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 ABSTRACT 

 In this paper, the basic constitutive equations and equations of motion are derived to describe 
the behavior of thermoelastic porous piezoelectric medium by using Biot’s theory and the 
theory of generalized thermoelasticity with on relaxation time (Lord-Shulman). The electrical 
enthalpy density function is derived in the general coordinates. Also, clear definitions for the 
poroelastic modulus, electrical, thermal and additional mixed coefficients are embedded. The 
uniqueness of the solution for the complete system of equations is presented.                                  

       © 2012 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 HE porous media is made of a solid fully saturated with a fluid. There are solid media perforated by a 
multitude of small holes (called pores) filled with a fluid. When the wavelength is large in comparison with the 

size of the pores, rather than regarding such a medium as a heterogeneous medium, it is legitimate to use, at least 
locally, the theory of homogenization. This leads to Biot’s model [1, 2, and 3] which involves as unknown not only 
the displacement field in the solid but also the displacement field in the fluid. Porous materials are widely used in 
different categories such as the sound and vibration absorption, the field of geo-mechanics and biological systems 
such as brain, lungs and bones. 

Piezoelectric materials produce an electric field when deformed and undergo deformation when subjected to an 
electric field. Piezoelectric materials are integrated with structural systems to form a class of smart structures and 
they have wide-spread applications in many areas such as electronic technology, control of mechanical systems, 
medical appliance and other modern industrial fields. 

Despite the significant progress made in enhancing the coupling characteristics between the electrical and 
mechanical properties in piezoelectric materials, monolithic piezoelectric materials generally exhibit limitation such 
as brittleness. Due to brittleness nature of the piezoelectric ceramics and possible defects of impurity, cavities and 
microcracks, failure of devices take place easily under mechanical or electrical loading. In order to overcome this 
limitation, material density is reduced through the addition of controlled porosity, where the resulting porous 
piezoelectric materials (PPM) are widely used for applications such as low frequency hydrophones, miniature, 
accelerometers, vibratory sensors and contact microphones. Due to lower acoustic impedance, these materials can be 
used to improve mismatch of acoustic impedances at the interfaces of medical ultrasonic imaging devices or 
underwater sonar detectors. Several piezoceramic constructive elements are porous especially when they are hot 
pressured or cast under pressure [4].  
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A number of papers are published by Biot to define the concepts of porous materials in decades 40 to 60 [1, 2, 3 
and 5]. In 1964, Mandl presented skeletal volume change in fluid-filled porous body under stress [6]. The 
dependence of the elastic properties of a porous rock on the compressibility of the pore fluid was investigated by 
Brown and Korringa [7]. Some studies about compressibility of porous rocks and compression between the grain 
and void in fractured and porous rock have been made by Zimmerman et al. [8, 9]. Garg and Nayfeh developed 
constitutive relations for liquid and/or gas saturated elastic porous media using the theory of interacting continua 
[10]. Pride et al. derived some equations for porous isotropic media and Thompson and Willis reformulated the 
equations of anisotropic poroelasticity [11, 12]. In 1993, Albert compared the propagation characteristics within 
water-filled and air-filled materials through the use of Biot’s theory [13]. A survey article about the bone 
poroelasticity was published by Cowin [14]. In 2003, Tod developed a theory which described an anisotropic 
fracture in poroelastic effective medium [15]. Some characteristics of porous piezoelectric ceramics such as 
electromechanical properties were proposed by Wersing et al. [16] and Dunn and Taya [17]. Also, thermoelastic 
theory of the above-mentioned materials was stated by Kurashige [18] and Ciarletta [19]. Ghassemi and Diek 
derived the equations of porothermoelasticity for swelling shale in 2002 [20]. A study with finite element approach 
on piezo-poroelastic sound package was performed by Batifol et al. to show the active control on acoustic insulation 
at low frequencies [21]. Theory of generalized porothermoelasticity was presented by Youssef in 2007, which 
described the generalized thermoelasticity in a porous materials with one relaxation time, the so-called ‘’Lord-
Shulman’’ model [22]. Few years later, Vashishth and Gupta investigated vibrations of porous piezoelectric ceramic 
plates [4]. Recently, new model for piezoelectric porous medium is presented by Nasedkin [23], and Zielinski stated 
the fundamentals of multiphysics modelling of piezo-poro-elastic structures [24]. In 2010, Sharma presented a paper 
which described the piezoelectric effect on the velocities of waves in an anisotropic piezo poroelastic medium [25]. 
Also some text books pertinent to these studies such as “Theory of linear poroelasticity” [26], “Poromechanics” 
[27], “Mechanics and physics of porous solids” [28], “Fundamentals of Piezoelectricity” [29] and “Thermal stresses: 
advanced theory and applications” [30] were published. 
    The motivation for this study comes from the lack of analytical approach in piezo poro materials in other studies 
published before, so an attempt is made to formulate the theory of generalized piezo-poro-thermoelasticity and 
provide some expressions for characteristics of phases in PPM materials. 

2    BASIC EQUATIONS AND DEFINITIONS OF THE THEORY 

In the present study, the poroelastic medium is assumed to consist of a porous solid matrix with its interconnected 
pores filled with a single compressible fluid, which is assumed to be without viscosity. The deformations are 
assumed small enough, which guarantee the linearity of the mechanical processes. It also represents a case of no 
relative motion of fluid in the pores to the solid frame (skeleton) such that dissipation due to fluid friction 
disappears. The state of stress at a point of the bulk material is [22] 
 

(1 ) *ij ij ijp       (1) 

 
where   is the porosity of the material. Now let  
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f p

   
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From which it follows that 
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ij ij ij      (3) 

 

The displacements of the phases are s
iu  for the skeleton and f

iu  for the fluid. For the skeleton, we have [22] 
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and for the fluid phase, we have   
 

,
f f

i iu   (5) 

 

The summation convention is valid for repeated indices in the above equations. Let *s and *f denote the 

densities of the solid particles and the interstitial fluid. Then, the density of aggregate is given by  
* *(1 ) s f      or  s f     where *(1 )s s    and *f f   represent the densities of the two phases 

per unit volume of bulk. The mass coefficients are expressed in terms of the densities by means of 11 12
s     

and 22 12
f     , where the dynamic coupling coefficient 12 is expressed as *

12 (1 )f
     which  is 

tortuosity of pores [22, 31, and 32]. 
Omitting the displacement electric current, the governing electro-dynamic Maxwell equations for a piezoelectric 

elastic material are given by [33] 
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The kinetic energy takes the form [22] 
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1

( 2 )
2

s s f f s f
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By Lagrange’s equations, we obtain [1] 

 

11 12 ,
s f s s
i i ij j iu u b      (8) 

 

12 22 ,
s f f f f
i i j iu u b      (9) 

 
where Eqs. (8) and (9) are written in the absence of dissipation term related to Darcy’s law. The absence of 
dissipation in Eqs. (8) and (9) implies that the skeletal frame is elastic and the pore-fluid is non-viscous or there is 

no fluid motion in the pores relative to the frame. The s
ib  and f

ib are the body forces. 

The first law of thermodynamics states that 
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(10) 

 

where   is the internal energy per unit mass of the bulk, ,s f
i iq q are the heat fluxes, ,s fh h are the heat sources in the 

solid and the liquid, and in  is the normal to the surface S that bounds the volume bulk V [22, 30]. 

Using Gauss’s integral theorem with Eqs. (8) and (9), we get 
 

, , , ,( ) s f s s f f
ij ij s f i i i i i i i i i ih h q q D D             (11) 

 
Let  be the combination of the internal energy and electrical energy and the entropy (Helmholtz’s function): 

1
( ) ( )s s f f s s f f
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Differentiating Eq. (12) with respect to time gives 
 

s s s s f f f f s s s s f f f f
i t i t i i i iT S T S T S T S E D E D E D E D            (13) 

 

where , , , ( , )n n n n
i iT S E D n s f are the temperatures, the entropy, the electric field and the electric displacement for 

each phase per unit mass of aggregate, respectively. 
By substituting Eq. (11) into (13) and using the Maxwell equations we obtain: 

 

, ,( )f s f s s s s f f f f s s f f
ij ij s f i i i i i i i ih h q q T S T S T s T S E D E D                  (14) 

 

Now we will assume that  depends on the variables ( , , , , , )f s f s f
ij i iE E T T  , i.e. 
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If we differentiate the above relation with respect to time and using the chain rule, we obtain 
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If we compare Eqs. (16) and (14) with each other, we find 
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, ( ) 0f f f f s f
i iq h T S K T T       (23) 

, ( ) 0s s s s s f
i iq h T S K T T       (24) 

 
and for linearity, we let 0

s fT T T  . Hence, we get 

 

, 0 ( ) 0s s s s f
i iq h T S K T T      

, 0 ( ) 0f f f s f
i iq h T S K T T      

 

where the term ( )s fK T T represents the inter phase heat transfer resulting from the unequal temperature of the 
phases at every point of the medium, and K is the inter phase thermal conductivity [22]. 

The generalized Fourier’s law of heat conduction is [22] 
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*
0 , ,(1 )s s s s s s s

i i i iq q k T k T        (25) 

*
0 , ,

f f f f f f f
i i i iq q k T k T       (26) 

 

where *sk and *fk are the thermal conductivity of the solid particles and the interstitial fluid and sk and fk are the 

thermal conductivity of the phases. Also 0
s and 0

f are the solid and liquid relaxation times, respectively. 

The following potential function   is the most general form of Gibbs function which can be written as: 
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(27) 

 
Those above matrix coefficients are poroelastic modulus, electrical, thermal and additional mixed coefficients 

which are introduced below in details: 
[ ] ijklA C     : Elastic stiffness constants. [22, 30] 

[ ]B b          : The pressure to be exerted on fluid to push its unit volume into the porous matrix. [4, 27, 28] 
[ ] ijC m        : Elastic coupling between the two phases of porous aggregate. [4] 

[ ] kijD e       : Piezoelectric constants of solid phase.  

[ ] kijE         : Piezoelectric coupling of solid phase on fluid phase in porous aggregate.  

{ } iF          : Piezoelectric coupling of fluid phase on solid phase in porous aggregate.  

{ } iG           : Piezoelectric constant of fluid phase.  

[ ] ijH         : Dielectric constant of solid phase.   

[ ] ijI v         : Dielectric constant of fluid phase.  

[ ] ijJ          : Dielectric coupling between the two phases of porous aggregate.  

[ ] ijK B       : Thermoelastic coefficient of solid phase in existence of fluid phase.  

[ ] ijL C       : Thermoelastic coefficient of fluid phase in existence of solid phase.  

[ ]M M      : Thermoelastic coupling of solid phase on fluid phase. 
[ ]N N        : Thermoelastic coupling of fluid phase on solid phase.  

{ } s
iO P       : Pyroelectric coefficient of solid phase.  

{ } fs
iP P     : Pyroelectric coupling of fluid phase on solid phase. 

{ } sf
iQ P      : Pyroelectric coupling of solid phase on fluid phase. 

{ } f
iR P       : Pyroelectric coefficient of fluid phase. 

[ ]S S          : Thermal coefficient for solid phase  
[ ]T T        : Thermal coefficient for fluid phase  
[ ]U U         : Thermal coupling of phases [22] 

We should notice in Eq. (27) 0
s sT T    and 0

f fT T    such that
0

1
s

T


   and 

0

1
f

T


 and in the 

reference state we have  0
s fT T T   [22]. 

The constants for a transversely isotropic Pyroelectric porous medium are expressed as: 
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It is useful to remember s  and f  are thermal expansion of solid and fluid phase, respectively and sf  and 
fs are thermal expansion coefficient coupling between two phases. 
By using Eqs. (17) - (22) and (27) we can express the constitutive equations such as stress, electrical 

displacement and entropy for each phase. 

( )f s f s f
ij ijkl kl ij ijk i ijk i ij ij ijC m e E E B C               (28) 

f f s f s f
ij ij i i i ib m E E M N            (29) 
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s f s f s s fs f
i ijk jk i ij i ij j i iD e E E P P              (30) 

f f s f sf s f f
i ijk jk i ij j ij j i iD E v E P P              (31) 

s f s s sf f s f
ii kk i i i iS B M P E P E S U            (32) 

f f fs s f f s f
ii kk i i i iS C N P E P E U T            (33) 

 

By using Eqs. (8), (9) and differentiate ij  and f   with respect to space variables we can obtain a set of two 

equations of motion which describes dynamical movement of particles of porous piezoelectric media.  
 

, 11 12( ( ) )f s f s f s s s f
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i iE n s f    in equations of motion to obtain 

Navier’s equation for solid and interstitial fluid phases: 
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(37) 

 
By using of the second part of Eq. (6) the electric field displacements in these phases of the piezo-poroelastic 

medium are expressed as follows: 
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(39) 

 
The heat equations can be written as follows: 
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(41) 

3    UNIQUENESS THEOREM 

Let V be an open regular region of space with boundary S occupied by the reference configuration of a homogeneous 
isotropic linear piezothermoelastic solid, where S is assumed closed and bounded [34].The physical example of this 
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kind of boundary condition is a layer of soil which consists of liquid-crystal molecules. This layer can be influenced 
by earthquake or it may have heat exchange with surrounding. Acoustic panels which can be used for absorbing 
sounds and vibrations may be another example for this kind of boundary condition. In sound detector appliances we 
can measure the displacement of diaphragm and then by using this theory other physical specifications can be 
achieved. We supplement the equations of piezo-poro-thermoelasticity Eqs. (8), (9), (32) – (41) by the prescribed 
boundary conditions. 
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2

, [0, )

, [0, )
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(43) 

 

,s s f f
i i i i on S       (44) 

 
where 1S S and 2S S  . Also, we prescribed the following initial conditions within V at  0t   : 
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(45) 

 
We now state the uniqueness theorem: Given a regular region of space V S  with boundary S, there exists at 

most one set of single-valued functions ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )f f s f s
ij k k ij k k i k i k i kx t x t x t x t E x t E x t D x t            
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i kD x t  of class (1)C , and ( , ) ( , ) ( , ) ( , )f f s

i k i k i k i ku x t u x t x t x t   of class (2)C  in  V S  , 0t   that satisfy 

Eqs.(8), (9), (32) – (41) and conditions (42) – (45) where all the parameters are all positive.[22] 

The proof proceeds as follows. Let there be two sets of functions ( )I
ij  and  ( ) ( ),II I
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III f
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ij ij ij      and  ( ) ( )f f I f II     , 

etc. By virtue of the linearity of the problem, it is clear that these differences also satisfy the above-mentioned 

equations (without loss of generality we neglect the terms ( )s fK T T , the body forces and the heat fluxes) and the 
homogeneous counterparts of conditions (42) – (45), namely they satisfy the following field equations in  (0, )V    
[22, 34]: 
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f f s f sf s f f
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Together with the following boundary conditions: 
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where 1S S  and 2S S . Also, we have the following initial conditions within V at 0t  : 
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Now consider the following integral: 
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Using integrating by parts, we obtain: 
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So we get: 
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If Eqs. (46), (47), (52) and (53) are inserted in the Eq. (68) then we have: 
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Now we can write Eq. (69) as follows: 
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If we differentiate the heat conduction equation of each phases Eqs. (56), (57) with respect to space variables and 

compare the results with Eq. (50) and (51), we find  
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Now if we substitute the upper relations in Eq. (70), we obtain: 
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We are familiar with these two inequalities, 
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Hence, we have 
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Since the aforementioned difference functions satisfy homogeneous initial conditions, Eq. (65), the integral in 

the left-hand side of Eq. (77) is initially zero. By inequality (76), this integral has two statuses, it equals to zero or 
decreases to become negative. Only the first status is possible because the integral is the sum of squares and positive 
terms, i.e. 

 
2

11 22 12

2 2

0 0 0 0 0 0 0 0

1
[
2 2

( ) ( ) ( ) ] 0
2 2

f s f f s f s f s s f f s f
V ijkl ij kl kk ijk i ij ijk i ij i i i i i i i i i i

s sf fs f f
s s f s s f s f f f s f s fi i i i i
i i i i i

b
C Q e E E E E u u u u u u

P P P P P s T U
E E E E E dV

T T T T T T T T

                     

                

 
 

(78) 

 
Equating to zero of upper equation, the difference functions are identically zero throughout the body, for all 

times. Hence, in fact the two assumed solutions were the same, and therefore only one solution exists. This 
completes the proof of the theorem [22]. 

4    CONCLUSIONS  

Using Biot’s theory and the theory of generalized thermoelasticity with on relaxation time (Lord-Shulman), the 
constitutive equations and equations of motion for describing the behavior of PPM hollow cylinder subjected to 
electric, thermal and mechanical loads are obtained. All material parameters for both solid and fluid phases are 
introduced. These parameters can be used to clarify characteristics of skeleton and interstitial fluid. Using the results 
of this paper, one is able to design and optimize piezo porous cylinder specification such as displacements, stresses, 
electric potentials and so on.   
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