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ABSTRACT

The nanostructures under rotation have high promising future to be used in nano-
machines, nano-motors and nano-turbines. They are also one of the topics of interests
and it is new in designing of rotating nano-systems. In this paper, the scale-
dependent vibration analysis of a nanoplate with consideration of the axial force due
to the rotation has been investigated. The governing equation and boundary
conditions are derived using the Hamilton’s principle based on nonlocal elasticity
theory. The boundary conditions of the nanoplate are considered as free-free in y
direction and two clamped-free (cantilever plate) and clamped-simply (propped
cantilever) in x direction. The equations have been solved using differential
quadrature method to determine natural frequencies of the rotating nanoplate. For
validation, in special cases, it has been shown that the obtained results coincide with
literatures. The effects of the nonlocal parameter, aspect ratio, hub radius, angular
velocity and different boundary conditions on the first three frequencies have been
investigated. Results show that vibration behavior of the rotating nanoplate with
cantilever boundary condition is different from other boundary conditions.
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1 INTRODUCTION

N recent years, there has been significant interest in rotating nanomachines which are important in future of

nanotechnology. Applications like intelligent drug delivery, DNA nanomachines, programmable chemical
synthesis and performing functions similar to the biological molecular motors [1] emphasize this importance.
Currently, many researchers take their studies focus on designing nanomachines. For example, [2] designed a nano-
turbine composed of carbon nanotube and graphene nano-blades, which can be driven by fluid flow.

The experiments show that the size effects play an important role in mechanical properties [3, 4]. Thus, avoiding
these effects may result wrong designs and unacceptable answers. The size effect is not considered in the classical
continuum theories so, this theory is not appropriate for micro and nano scales. We are looking for theories that
consider the small scale effects. Nonlocal theory of Eringen [5] is one of the best and most well-known continuum
mechanics theories that includes small scale effects with good accuracy in nanoscale devices. In nano applications,
size effects have been experimentally observed. Classical continuum theories do not interpret such size effects due
to lack of material length scale parameters. Hence, size-dependent continuum theories have been developed. The
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most commonly used theory is the nonlocal elasticity theory introduced by Eringen [5, 6]. In this theory the forces
between atoms and the internal length scale are considered in the formulation.

The small scale effect on a large deflection of the cantilever nanobeam under a vertical end loading was
investigated by Chen [7]. Moreover, vibration of rotating nanobeams is vastly analyzed. Murmu and Adhikari [8]
studied the nonlocal effects on bending vibration of a single-walled carbon nanotube (SWCNT) under pre-stress via
nonlocal elasticity. Narendar and Gopalakrishnan [9] investigated the wave dispersion characteristics of a rotating
nanotube modeled a SWCNT using spectral analysis. Narendar [10] has modeled a rotating SWNCT as an Euler-
Bernoulli beam using the nonlocal/nonclassical continuum mechanics. Clamp-simply supported (propped cantilever
[11]) boundary conditions have been considered in [8, 9] and cantilever boundary conditions have also been studied.
Challamel and Wang [12] studied bending analysis of small scale rods based on some simplified nonlocal beam
theories. Moreover, Lim, Li [13] studied nonlocal stress effect on a nanocantilever considering axial torsion.
Moreover, Narendar [14] analyzed flapwise bending free vibration of a nanotube considering transverse shear
deformation and rotary inertia based on Eringen’s nonlocal theory. Pradhan and Murmu [15] applied DQM method
to investigate flapwise bending vibration of a rotating nanocantilever based on nonlocal theory. The nondimensional
frequencies of the flapwise bending vibrations of a nonuniform rotating nanocantilever have been calculated by
Aranda-Ruiz, Loya [16], they considered time dependent nonlocal boundary conditions. Also recently, Ghadiri and
Shafiei [17, 18] investigated linear and nonlinear bending vibration of a rotating nanobeam for various boundary
conditions based on nonlocal Eringen’s theory.

Kiani [19-21] studied the a small-scale effect on the vibration of thin nanoplates subjected to a moving
nanoparticle via nonlocal continuum theory. In-plane and out-of-plane vibrations of a bi-axially-tensioned
embedded nanoplate due to the movement of a nanoparticle on its upper surface are investigated via this advanced
theory by Kiani [22]. Salehipour, Nahvi [23] presented closed-form solutions for in-plane and out-of-plane free
vibration of simply supported functionally graded (FG) rectangular micro/nanoplates. A three-dimensional (3D)
elastic plate model capturing the small scale effects is developed for the free vibration of functionally graded
nanoplates resting on elastic foundations by Ansari, Shahabodini [24]. It is found from most of the previous studies
that, rotation effect on rotary nanoplate has been ignored. As a result, these studies cannot be utilized to study the
nanoplate under rotating effect completely. Therefore, there is a strong scientific need to understand the vibration
behavior of rotating nanoplates.

Vibration analysis of rotating nanoplates is undoubtedly a prerequisite for designing efficient nanomachines
which make use of axial force for their motion. This motivates us to investigate this problem here. So in the present
paper, the small scale effects are incorporated into the governing equations and boundary conditions by applying the
nonlocal continuum mechanics to the classical plate theory for analyzing vibration behavior of rotating nanoplates
under different boundary conditions. Analytical solution is obtained for the natural frequencies of cantilever and
propped cantilever boundary conditions and the equation has been solved using differential quadrature method
(DQM). The effect of angular velocity, nonlocal parameter, aspect ratio, different boundary conditions and
frequency number have been investigated. It is also worth mentioning that, in each vibration mode, the effect of
nonlocal parameter is related to the size of the nanoplate. These results are useful to design nano motors, nano rotors
and other rotary nano structures.

2 NONLOCAL CONSTITUTIVE RELATIONS

According to Eringen [5] theory, the stress field at point x in an elastic continuum depends not only on the strain
field at the point (hyperelastic case) but also on strains at all other points of the body. Eringen [5] also attributed this
fact to the atomic theory of lattice dynamics and experimental observations on phonon dispersion. Thus, the
nonlocal stress tensor o at point x is expressed as:

a:jK(|x’—x|,7)t(x')dx' (1)

Vv

where ¢ (x ') is the classical, macroscopic stress tensor at point x, the kernel function K (‘x —x ‘,‘r) represents the

nonlocal modulus, ‘x' —X ‘ considered as the distance (in Euclidean norm) and 7 is a material constant that depends
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on internal and external characteristic lengths (the lattice spacing and wavelength, respectively). The macroscopic
stress ¢ at a point x in a Hookean solid is related to the strain € at the point by the generalized Hooke’s law

t(x)zC(x):g(x) (2)

where C is the fourth-order elasticity tensor and . indicates the ‘double-dot product’.

The constitutive Egs. (1) and (2) together define the nonlocal constitutive behavior of a Hookean solid. Eq. (1)
represents the weighted average of the strain field contributions of all points in the body to the stress field at a point.
However, the integral constitutive relation in (1) makes the elasticity problems difficult to solve. Though, it is
possible [5] to represent the integral constitutive relations in an equivalent differential form as:

(1-721*VHo =t 3)

(1—(e0a)2 VHo =t ; T:% (4)

where ¢ is a material constant, and @ and / are the internal and external characteristic lengths, respectively.

3 PROBLEM FRMULATION

Consider an elastic plate of length a in x direction, width b in y direction and thickness 4, which is clamped at
section (x =0) located at distance » from the axes around which are rotating at constant angular velocity Q as
shown in Fig.1.

Based on classical plate theory (CPT) The displacement field can be written as:

T e I R B )

Here u, v and w indicate displacement along x, y and z directions, respectively.
Although the displacement field in Eq. (5) has been derived using the local shear stress—strain constitutive
relation, it is assumed that, to be a valid displacement field. The nonzero strains of the refined plane of the theory are

ou o*w
— 2
6. ox 6325
L 6_v a ow B _ _0
Sy (T oy z oy 2 > Crz T8z T&; T (6)
| )| o
2 oy ox Ox Oy

The displacement field of the refined plate of the theory accommodates a quadratic variation of the transverse
shear strain that vanishes on the top and bottom faces, z =+/4/2 of the plate. It can be seen from Eq.(3) that the

nonlocal behavior enters the problem through constitutive relations. Principle of virtual work is independent of
constitutive relations. So this can be applied to obtain the equations of motion of the nonlocal plates. Using the
principle of virtual displacements, following equations can be obtained [25, 26]:

ON ON
(]

x oy (7a)
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+ =1y (7b)

(b)

Fig.1
A: Schematic of nano-turbine that introduced by Li et al., [2]. B: Schematic rotating nanoplate that used in this analysis (L: x-
direction, b: y-direction).
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where, I, and I, are mass moments of inertia which are defined as follows:

P »
i —I_h/zpo(z) z (8)

h indicates the thickness of the plate. Although the displacement field in Eq.(5) was obtained using the local
shear stress—strain constitutive relation, using (4), the plane stress constitutive relation of a nonlocal plate will be:

E, vioE, 0
(1—V12V21) (1_V12V21)
- - XX
22 VipE, E, ®
_ \Y = 0
oy 1= (eoa) T (I=viva)  (1=vipvy) gyy
. Oy 0 0 G, 2o

Here E, and E, are elastic moduli, G|, is shear modulus and V|, and V,; represent Poisson’s ratio,
respectively. Following stress resultants are used in the present formulation

hi2 hi2
N, = o, dz M. = j zo,.dz
~h/2 ~h/2
hi2 hi2
Nyy = J. O'yydz Myy = J. zayydz (10)
~h/2 ~h/2
hi2 hi2
N, = J. oy, dz M,, = J. z0o,,dz
~h/2 ~h/2
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Using strain displacement relation, Eq.(6), stress—strain relation Eq.(9) and stress resultants definition Eq.(10),
we can express stress resultants in terms of displacements as follows:

2 2.
M., —(ega)’ VM =—D116—W—Dlza—w

XX

2 2
2o ow ow
M, —(ewa) VM, =—D126x—2—D22—

(1)
M 292y = apy, OV
Xy _(eOa) xy — <66 o ay
where
Eh’ VisEsh E,h’ G,h’
D, = ] = » Dy= 2 . Dgg=—2 (12)
12(1=vpvy)) 12(1-vpvy) 12(1-vpvy)) 12
Using Eqs.(7) and (11), the governing equation in terms of displacement will be:
o o Y K _g[N” ZWT]_%[NW %]‘%(ny %}
w % i% 2
Dy =2(Dpy +2Dgg)—5—— =Dy~ +(ega) V? 1
ox Ox “0y oy 0 ow . ow 0w
—— | Ny — |HW - L| —F+— (13)
oy Ox ox” Oy
2 2 .
+q+i(vi alj+i Nyyal +i ny% +E(ny %j:[oy{)'_lz 6_w+8_w
ox\ T ox ) oy oy ) ox oy ) oy 0ox ox? oy 2

Differentiating the (13) with respect to x, considering Young’s modulus and p as constants, and setting the

external load equal to zero, we can formulate the differential equation that controls the vibrations of the nonlocal
classical theory for rotating nanoplate with uniform section.

It is assumed that the plate is free from any in-plane or transverse loadings. Hence we have used airy function,
N,, and N, due to rotation are calculated by follow equation [27]:

N,, =q=0 (14)

N, =%ph92{[(L2_x2)+2r(L—x)}+2[%}[y2_§j} , N, =%phg2(b2_y2) (15)

where Q indicates the angular velocity and 4 =b x4, and also, a;; and a,, are calculated from the following
equation:

£y VioE, 0_
| (Ivigva) (T=vipva)
4G 4 % v E E (16)
12682 2
ay ay a = 0
wom e (I=vigvar)  (1=vipva)
4 G2 Do 0 0 G
12
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Introducing the nondimensional quantities:

w=LWe'™ ; x =¢L
L
= b N = —
Yy =n B 5
r e a
S=— : 0=
L H L a7
4 4
(DzzmoL 02 : ‘I’[j4=m0L wijz
Dy, Dy
A _ Dy +Dgs A, _Dy
Dy, Dy,
= m2
I e
mg

Using Eq.(16), we can express the governing equation (CPT) in terms of displacement as follows:

a“W o'w

o0& ﬁﬂ“aga2

.. oW ) @ \ow
ﬂ%an“_(_q} [ 5])55 ﬂ[ s Jan

T e S

3W 2
(02 [§+5])<’;§3 +(_q>2)66;§

{swfisr sl
Coteol) e[ () )
I (e Y T =2
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4 4 4 2 2 2 2
:\P{#QI—(GW +2/7 ow +ﬁ4aW]—y2(aVZ +ﬁ28WJ—I_[6VZ +,[>’26W;J+W}

S}

(18)

(8]

1|+ 2

o&* o&%on® on* o& on’ o& on

The corresponding boundary conditions are defined as follows:
For the cantilever (CFFF) boundary condition:
Clamped at x =0 and free at other edges (x =L,y =0and b).

ow (0,y)

w(0,y)=0 T:O (19)
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M y, (x,0) . OM , (x,0)

V (x,0)= =0 M 0)=0
(x.0)=—5 . w (x:0) (20)
oM, (L,y) My, (L.y
V(Ly)= x’g}f )+ xyay ):0 My (L,y)=0 Q1)
oM (x b ) oM (x b )
v )= Yy Xy =0 M b)=0
(b)=— & w (%:0) (22)
For propped cantilever (CSFF) boundary condition:
Clamped at x =0, simply supported at x =L and Free at y =0 and b.
ow (O,y )
0,y)=0 ——==0
w(0.y) S (23)
oM, (x,0) My, (x,0)
V (x,0)=—2 2 =0 M 0)=0
(x > ) ay + ox Yy (x > ) (24)
w(L,y)0 My, (L,y)=0 (25)
oM ,b) oM ,b
V(x.b)=—2 (rb) My (cb) My, (x.b)=0 (26)

Oox

4 SOLUTION PROCEDURE
4.1 Differential quadrature method

The essence of the differential quadrature method lies in partial derivative approximation of a function with respect
to a coordinate at a discrete point like the weighted linear sum of the function values at all discrete points along the
coordinate.

In addition, in a large number of practical applications where only reasonably accurate solutions at few specified
physical coordinates are of interest, conventional numerical methods such as finite element or finite difference
method require a large number of grid points and a large capacity of processor. Among various numerical methods,
the finite element method is, by far, the most effective and widely used one. Furthermore, the finite element method
is still an effective method especially for systems with complex geometries and load conditions or devices with
nonlinear behavior. In searching for a more efficient numerical method that requires fewer grid points but yet results
acceptable accuracy, the method of differential quadrature (DQ) which was developed by Shu and Richards [28] will
appear.

The DQ method, akin to the conventional integral quadrature method, approximates the derivative of a function
at each point by a linear summation of all the functional values along a mesh line. The key procedure in the DQ lies
in determination of the weighting coefficients. Initially, Bellman and his associates proposed two methods to
compute the weighting coefficients for the first order derivative. As a result, the DQ method has emerged as a
powerful numerical discretization tool in the past decade. Compared to the conventional low order finite difference
and finite element methods, the DQ method can obtain very accurate numerical results using a considerably smaller
number of grid points and hence making less effort. So far, the DQ method has been efficiently employed in a
variety of problems in engineering and physical sciences Shu and Richards [28].

P
Let Z—Ji be the r-th derivative of a function f (x) which can be expressed as a linear sum of the function
X
values
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s (x)

p— N (r)
= z C\ ) 27
ox” j=l i/ (xl ) 27)

X =xp

(r)

where n is the number of total discrete grid points used in the approximation process and C po are weighting

coefficients. The weighting coefficients of the first derivative are determined by

el = M(x;) i =120 and i%#]
(s =x; )M (x;)
n (28)
P 3 e
j=li#j
where

M(xi):'H‘(xi _xj> (29)

as:
B C.(,ril)
Ci(jr) =r Cér_l)Cy(l)—y— i,j=12,..,ni#jand 2<r<n-1
I (&-¢)
3 __ 3 C?_(.r—l)
=yl elr e 1 i,j=12.ni#%]jand 2<r<n-1 (30)
L (771 _nj)
c== 3 ) i =120 and 1<r<n-l
u i > PRt RARE] - =
Jj=Li#j
cl)—_ i cl) i,j=12,..,n and 1<r<n-1
il l] 9 & LA - -
jelizj

The simplest choice of grid points is equally spaced points in the direction of the coordinate axes of the
computational domain. It has been demonstrated that nonuniform grid points show better results with the same
number of equally spaced grid points. In this paper, we chose these set of grid points in terms of natural coordinate
directions x and y as:

& =1, :%[l—cos(wn i=123,..,n GD

2(N -2)

4.2 DQ analog of field equations

Substituting Eq.(27) into(18), governing equation of nanoplate rotation will be:
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Z ,kaj+2ﬁ2/112 Zcfk)l cOw, . ﬁzQZc,k ,k+(q>2[§+5])z Ow,
=1

k1=1k2=2
{%qﬂ{(pg )+25(1- §)+2[ ][n j/ﬂ chl Wi+ B {ﬂz 77 cos GJZC,k
2 < -
_p %(l_nz)]gci(i)W .

1-
_(®2[§+5])ic'(3k)Wk “(q’z)iC@k)Wk g (1-¢°)+20(1-¢) ,,, o,
= i o) i, N 7 +2[ j( )/ﬁ 2 ! j

_<(I)2 [§+5]) CI.(,I]EIC_'I.(’Zk)zW“’“ +{(D22( j/ﬁ J l ka ’

(1-&)+200-¢) ]}, ., (32)

+
R

i

@)

1.2 cé&
+| —O® C
2 +2[ ]( )/ﬂ 1;11;222 A s
2 a1

]Z chkl lk2 klk2

+u

B [ ki=1k2=2
2 ) ~(
+[ ( ’7)]2 chc k2 k1k2
k1=1k 2=2
(1)2 7 (3 q)Z j 5
_(_zﬂjzci(,k)Wi,k —(_2] C,( k)Wl k
s B )io B )im
@2 5 jl’li _(4)
e 1_77 Cl kWt k
203, |
P 5N ) G50 |
W Ci,ka,j"'z/BzZ ZC,HC e ey Zczk
" k=1 k1=1k 2=2
n; , n; B
_ﬂz[ Cl.(,k)WkJ +ﬁzzcl(,k) ]_1 [ch W +B ZCZ ; ,k}W
k=1 k=2

where C i(jr) and CTlg»r) are the weighting coefficients associated with the 7 th-order derivatives in x-and y-directions,

respectively. 7; and n; are also the numbers of total discrete grid points along x and y directions, respectively. The

grid points are chosen based on well-established Chebyshev-Gauss-Lobatto Points [28] whose relation is visible in
Eq.(31). Finally, by using Eq.(31) with boundary conditions (Egs. (18)-(25)) and using eigenvalue equation in the
form of (33), the overall problem will be solved.

et fed oy )
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5 RESULTS AND DISCUSSION

In this article the small-scale effects on the vibration response of rotating cantilever and propped cantilever
nanoplates are shown with respect to angular velocity of rotation, hub radius and aspect ratio. The boundary
conditions of nanoplate are considered as free-free in y direction and two clamped-free (cantilever plate) and
clamped-simply (propped cantilever) types in x direction. As DQ results are sensitive to low grid points, a
convergence test is performed to determine the minimum number of grid points required to obtain stable and
accurate results. As presented in Table 1. solution is in good convergence. It can be seen clearly that
Ny =N, =15 are sufficient to obtain the accurate solutions for the present analysis. For validation of results,
material properties of nanoplate are assumed isotropic according to Ref. [29-32]. So, the Young’s moduli, Poisson’s
ratios, density and thickness are, respectively:

E =1.06(TPa),y =0.25,p= 2250(kg/m3),h =0.34nm

Properties of the orthotropic nanoplate in this paper are considered identical to [30] as:

E| =1756Gpa,E» =1588Gpa,viy =0.3,v51 =027, p= 2300kg/m3

Since the vibration analysis of a propped cantilever nanoplate has not been investigated before, our results have
been compared with a nanoplate with SSSS (all edges simply supported), SCSC and cantilever plate (CFFF) based

on classical plate theory. They have been listed in Table 2, 3 and 4, respectively. It is observed that the present
results are in good agreement with the available results in the literature.

Table 1
Convergence of nondiensional fundamental frequency () for the orthotropic cantilever and the propped cantilever nanoplate,

o0=1a=10h,y=0.

Number of grid point u=0 u=0.1 n=02 #=03 ©=04 ©=0.5
5 2.181 2.1943 2.2369 2.3182 2.4628 2.7452
7 1.8596 1.8622 1.8702 1.884 1.9047 1.9345
9 1.8191 1.8224 1.8326 1.8511 1.8807 1.928
11 1.8596 1.8622 1.8702 1.884 1.9047 1.9345
13 1.8596 1.8622 1.8702 1.884 1.9047 1.9345
Cantilever 15 1.8596 1.8622 1.8702 1.884 1.9047 1.9345
17 1.8596 1.8622 1.8702 1.884 1.9047 1.9345
19 1.8596 1.8622 1.8702 1.884 1.9047 1.9345
21 1.8596 1.8622 1.8702 1.884 1.9047 1.9345
23 1.8596 1.8622 1.8702 1.884 1.9047 1.9345
25 1.8596 1.8622 1.8702 1.884 1.9047 1.9345
5 4.3751 41712 3.7558 3.3547 3.0268 2.7666
7 423614 4.0991 3.7838 3.4379 3.1313 2.876
9 4.0578 3.9442 3.6747 3.3674 3.0862 2.8471
11 3.9305 3.8345 3.6000 3.3232 3.0620 2.8349
Propped 13 42314 4.0991 3.7838 3.4379 3.1313 2.8764
Cantilever 15 4.2361 4.0991 3.7838 3.4379 3.1313 2.8764
17 4.2361 4.0991 3.7838 3.4379 3.1313 2.8764
19 4.2361 4.0991 3.7838 3.4379 3.1313 2.8764
21 4.2361 4.0991 3.7838 3.4379 3.1313 2.8764
23 4.2361 4.0991 3.7838 3.4379 3.1313 2.8764
25 4.2361 4.0991 3.7838 3.4379 3.1313 2.8764
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Table 2
Comparison of results for vibration of the isotropic nanoplate with simply supported edges.

Nonlocal paremeter Natural frequency

Frequency ratio

[29] [29] present present [31]
0 1 1 1 0.069056 0.0691217
1 0.9139 0.9139 0.9139 0.06308 0.0631678
2 0.8467 0.8468 0.8467 0.058472 0.0585276
3 0.7925 0.7926 0.7925 0.054728 0.0547796
Table 3
Comparison of results for vibration of the orthotropic nanoplate with SCSC boundary condition.
ega=0 ega =0.5(nm) ega =1(nm) ega =1.5(nm) ega =2(nm)
[31] 27.9208 27.1853 25.2818 22.835 20.3555
[30] 27.9207 27.1851 252813 22.8341 20.3543
Present 27.9208 27.185 25.2815 22.834 20.3545
Table 4
Comparison of results for fundamental frequencyof the classical plate with cantilever boundary condition.
mode number=1 mode number=2 mode number=3 mode number=4
Experimental [30] 3.494 8.547 21.44 27.46
[29] 3.41 8.28 21.45 26.67
Present (V2) 3.4583 8.885 21.4397 27.4498

To study the vibration characteristics of the rotating rectangular nanoplate with CFFF and CSFF boundary
conditions, first four nondimentional frequencies of cantilever and propped cantilever boundary condition are
obtained for two aspect ratios.

5.1 Results for cantilever boundary condition

Fundamental frequency of the orthotropic rectangular nanoplate in different nonlocal parameters with respect to
angular velocity in four values of aspect ratio i.e. f=1-8" is shown inFig.2. The nonlocal parameter, width of the

square nanoplate and hub radius (6 ), are assumed 0—2nm,4(nm) and 0 respectively. It is seen that in the cantilever

nanoplate, fundamental frequency decreases while the aspect ratio increases. In this special boundary condition, the
fundamental frequency also increases with increase of the nonlocal parameter (like cantilever nanobeam [16]).
Furthermore, it is observed that fundamental frequency increases with increase of the angular velocity.

15
x10 1 x10"° =2

14[

12 25

=
S)

Natural Frequency
Natural Frequency
N

15

Anqular Velocity

Anaular Velocitv

© 2017 IAU, Arak Branch



330 M. Ghadiri et al.
7
6.5
6
3 55
e
E]
g 5
[
T 45
S
s
=Z 4
35
3
25
0 1 2 4 5 6 7 8
Angular Velocity
Fig.2

The fundamental frequency of the cantilever nanoplate with respect to dimensional angular velocity, for different nonlocal

parameters and aspect ratios, 6 =0,L/h =20.

Fig.3 indicates the variation of the second frequency of the nanoplate with respect to angular velocity. As it can
be seen, the second frequency decreases with increasing the aspect ratio. In addition, with increasing the angular
velocity, the second frequency will be increased. It is observed that, the behavior of second frequency with respect
to nonlocal parameter depends on aspect ratio () and angular velocity, so that, in low angular velocities, the second
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frequency decreases with increasing the nonlocal parameter.
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The behavior of the third frequency of the nanoplate with respect to angular velocity is shown in Fig.4. As can be
seen, the third frequency decreases with increasing the aspect ratio. In addition, with increasing the angular velocity,
the third frequency will be increased. The behavior of the third frequency with respect to the nonlocal parameter
depends on the aspect ratio and the angular velocity.
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The third frequency of the cantilever nanoplate with respect to angular velocity, for different nonlocal parameters and aspect
ratios.

Finally, the fourth frequency of the nanoplate with respect to the angular velocity is shown in Fig.5. As can be
seen, the fourth frequency decreases with increasing the aspect ratio. With increasing the angular velocity, the fourth
frequency will be also increased. In addition, with increasing the nonlocal parameter, decrease of the fourth
fundamental frequency will be observed.
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5.2 Results for the propped cantilever boundary condition

The fundamental frequency of the orthotropic rectangular propped cantilever nanoplate (CSFF boundary condition)
for different nonlocal parameters with respect to the angular velocity for different nonlocal parameters is shown in
Fig.6. The nonlocal parameter, the length of the square nanoplate and the hub radius (3) are considered 0-2 nm, 20k
and O respectively. It is seen that in CSFF boundary condition, the fundamental frequency increases while angular
velocity increases. In this boundary condition, the fundamental frequency also decreases with increase of the
nonlocal parameter.
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The fundamental frequency of the propped cantilever nanoplate with respect to angular velocity for different nonlocal
parameters and aspect ratios.
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Fig.7 indicates the second frequency variation of the nanoplate with respect to the angular velocity. As can be
seen, the second frequency decreases with increasing the aspect ratio. With increasing the angular velocity, the
second frequency will be also increased. In addition, it is observed that the second frequency decreases with

increasing the nonlocal parameter.
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Second frequency of the propped cantilever nanoplate with respect to angular velocity, for different nonlocal parameters and

aspect ratios.

The behavior of the third frequency of the nanoplate with respect to the angular velocity is shown in Fig.8. As
can be seen, the third frequency decreases with increasing the aspect ratio. With increasing the angular velocity, the
third frequency will be also increased. Lastly, increasing the nonlocal parameter results in decreasing the third

natural frequency.
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aspect ratios.

Finally, the fourth frequency of the nanoplate with respect to the angular velocity is shown in Fig.9. As can be
seen, with increasing the angular velocity, the fourth frequency will be increased. With increasing the nonlocal
parameter, decreasing of the fourth frequency will be also observed.
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The Fourth frequency with respect to the angular velocity, nonlocal parameter and aspect ratio for the propped cantilever
nanoplate.

5.3 Effect of hub radius
Fig.10 illustrates the effect of hub radius on fundamental frequency of the rotating nanoplate with cantilever

boundary condition. The fundamental frequency is plotted with respect to the angular velocity and the nonlocal
parameter for four hub radii: » =0, 1 nm, 2 nm and 4 nm.
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The results show that for higher hub radius values, higher fundamental frequencies are expected. Figures also
imply that in higher values of the nonlocal parameter, the fundamental frequency has a higher rate of change for a
given change of the angular velocity or the hub radius.
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Effect of the hub radius on fundamental frequency of the rotating nanoplate for cantilever nanoplate.

The effect of hub radius on fundamental frequency of the rotating nanoplate with propped cantilever boundary
condition is shown in Fig. 11. As results show, higher hub radius values result in higher fundamental frequencies.
Figures also imply that in higher values of the nonlocal parameter, the fundamental frequency has a higher rate of
change for a given change of the angular velocity or the hub radius.

><;|_016 Hub radius=0 x10 Hub radius=1 nm

2.

5 25
>

z 2

g 3

g 2 g 2

3 i

w p—

E £

=1 k<)

s =z

=z 15 15

s s e e 3 £ £ £ £ £ 0 0.5 1 15 2 25 3 35 4 4.5 5
0 05 1 15 2 25 3 35 4 45 5 Angular Velocity
Angular Velocity

© 2017 IAU, Arak Branch



336 M. Ghadiri et al.

x10 Hub radius=2 nm Hub radius=4 nm

35

25

Natural Frequency
N
N (4

[
o

Natural Frequency
N

|
o
T

-
T

05k . . . . . . . . . I
(o] 0.5 1 1.5 2 25 3 35 4 45 5
Angular \elocity

o os 1 15 2 25 & 35 4 a5 5
Angular Velocity
Fig.11
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6 CONCLUSIONS

This paper has made the first attempt to study the vibration of the rotating nanoplate under variation of the axial
force due to the rotation for two kinds of boundary conditions, i.c., the cantilever and the propped cantilever. Based
on the nonlocal continuum mechanics and Hamilton’s principle, the equations of motion were derived. Analytical
expressions were obtained for the nondimesional frequency. DQ method as one of the efficient numerical methods
was utilized to discrete the linear governing equations. The present model was validated by comparison with the
available literatures. The obtained numerical results for the first four frequencies reveal that the vibration behavior
of the nanoplate depends on angular velocity, hub radius and nonlocal parameter. Achieved conclusions are listed as
follows. Frequency always increases with increasing the angular velocity or hub radius. In all cases the dependency
of frequency on angular velocity also increases, with increasing the nonlocal parameter.

Fundamental frequency decreases with increasing the aspect ratio, but it is opposite for higher frequencies.

The behavior of frequency with respect to the nonlocal parameter depends on frequency number. Therefore, the
first frequency increases with increasing the nonlocal parameter. For higher frequencies, this effect depends on
rotational velocity. So, in low velocities, frequency is descending with respect to the nonlocal parameter which is
different in high velocities. In higher frequencies, all involving parameters: rotational speed, frequency number and
nonlocal parameter are correlated.

In this boundary condition, increasing the nonlocal parameter always results in decreasing all of the frequencies.
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