 31.6877 

 Nr=Nz=11 54.7141 39.1621 32.0401 31.7608 31.6878 

 Nr=Nz=13 54.7141 39.1621 32.0401 31.7608 31.6877 

 Ref. [12] 53.9296 38.7715 33.2268 32.9585 32.875   
2 Nr=Nz=5 46.9016 34.7702 27.6657 27.4295 27.3725 

 Nr=Nz=7 47.9865 34.6980 27.5733 27.3389 27.2669 

 Nr=Nz=9 48.5250 34.6852 27.5614 27.3238 27.2663 

 Nr=Nz=11 48.5250 34.6851 27.5614 27.3239 27.2663 

 Nr=Nz=13 48.5250 34.6851 27.5614 27.3239 27.2662 

 Ref. [12] 47.8259 34.3338 27.4449 27.1789 27.0961 

 
Table 2 

Comparison of the normalized natural frequency of an FGM composite curved panel for various LZ/R and LZ/h ratios. 

   P (volume fraction index) 

   0 0.5 1 4 10 

LZ/h=2  LZ/R=0.5      

 Ref. [26]  0.9334 0.8213 0.7483 0.6011 0.5461 

 Ref. [25]  0.9187 0.8013 0.7263 0.5267 0.5245 

 Nr=Nz=5  0.9342 0.8001 0.7149 0.5878 0.5133 

 Nr=Nz=7  0.9249 0.8011 0.7250 0.5783 0.5298 

 Nr=Nz=9  0.9250 0.8018 0.7253 0.5790 0.5301 

 Nr=Nz=11  0.9249 0.8017 0.7253 0.5789 0.5300 

 Nr=Nz=13  0.9250 0.8018 0.7252 0.5790 0.5301 

 Ref. [26] LZ/R=1 0.9163 0.8105 0.7411 0.5967 0.5392 

 Ref. [25]  0.8675 0.7578 0.6875 0.5475 0.4941 

 Nr=Nz=5  0.8942 0.7531 0.6746 0.5741 0.4913 

 Nr=Nz=7  0.8851 0.7671 0.6912 0.5599 0.5074 

 Nr=Nz=9  0.8857 0.7666 0.6935 0.5531 0.5065 

 Nr=Nz=11  0.8857 0.7667 0.6934 0.5531 0.5063 

 Nr=Nz=13  0.8856 0.7667 0.6935 0.5532 0.5064 

LZ/h=5  LZ/R=0.5      

 Ref. [26]  0.2153 0.1855 0.1678 0.1413 0.1328 

 Ref. [25]  0.2113 0.1814 0.1639 0.1367 0.1271 

 Nr=Nz=5  0.2230 0.1997 0.1542 0.1374 0.1373 

 Nr=Nz=7  0.2176 0.1823 0.1624 0.1362 0.1233 

 Nr=Nz=9  0.2130 0.1817 0.1639 0.1374 0.1296 
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 Nr=Nz=11  0.2128 0.1816 0.1640 0.1377 0.1296 

 Nr=Nz=13  0.2129 0.1817 0.1640 0.1374 0.1295 

 Ref. [26] LZ/R=1 0.2239 0.1945 0.1769 0.1483 0.1385 

 Ref. [25]  0.2164 0.1879 0.1676 0.1394 0.1286 

 Nr=Nz=5  0.2066 0.1765 0.1567 0.1476 0.1409 

 Nr=Nz=7  0.2133 0.1843 0.1688 0.1377 0.1288 

 Nr=Nz=9  0.2154 0.1848 0.1671 0.1392 0.1301 

 Nr=Nz=11  0.2155 0.1847 0.1675 0.1392 0.1299 

 Nr=Nz=13  0.2155 0.1847 0.1671 0.1392 0.1302 

 

 
 

 

 

 

 

 

 

 

Fig.6 

The first non-dimensional natural frequency of FG 

laminated curved panels versus p for different amounts of b 

and types of boundary conditions including S-C-S-C, S-C-

S-S, S-F-S-F (c=1,  R/h=Lz/R=10, Ф=180°). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7 

The first non-dimensional natural frequency of FG 

laminated curved panels versus p for different amounts of c 

and types of boundary conditions including S-C-S-C, S-C-

S-S, S-F-S-F (R/h=Lz/R=10, Ф=180°). 

 

 
In Fig. 8 the effects of variation of circumferential wave numbers (m) on the frequency parameters of S-C-S-C 

sandwich curved panel for different values of Lz/R ratio are demonstrated. According to Fig. 8, the general behavior 

of the frequency parameters of sandwich panels for all Lz/R ratios is that the frequency parameters converge only in 

the range beyond that of the fundamental frequency parameters. This means that the effects of the Lz/R ratios are 

more prominent at low circumferential wave numbers, particularly those in the range before that of the fundamental 

frequency parameters, than at high circumferential wave numbers. It is also seen from Fig. 8 that the frequency 

parameter decreases rapidly with the increase of the length-to-mean radius ratio (Lz/R) and then remains almost 

unaltered for the long cylindrical panel. 
 

 

 

 

 

 

 

 

 

Fig.8 

Variation of circumferential wave numbers (m) with the 

frequency parameters of S-C-S-C FG laminated curved 

panels (p=1, c=1, b=0.4, R/h=10, Ф=180°). 
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6   CONCLUSIONS 

In this research, free vibration of a thick finite FG layers panel is investigated based on three-dimensional theory of 

elasticity. Three complicated equations of motion for the curved panel under consideration are semi-analytically 

solved by two-dimensional generalized differential quadrature method (2-D GDQM). Using the 2-D GDQ method 

along the radial and axial directions, allows one to deal with curved panel with arbitrary thickness distribution of 

material properties in an exact manner.  The material properties vary continuously through the layers thickness 

according to a three-parameter power-low distribution. It is assumed that the inner surfaces of the FG sheets are 

metal rich while the outer surfaces of the layers can be metal rich, ceramic rich or made of a mixture of two 

constituents. The effects of different geometrical parameters, different profiles of fiber volume fraction and three 

parameters of power-law distribution on the vibration characteristics of the laminated curved panels are investigated. 

From this study, some conclusions can be made: 

 Results show that the frequency parameter of laminated panels with ceramic layers rich is more than the 

natural frequency parameter of the limit cases of homogeneous layers of metal. It should be noticed that 

with the increase of ceramic volume fraction, the frequency parameter of the panels does not increase 

necessarily, so by considering suitable amounts of power-law index p (0 )p    and the parameters b 

and c, one can get dynamic characteristics similar or better than the isotropic ceramic limit case for 

laminated FG curved panels. 

 It is observed that for p>3 and (0 1)b  , The discrepancy between the natural frequencies of the panels, 

increase with the increase of p for different types of boundary conditions. For p<1 and (0 1)b  , 

increasing of parameter b does not have significant effect on the amount of discrepancy between the natural 

frequencies of the panels.  

 It is observed that with the increase of p, the discrepancy between the natural frequencies of the panels                                                  

for different amounts of parameter c sharply decreases. 

 It can be found that the general behavior of the frequency parameters of sandwich panels for all Lz/R ratios 

is that the frequency parameters converge only in the range beyond that of the fundamental frequency 

parameters. This means that the effects of the Lz/R ratios are more prominent at low circumferential wave 

numbers, particularly those in the range before that of the fundamental frequency parameters, than at high 

circumferential wave numbers. 

 The frequency parameter decreases rapidly with the increase of the length-to-mean radius ratio (Lz/R)  and 

then remains almost unaltered for the long cylindrical panels. 
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APPENDIX B 

In GDQ method, the nth order partial derivative of a continuous function ( , )f x z  with respect to x at a given point 

xi can be approximated as a linear summation of weighted function values at all the discrete points in the domain of 

x, that is  

 

 
 

,
( 1,2,..., , 1,2,..., 1),

1

i

ik

n Nf x z nc f i N n Nx ziknx k


   

 

  

 

(B.1) 

 

where N is the number of sampling points and nc
ij

is the xi dependent weight coefficient. To determine the weighting 

coefficients nc
ij

, the Lagrange interpolation basic functions are used as the test functions, and explicit formulas for 

computing these weighting coefficients can be obtained as [34, 35] 
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and for higher order derivatives, one can use the following relations iteratively 
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A simple and natural choice of the grid distribution is the uniform grid-spacing rule. However, it was found that 

nonuniform grid-spacing yields result with better accuracy. Hence, in this work, the Chebyshev-Gauss-Lobatto 

quadrature points are used [35] 
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