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 ABSTRACT 

 Optimal Nonlinear Energy Sink (NES) is employed in vibration suppression of the beams 
subjected to successive moving loads in this paper. As a real application, a typical railway 
bridge is dynamically modeled by a single-span beam and a traveling high-speed train is 
simulated by a series of successive moving loads. Genetic algorithm is employed as the 
optimization technique and optimal parameters of the NES system are accordingly obtained. It 
is found that the NES can remarkably suppress the vibration level particularly in vicinity of the 
critical speeds. A sensitivity analysis is then carried out and robustness of the optimal NES is 
investigated. A parametric study is performed and performance of the optimal NES is 
evaluated for different values of the load speeds, load magnitudes, load intervals and mass 
ratios. 
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1    INTRODUCTION 

ONLINEAR vibration absorbers have recently received much attention due to their flexible capabilities in 
supporting the goal of either maximizing the suppression bandwidth or minimizing the maximum displacement. 

Optimization of the nonlinear passive control systems were firstly investigated in 1950’s [1]. A practical method 
applying in design of a nonlinear vibration absorber was developed by Rice and McCraith in [2]. Application of a 
nonlinear active vibration absorber employing in the flexible structures, theoretically and experimentally was 
examined by Oueini et al. [3-4] based on the saturation phenomenon. Concept of the Nonlinear Energy Sink (NES) 
and Energy Pumping methods was significantly extended by Vakakis et al. [5-6]. The NES absorbs vibration energy 
in a one-way pattern from the main system toward the absorber and locally dissipates this energy, without spreading 
it back to the linear system.  

Many theoretical and experimental research projects have been conducted in order to examine the  applications 
of NES in vibration mitigation of practical cases.  Suppression of aero-elastic instability by using the NES has been 
studied in [7-8]. Nucera et al. used the numerical and experimental procedures to show that the nonlinear energy 
sink is a feasible and robust strategy for seismic mitigation [9]. In 2007, Georgiades and Vakakis studied the 
vibration of a linear flexible beam under a shock excitation and showed that the NES concept can be used properly 
in flexible systems [10]. Viguie et al. addressed the problem of stabilizing the dynamics of the drill-string system by 
means of a nonlinear energy sink [11]. Passive control systems and particularly the Tuned Mass Dampers (TMDs) 
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have been widely employed in vibration suppression of the bridges excited by moving loads [12-16]. Younesian and 
Esmailzadeh [17] presented a nonlinear absorption concept which can be used in order to suppress the vibration of 
rotating beams. Spectral analysis of the beam's vibration with uncertain natural frequencies under a random train of 
moving forces was studied by Gładysz and Śniady [18]. Bryja [19] provided a general outline of the stochastic 
response analysis of suspension bridge subjected to randomly fluctuated wind with time-dependent mean velocity. 
More recently, Samani and Pellicano [20] studied a NES system applying in vibration suppression of a beam excited 
by a single moving load. They showed that the NES system can effectively reduce the vibration level of the system. 
Reviewing the literature reveals that there are two significant features which can be considered in investigations of 
the NES systems. These features are listed as follows: 
1-Because of the strongly nonlinear behavior of the NES, optimal design of a NES has been always a challenging 
problem.  
2-For the most cases, including the non-transient excitations, passive vibration control systems (TMDs and NES) are 
suitable suppression devices.    

The main examinations of the present paper are directed to cover the lack of knowledge which was already 
presented as two features. In other words, for the first time in this paper, based on a classical optimization procedure, 
optimal values of the NES parameters are obtained for a real railway bridge traversed by series of moving loads. 
Successive moving loads as one of the non-transient excitations are employed to simulate the moving wheels of 
train. The distance between the moving loads can then significantly affect the performance and optimal parameters 
of the NES system. Galerkin method is employed as the solution technique. Root Mean Square (RMS) of the bridge 
response is adopted as the objective function and optimal parameters of the NES system are consequently obtained. 
Effects of different parameters including the load speed, load distance and magnitude, mass ratio and the bridge 
length on optimal values of the NES parameters are studied. Series of numerical simulations are then carried out and 
performance of the NES system is evaluated. 

2    MATHEMATICAL MODELLING 

As shown in Fig.1 a simply-supported beam with span length L, subjected to a series of loads Ps with uniform 
distance d, are considered as a bridge traveled by a train. Train wheel loads are modeled by a successive 
concentrated loads moving on the beam. As it is shown in Fig. 1, the NES system consists of a mass attached to the 
bridge by means of a nonlinear spring and a linear viscous damper.  

Moving wheel loads of the train can be mathematically modeled as the following function [21-22]: 
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In which, δ denotes the Dirac delta function, x is the longitudinal coordinate, H is a unit step function, tj denotes 

arriving time of the jth load so that tj(j-1) d/V, and N is total number of moving loads (number of carriages). 
Actually, the action of the jth moving load is turned on by the term H(t−tj) when it enters the beam, and turned off 
by the term H(t − tj − L/V) when it leaves the beam. 

 
 

Fig. 1 
Simple model of a railway bridge and vehicle series and an 
attached NES system. 
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3    EQUATIONS 

The bridge is modeled as an Euler–Bernoulli beam and consequently, the coupled nonlinear equations of the beam-
NES motion can be derived as: 
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In which   denotes the beam-damping coefficient and n  is nth natural frequency of the bridge. Also, the 

equation of motion of the attached NES can be obtained as following equation: 
 

3( ) ( ( ) ( , )) ( ( ) ( , )) 0NES NESm t C t y b t K t y b t  + - + - =    (5)
 

 
where y denotes deflection of the beam which is the function of position x and time t. M is the mass per unit length, 
E is the modulus of elasticity and I denotes moment of inertia of the bridge. KNES ,CNES and m are the nonlinear 
spring stiffness, damping and mass of the NES system respectively and displacement of the NES mass is represented 
by  ( ).t  The mass ratio ( )  is defined as the NES mass divided by the bridge mass as follows: 
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Galerkin method is employed as the strong technique to solve the Eqs. (3) and (5). The first five vibration modes 

of the system are taken into account in numerical simulations. Let n  denotes the nth vibration mode of the beam 

which satisfies the boundary conditions. Therefore, the deflection of the simply supported beam y(x, t) is assumed to 
be: 
 

1

( , ) ( ) ( )n n
n

y x t x q t
¥

=

=å  (7)
 

 
where ( )nq t  is the generalized coordinate corresponding to the nth mode. Substituting Eq. (7) into Eq. (3), 

multiplying both sides of the equation by ,n  and integrating with respect to x over the length of the beam (L), 

yields to the following equation: 
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Moreover, the equation of motion of the attached NES can be written as: 
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Nonlinear set of coupled equations of motion including Eqs. (8) and (10) can be solved by numerical integration 

methods and the time responses consequently can be obtained. The critical speed of the train traveling over the beam 
can be found as [16] 
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4    NUMERICAL RESULTS 

For a railway bridge having properties listed in Table 1, a numerical simulation is carried out and deflection of the 
bridge is obtained for a point placed at the mid-span. The bridge is assumed to be excited by the train having the 
properties listed in Table 2. The deflection of a bridge, having length of 40 meters, is illustrated in Fig. 2. A case 
with the vibration mitigation system (NES) is compared with a case which has no absorber. As it is seen, there are 
two phases predictable in time responses. At the first phase related to the forced vibration, the deflection increases 
for the beam which has no NES. The NES keeps the deflection level constant during the passage of the successive 
moving loads. At the second phase where the successive moving loads completely passed on the bridge, suppression 
rate is much faster in presences of the NES. Comparing the RMS value of the bridge response, before and after 
installation of the NES system, indicates that the RMS reduces up to 42% for the bridge in the case of critical speed.  
 
 
Table 1 
Bridge properties [16] 
Parameter Symbol Value Unit 
Young module E 29.43 Gpa 

Moment of Inertia I 7.52 m4 

Mass per unit length of bridge M 34056 Kg/m 

Bridge span length L 20 and 40 m 

Bridge Damping Ratio ζ .01 - 

 
 
Table 2 
Train properties [16] 

 
 
 

Fig. 2 
Bridge Deflection on its center L=40 m, v= 50 m/s. 

Parameter Symbol Value Unit 
Load P 500 KN 
Wagons Number N 20 - 
Load Interval distance d 20 m 
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5   OPTIMAL DESIGN OF THE NES 

Genetic Algorithm (GA) method is adopted here as the optimization technique. The RMS value of the bridge 
response is considered as following equation: 

 

2

0

1
Objective function ( )

T

y t dt
T

= ò  (12)
 

 
A computer program has been developed using MATLAB-R2008 software based on the flow-chart of the 

Genetic Algorithm procedure, illustrated in Fig. 3. Sensitivity analysis of the NES system performed and effects of 
the nonlinear stiffness and damping on the system are shown in Fig. 4. As it is seen, for the smaller values of 
damping, nonlinear stiffness has a more significant effect on the NES system. Sensitivity of the optimal NES system 
to the optimal values is analyzed in Fig. 5. This diagram shows how the off-tuning of the damper and nonlinear 
spring can affect the performance of the NES system. Vertical axis represents percentage of the response deviation 
with respect to the optimal system. Characters  c  and K  denote deviation with respect to optimal values of the 

NES damping and nonlinear stiffness. 
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It is seen that the optimal NES applied for a longer bridge is more sensitive to the damping while the stiffness is 

significant parameter which has a great effect on the optimal NES in a shorter bridge. 
 
 
 

Fig. 3 
Flow-chart of the implemented Genetic Algorithm. 
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Fig. 4 
Detection of an optimal point in damping-stiffness plane. 

   

   

Fig. 5 
Robustness of the optimal system. 

6    PARAMETRIC STUDY 

A parametric study is carried out in this section and effects of different parameters including the load magnitude, 
train speed and load interval distance on the performance of the optimal NES are studied.  

6.1 Mass ratio 

Effects of the mass ratio on the optimal value of the nonlinear stiffness and also performance of the NES system are 
studied in this section. Fig. 6 shows the optimal nonlinear stiffness which is plotted against the mass ratio β. As it is 
seen, optimal nonlinear stiffness, KNES, is an increasing function of the mass ratio. The NES mass has a significant 
effect on the NES performance. Fig. 7 illustrates the effect of NES mass on reduction factor of the suppression 
system. It is clear that the reduction factor is abruptly reduced for the smaller values of mass ratio (β < 0.03). The 
saturation phenomenon occurs after this specific value of mass ratio and the slope of the curve asymptotically 
approaches to zero. In other words, any excessive mass cannot significantly reduce the vibration level. 
 
 
 

Fig.6 
Optimal nonlinear stiffness versus mass ratio. 
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Fig. 7 
Optimal objective function versus mass ratio. 

   
   

Fig. 8 
Beam deflection versus load magnitude obtained for 
critical speed. 

   
   

Fig. 9 
Beam deflection versus load speed. 

6.2 Load magnitude  

Since variety of trains with different axle loads may travel on the bridge, a range of common loads should be taken 
into account in NES optimal design. Fig. 8 shows deflection (RMS value) of the 20 and 40 m bridges against the 
load magnitude, in case of critical speed. Unlike the linear passive control systems, it is observed that the NES 
performance is remarkably dependent on the moving load magnitude. As it is seen, the divergence between the 
responses is enhanced for the larger values of the moving loads. NES, it is implied , more efficiently mitigates the 
vibration of the bridge subjected to the larger moving loads. 

6.3 Train speed  

Effect of the train speed on the optimal NES performance is studied in this section. Fig. 9 shows the effect of the 
train speed on the bridge response in the cases of with and without NES. It is clearly seen that the optimal NES has 
its maximum suppression effects at the vicinity of the critical speeds.  
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Fig. 10 
Percentage of RMS reducation for L=20 and 40 m. 

 
 
Table 3 
Comparison between various optimization results 
Case Condition Bridge Length 

(m) 
NES stiffness 
(N/m3 ) 

NES damping 
(NS/m) 

Mass Ratio β RMS (m) Reduction (%) 

1 R 20 without NES system 1.10e-3 0 
2 R 20 9.56e11 9.92e4 .01 5.94e-4 47 
3 R 20 2.16e14 4.38e5 0.1 1.15e-4 89.5 
4 NR 20 2.59e14 4.75e4 .01 1.70e-4 23 
5 R 40 without NES system 77e-4 0 
6 R 40 1.39e10 7.46e4 .01 44.3e-4 42.8 
7 NR 40 1.54e11 3.00e4 .01 1.7e-3 5 
8 R 40 1.14e12 9.13e4 0.1 2.43e-3 68.3 
R: Resonance 
NR: Non-resonance 

6.4 Load interval distance effect  

Performance of the optimal NES in different values of the load interval distances is investigated in this section as is 
shown in Fig. 10. One can generally conclude that the NES has the better performance in shorter span bridges. It is 
also found that the RMS reduction percentage is generally enhanced by increasing the load span. Table 3 
summarizes the results of optimal NES application for different conditions in both the 20 and 40-m length of 
bridges. Two mass ratios of β0.01 and β0.1 are taken into account and different cases including uncontrolled 
system, resonant system under critical speed and non-resonant case are studied. It is seen that the optimal NES with 
mass ratio of 10% can remarkably suppress the vibration level up to 89.5 % in a resonant case.  

7   CONCLUSIONS 

Application of an optimal nonlinear energy sink system in vibration mitigation of railway bridges was studied in this 
paper. Train was modeled as a series of moving loads traveling over the beam. Root Mean Square (RMS) value of 
the bridge response was adopted as the objective function. Genetic Algorithm was employed and optimal parameters 
of the NES system was obtained as a function of the bridge properties and load conditions. For the first time in this 
paper, properties of the moving load including its magnitude, speed and sequence interval was taken into account in 
optimization procedure. Unlike the conventional linear passive control systems, it was found that the optimal NES is 
completely dependent on the moving load parameters. Application of the NES system for different train speed 
conditions demonstrated that the mitigation system is more efficient in the vicinity of critical speeds. It was also 
found that the optimal NES systems applying to the longer and shorter bridge are more sensitive to damping and off-
tuned stiffness, respectively. Moreover, it was shown that NES performance is monotonically enhanced for the 
larger values of the moving loads. Finally, it was found that the NES efficiency is amplified in the case of shorter 
span bridges and the RMS reduction percentage is generally enhanced for longer load spans. 
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