
 

© 2010 IAU, Arak Branch. All rights reserved.                                                                                                    

 

Journal of Solid Mechanics Vol. 2, No. 4 (2010) pp. 316-331 

Stress Analysis of Two-directional FGM Moderately Thick 
Constrained Circular Plates with Non-uniform Load and Substrate 
Stiffness Distributions 

M.M. Alipour, M. Shariyat* 

Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Tehran 19991-43344, Iran 

Received 4 October 2010; accepted 10 November 2010 

 ABSTRACT 

 In the present paper, bending and stress analyses of two-directional functionally graded (FG) 
circular plates resting on non-uniform two-parameter foundations (Winkler-Pasternak 
foundations) are investigated using a first-order shear-deformation theory. To enhance the 
accuracy of the results, the transverse stress components are derived based on the three 
dimensional theory of elasticity. The solution is obtained by employing the differential transform 
method (DTM). The material properties are assumed to vary in both transverse and radial 
directions according to power and exponential laws, respectively. Intensity of the transverse load 
is considered to vary according to a second-order polynomial. The performed convergence 
analysis and the comparative studies demonstrate the high accuracy and high convergence rate of 
the approach. A sensitivity analysis consisting of evaluating effects of different parameters (e.g., 
exponents of the material properties, thickness to radius ratio, trend of variations of the foundation 
stiffness, and edge conditions) is carried out. Results reveal that in contrast to the available 
constitutive-law-based solutions, present solution guarantees continuity of the transverse stresses 
at the interfaces between layers and may also be used for stress analysis of the sandwich panels. 
The results are reported for the first time and are discussed in detail. 
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1    INTRODUCTION 

 HE necessity of monitoring the local variations of the material properties in the whole component to meet the 
design requirements and achieving continuous stress distributions and optimized designs has led to creation of 

various functionally graded materials (FGMs). Therefore, depending on the function of the component, it is possible 
to utilize one-, two- or three-directional functionally graded materials. Examples of functionally graded circular 
plates resting on two-parameter (Winkler-Pasternak) elastic foundations may be found in aerospace, civil, 
mechanical, nuclear and offshore applications. Driven plate of a friction clutch is an example of the mentioned 
plates. There are two approaches for designing this typical component: the constant-life and constant-pressure 
approaches. Therefore, the distributed forces exerted by the foundation may not be uniform even for a uniform 
displacement field. Subsequently, as a general case, the stiffness of the foundation may not be uniform. 

Some researchers have investigated bending of the functionally graded plates employing the plate theories. 
Axisymmetric bending and stretching of the functionally graded solid and annular circular plates was studied by 
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Reddy et al. [1] using the first-order shear-deformation Mindlin plate theory. Ma and Wang [2] employed the third-
order shear-deformation plate theory to study axisymmetric bending of the functionally graded circular plates. Saidi 
et al. [3] and Sahraee and Saidi [4] studied axisymmetric bending and stretching of functionally graded (FG) circular 
plates subjected to uniform transverse loadings based on the higher-order shear-deformation plate theories. An 
analytical solution based on the first-order shear-deformation plate theory approach was presented by Jomehzadeh et 
al. [5] for bending analysis of the functionally graded annular sector plates. Golmakani and Kadkhodayan [6] 
studied axisymmetric nonlinear bending of an annular functionally graded plate using the dynamic relaxation 
method combined with the finite difference technique.  

It is evident that results of the three-dimensional theory of elasticity are exact and more accurate than the plate 
theories which are two-dimensional theories whose dependency on the transverse coordinate is prescribed. 
Assuming the material properties to vary according to an exponential law in both transverse and radial directions, 
Nie and Zhong [7] investigated axisymmetric bending of the two-directional functionally graded circular and 
annular plates based on the three-dimensional theory of elasticity. Li et al. [8] obtained an elasticity solution for 
axisymmetric bending of FGM circular and annular plates subject to polynomial loads of even order. The problem 
of a functionally graded, transversely isotropic, magneto–electro-elastic circular plate acted on by a uniform load 
was treated by Li et al. [9] based on the three-dimensional theory of elasticity. Yang et al. [10] presented an 
analytical solution for bending of annular plates under uniform loadings. Lei and Zheng [11] presented an exact 
solution for axisymmetric bending of functionally graded circular plates under elastically supported and rigid 
slipping edge conditions. Based on the three-dimensional theory of elasticity, Yun et al. [12] investigated 
axisymmetric bending of functionally graded circular plates subject to Bessel function-type transverse loads using 
the direct displacement method. Nie and Zhong [13] investigated the dynamic behavior of the two-directional FGM 
annular plates based on the three-dimensional theory of elasticity using the state-space method combined with the 
one dimensional differential-quadrature method (DQM). Sepahi et al. [14] used the DQ method for analysis of 
axisymmetric large deflection response of a simply supported annular FGM plate resting on a three-parameter elastic 
foundation. Sburlati and Bardella [15] obtained three-dimensional elastic solutions for a functionally graded thick 
circular plate subjected to axisymmetric conditions. 

Reviewing the literature reveals that very limited papers have been published on the two-directional functionally 
graded circular plates [7, 13, 16-17]. Bending and stress analysis of two-directional functionally graded circular 
plates resting on elastic foundations has not been performed before, especially for non-uniform load and foundation 
stiffness distributions. Present research is devoted to bending and stress analysis of two-directional functionally 
graded circular plates resting on non-uniform two-parameter Winkler-Pasternak elastic foundations. The material 
properties are assumed to be graded in the transverse and radial directions according to power and exponential laws, 
respectively. The governing equations are derived based on Mindlin’s plate theory in conjunction with the three 
dimensional theory of elasticity. A semi-analytical method based on the differential transform method (DTM) is 
employed to extract the semi-analytical solution. Some of the most significant novelties of the paper are: (i) 
performing bending and stress analyses of the two-directional functionally graded circular plates for the first time, 
(ii) in contrast to the traditional constitutive-equation-based first-order shear deformation theories, results are 
modified using the three-dimensional theory of elasticity and subsequently, (iii) the solution may also be used for 
analyzing the sandwich plates due to a priori satisfying the continuity conditions of the transverse stress 
components, and (iv) present results are accurate enough even for the thick plates. 

2    GOVERNING EQUATIONS OF MOTION OF THE CIRCULAR PLATE  

Consider a circular plate made of a two-directional functionally graded material (FGM) and subjected to both non-
uniform load and non-uniform foundation stiffness distributions, as shown in Fig. 1. Based on Mindlin-Reissner 
plate theory, displacement field of the plate may be described as follows [18]: 
 

0 0,ru u z w w= + =  (1)
 

 
where the symbol “,” stands for the partial derivative, u0  and w0 are respectively the radial and transverse 

displacement components of the reference layer (e.g. the mid-surface) of the circular plate, and the coordinate z is 
measured from the reference layer and is positive upward.  r  is rotation of the normal to reference layer. For small 

deflections, the strain-displacement relations may be written as [18]: 
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Fig. 1 
Geometry and foundation parameters of the two-directional functionally 
graded circular plate. 
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On the other hand, as a consequence of assumptions of Mindlin-Reissner plate theory, Hooke’s generalized 

stress-strain law may be expressed as [18]: 
 

          
r r r rz rz

E E E

v v
2

2 2
( ), ( ),

2(1 )1 1
= + = + =

+- -
 (3)

 

 
where E and  are modulus of elasticity and Poisson’s ratio, respectively and  2  denotes the transverse shear 
correction factor which is usually introduced in the first-order shear-deformation plate/shell theories (FSDT) in 
order to correct the transverse shear rigidities of the plate. In the present analysis, this coefficient is adopted as 
 =2 2( /12).  

Assuming the constituent materials of the FGM plate to be ceramic and metal, variations of a representative 
material property p in the transverse and radial directions may be assumed to be [19]: 
 

r
c c m mp p V p V e( )= +  (4)

 

 
In which the subscripts c and m refer to ceramic and metal, respectively. Vc and Vm, the volume fractions of the 

ceramic and metal materials, may be related as follows [19]: 
 

c mV V 1+ =  (5)
 

 
The metal volume fraction is assumed to follow a power-law distribution in the transverse direction [19]: 
 

g

m

z
V

h

1

2

æ ö÷ç= - ÷ç ÷÷çè ø
 (6)

 

 
where g is the positive definite power–law index. From Eqs. (4-6), variations of the modulus of elasticity of the FG 
plate may be given by: 
 


= - +( , ) [( ) ]

r

b
m c m cE z r E E V E e  (7)

 

 
The governing equations of motion may be derived by using principle of minimum total potential energy. 

Employing this principle leads to the following three governing equations for the plate in the cylindrical coordinate 
system (r, θ, z) [2]:  
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  (8c) 

 
where the intensity of the transversely distributed load is considered to vary according to a general second-order 
polynomial 
 

  P P r r2
0 ( )= + +  (9)

 

 
and the stress resultants Mi, Ni, Qi (i=r, θ) are 
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ò ò ò  (10)

 

 
In Eq. (8c), it is implicitly assumed that Winkler’s stiffness of the Winkler-Pasternak-type elastic substrate varies 

in the radial direction according to a second-order polynomial. Based on Eqs. (1-3, 7, 8, and 10), one may write:
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To present a more general solution, the following non-dimensional parameters are introduced: 
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where cD E h3 2* /12(1 )= -  and Kw and Ks are the non-dimensional Winkler and Pasternak coefficients of the 

elastic foundation, respectively. Hereafter, the bar (-) symbol will not be shown for the sake of simplicity. Eqs. (8a) 
and (8c) may be simplified and rewritten based on Eqs. (11, 12) as: 
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3    BOUNDARY CONDITIONS  

The most common edge conditions of the solid circular plates may be expressed as follows: 
 

Roller-supported edge: 
 

r rN M w0, 0, 0= = =  (15a)
 

 
Immovable simply-supported edge: 

 

ru M w0, 0, 0= = =  (15b)
 

 
Clamped edge: 

 

 ru w0, 0, 0= = =  (15c)
 

4    SOLUTION PROCEDURE  

Using Taylor’s series expansion, the governing differential equations and the relevant boundary conditions of the 
system may be transformed into a set of algebraic equations in terms of the differential transforms of the original 
functions. Solution of these algebraic equations gives the desired solution of the problem.  

Consider functions u r w r r0 ( ), ( ), and ( )  which are analytic in a domain R and let rr0 represent any point in R. 

These functions can be represented by power series whose center is located at rr0.  
 

 k k k
k k k

k k k

u r r r U w r r r W r r r0 0 0 0
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¥ ¥ ¥

= = =

= - = - = -å å å  (16)
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In practical applications, the function is usually expressed by a finite series. Therefore, Eq. (16) may be rewritten 
as 

 
N N N

k k k
k k

k k k

u r r r U w r r r W r r r0 0 0 0
0 0 0

( ) ( ) , ( ) ( ) , ( ) ( )
= = =

= - = - = -å å å
 

(17)
 

which implies that  k k k
k k k

k N k N k N

u r r r U w r r r W r r r0 0 0 0
1 1 1

( ) ( ) , ( ) ( ) , and ( ) ( )
¥ ¥ ¥

= + = + = +

= - = - = -å å å are negligibly 

small. In the present research, N is so chosen that the calculated stress components converge.  
By substituting Eq. (17) into the governing Eq. (14), using Taylor’s expansion for the exponential function 

around r00, and performing some manipulations, the transformed form of Eq. (14) around r00 may be obtained as:  
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Simplifying Eqs. (18) and rearranging, the equations of motion can be rewritten as:
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By substituting Eq. (17) into the boundary condition Eq. (15) the transformed form of Eq. (15) around r0=0 will 

be: 
Roller-supported edge: 
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Immovable simply-supported edge: 
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Clamped edge: 
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Based on Eq. (20), three boundary conditions are available along the plate edge (at r1) that may be employed in 

solution of the Eq. (19) and consequently, determination of u0,  , and w. Moreover, three additional conditions are 

required that may be extracted from the regularity conditions at the center of the moderately thick circular plate: 
 

 r r r ru U Q W0 0 0 0 0 10 0 0 0 0 0= = ==  = =  = =  =  (21)
 

 
By substituting Ui, Wi and i  (i2, ...,n+2) from Eq. (19) into Eq. (20) and applying the regularity conditions 

(21), the final system of equations will have the following form: 

          n n n n n n n n nU W f U W f U W f( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
11 1 12 0 13 1 1 21 1 22 0 23 1 2 31 1 32 0 33 1 3, ,+ + = + + = + + =  (22)

 

 
U W1 0,  and 1  may be determined by solving the mentioned system of equations. Other displacement parameters 

[Ui, Wi and 1  (i=2, ...,n+2)] may be determined based on the recursive Eq. (19). 

5    TRANSVERSE SHEAR STRESS 

It is evident that although the in-plane stresses may be determined accurately enough based on the first-order shear-
deformation theory, the transverse stress components cannot be extracted directly from the constitutive equations. 
For this reason, we use the three-dimensional theory of elasticity to extract the transverse stress components based 
on variations of the in-plane stress components. Using equations of the three-dimensional theory of elasticity in 
terms of the stress components [20]: 
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r r z
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 (23)

 

 rz zr

r r z

( ) ( )1
0

¶ ¶
+ =

¶ ¶
 (24)

 

The transverse shear stress may be determined as:  
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or more precisely 
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By substituting Eq. (26) into Eq. (24), the transverse normal stress component ( z ) may be calculated: 
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6    RESULTS AND DISCUSSION 

Example 1: To verify results of the present semi-analytical solution, a bending analysis example previously treated 
by Reddy et al. [21] and Nosier and Fallah [22], is reexamined. Both references used the first-order shear-
deformation Mindlin plate theory, without elasticity corrections. The plate is assumed to carry a uniformly 
distributed transverse load. Although the edge of the plate is constrained, no elastic foundation is considered. 
Material and geometric parameters of the Titanium-Zirconia FGM plate are [21]: m cE E v0.396 , 0.288,= =  
 0.2.=  

It is evident that if the results are validated for the considered thick plate, higher accuracies will be expected for 
the moderately thick and thin plates. The following dimensionless maximum transverse deflection (that occurs at the 
center of the plate) is defined to extract the results: w D w Pb4ˆ 64 * / .=  References [21] and [22] only considered 
plates made of transversely-graded materials ( 0) = whereas in the present example, variations of the elasticity 

modulus in the radial direction is considered, too. Present results are listed in Table 1 and are compared with results 
of Refs. [21-22] for plates with clamped, simply-supported, or roller-supported edge condition, various volume 
fraction indices, and different thickness ratios. There is an excellent agreement among the results. As it may be 
expected, as the exponential exponent of the modulus of elasticity decreases, stiffness of sections adjacent to the 
constrained edge reduces and subsequently, the overall transverse deflection of the plate increases. On the other 
hand, as the edge movability increases, the overall deflection of the plate increases. Present results are almost 
coincident with results of the 3D elasticity. 
 
Example 2: To perform a sensitivity analysis, a one-directional FGM plate with the following material and 
geometric specifications subjected to a no-uniform transverse load is considered [23]; 200 GPa,mE =  

380 GPa,cE = = = =0.3, 1 and 0.2.v g   As the foregoing example, the dimensionless maximum lateral 

deflection is defined as: 4ˆ 64 * / .w D w Pb=  Simultaneously, the results are compared with results of the 3D 
elasticity derived from the ABAQUS finite element model. In this regard, 20-noded brick elements are employed to 
model the plate. In the first stage of the sensitivity analysis, five loading conditions composed of: (i) uniform 
(  1, 0, 0= = = ), (ii) linear (      0, 1, 0 and 1, 1, 0= = = = = = ), and (iii) parabolic 

(      0, 0, 1 and 1, 0, 1= = = = = = ) distributions of the lateral load are considered to extract the results.  
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Table 1 
Non-dimensional center deflections of FG circular plates under uniform transverse loads 
Edge condition g Present study  Reddy et al. 

[21] 
Nosier and Fallah 
[22] 

1    0.5    0   0.5   1    0   0   

Clamped 0 5.5789 4.0801 2.9852 2.1852 1.6013  2.979 2.9792 
2 3.0173 2.2081 1.6163 1.1835 0.8671  1.613 1.6133 
10 2.4937 1.8247 1.3354 0.9777 0.7164  1.333 1.3330 
105 2.2092 1.6157 1.1821 0.8653 0.6341  1.180 1.1798 

          
Simply-supported 
 

0 17.6417   13.8203 10.828 8.46842 6.6001  10.822 10.8216 
2 9.31590 7.29402 5.7112 4.46420 3.47735  5.708 5.7083 
10 7.91130 6.19918 4.8575 3.79962 2.96154  4.855 4.8551 
105 6.98611 5.47285 4.2877 3.35349 2.61366  4.285 4.2854 

          
Roller- 
supported 
 

0 17.6417 13.8203 10.8276 8.46842 6.6001  10.822 10.8216 
2 9.64883 7.56282 5.9275 4.63756 3.61528  5.925 5.9247 
10 7.95251 6.23239 4.8843 3.82105 2.97859  4.882 4.8819 
105 6.98611 5.47285 4.2877 3.35349 2.61366  4.285 4.2854 

 
 
Table 2 
Non-dimensional center deflections of FG circular plates under non-uniform transverse loads 
Edge condition Approach 1    0   

0, 0    1, 0    0, 1     1, 0    0, 1    

Clamped 3D 1.580 2.262 1.942  0.682 0.362 
Analytical 1.596 2.282 1.958  0.685 0.361 
Difference (%) 1.04 0.88 0.83  0.51 0.07 

        
Simply-Supported  3D 5.633 8.464 7.338  2.837 1.705 

Analytical 5.628 8.471 7.333  2.836 1.705 
Difference (%) 0.07 0.08 0.06  0.06 0.00 

        
Roller- 
supported  

3D 5.724 8.611 7.461  2.887 1.737 
Analytical 5.762 8.669 7.512  2.907 1.750 
Difference (%) 0.67 0.68 0.69  0.69 0.75 

 
 
Table 3 
Effects of the material heterogeneity exponents on the dimensionless lateral deflection of the plate for various thickness ratios 
and boundary conditions 
Edge condition τ g=0 g=1 g=10 

μ=-1 μ=0 μ=1 μ=-1 μ=0 μ=1 μ=-1 μ=0 μ=1 
Clamped 0.05 3.544 1.922 1.036 2.525 1.369 0.742 2.063 1.119 0.603 

0.1 3.675 1.987 1.070 2.616 1.414 0.762 2.136 1.156 0.621 
0.15 3.894 2.099 1.128 2.765 1.490 0.801 2.257 1.215 0.653 
0.2 4.204 2.252 1.210 2.979 1.597 0.85٨ 2.427 1.30 0.698 

           
Simply- 
supported 

0.05 12.521 7.763 4.771 8.717 5.401 3.315 7.270 4.510 2.771 
0.1 12.652 7.834 4.807 8.806 5.447 3.338 7.341 4.547 2.789 
0.15 12.873 7.942 4.862 8.954 5.521 3.377 7.462 4.605 2.819 
0.2 13.181 8.096 4.947 9.171 5.627 3.434 7.635 4.694 2.867 

           

Roller- 
supported 
 

0.05 12.521 7.763 4.771 8.922 5.534 3.399 7.296 4.525 2.779 
0.1 12.652 7.834 4.807 9.011 5.580 3.424 7.366 4.563 2.799 
0.15 12.873 7.942 4.862 9.158 5.652 3.463 7.488 4.621 2.829 
0.2 13.181 8.096 4.947 9.376 5.763 3.520 7.654 4.707 2.875 
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Results are given in Table 2 for various edge conditions and the differences between present results and results 
of the 3D theory of elasticity are calculated for the dimensionless lateral deflection of the center point of the plate. 
Although the plate is thick, there is an excellent agreement between the results. However, some researchers have 
proved that for relatively thin plates, accuracy of the results of the 3D theory of elasticity may be comparable to that 
of the plate theories [23-26]. As before, results of a plate with roller-supported edge are the greatest. In the second 
stage of the sensitivity analysis, effects of the transverse and radial material heterogeneity of a two-directional FGM 
plate on the dimensionless maximum lateral deflection are studied for thin, moderately thick, and thick plates. 
Results are shown in Table 3. These results reveal that influence of the radial heterogeneity on the maximum lateral 
deflection is significantly higher than that of the transverse heterogeneity. However, due to the adopted form of the 
dimensionless maximum lateral deflection expression, it seems that deflections of the thicker plates may be greater. 
Finally, effects of the elastic foundation and its radial stiffness distribution (uniform, linear, or parabolic 
distribution) on the dimensionless lateral deflection are evaluated. To this end, the following material and geometry 
information is used: g1, μ0.5 and τ0.2. 

Results given in Table 4 show that the edge conditions may affect results of the thick plates (τ0.2) more than 
the elastic foundation, especially for edge conditions that led to higher rigidities. Furthermore, for identical stiffness 
values, in comparison with Winkler’s foundation, Pasternak foundation (that exerts radial shear forces on the bottom 
surface of the plate) affects the results more remarkably.  

Example 3: In the present example, displacement and stress distributions of transversely-graded FGM circular 
plates with simply-supported or clamped edges subjected to transverse loads are studied. To verify the results, 
especially the through-the-thickness distributions of the stress components, present results are compared with the 3D 
elasticity results obtained from ABAQUS. The following material and loading information is used: 

= = = =0200 GPa, 380 GPa, 1, 1m c
c

P
E E g

E
 

Effects of the load function on the dimensionless lateral deflection w D w Pb4ˆ 64 * /=  are studied in Fig. 2. It is 
evident that the volume beneath the load distribution surface decreases when switching from the uniform to linear to 
parabolic load distributions, respectively. The through-the-thickness distributions of the radial bending and 
transverse shear stresses of simply-supported and clamped FGM plates subjected to a uniform transverse load (λ1, 
P/Ec1) are illustrated in Figs. 3 and 4, respectively (g0, τ0.2). Results are expressed based on the following 
dimensionless stress parameters:    rz rz c r r cE E/ , / .= =  As it may be expected, the greatest transverse shear 

stresses occur in the neighborhood of the plate edge. Although the radial bending stress increases as one proceeds 
from the edge to the center of the simply-supported plate, a quite different trend is observed for the clamped plate. 
Indeed, sine the bending of the clamped plate so performs that an inflection point forms on any radial line 
connecting the edge to the center of the plate, the bending moment changes its sign in the radial direction and vice 
versa. 
 
 
Table 4 
Influences of the elastic foundation and its radial stiffness distribution on the dimensionless lateral deflection of the two-
directional FGM circular plate 
Edge 
condition 

Ks Kw=0.05  Kw=0.1  Kw=0.2 
α=0, 
β=0 

α=1, 
β=0 

α=0,  
β=1 

 α=0,  
β=0 

α=1,  
β=0 

α=0,  
β=1 

 α=0,  
β=0 

α=1,  
β=0 

α=0,  
β=1 

Clamped 0 1.112 1.095 1.105  1.061 1.028 1.046  0.9696 0.9165 0.9459 
0.05 0.8346 0.8243 0.8301  0.8045 0.7846 0.7962  0.7501 0.7168 0.7354 
0.1 0.6688 0.6618 0.6656  0.6490 0.6358 0.6432  0.6124 0.5898 0.6024 
0.2 0.4802 0.4765 0.4787  0.4699 0.4625 0.4665  0.4499 0.4369 0.4440 

             
Simply- 
supported 

0 3.690 3.456 3.567  3.171 2.841 2.995  2.471 2.090 2.262 
0.05 1.895 1.831 1.863  1.745 1.639 1.689  1.504 1.352 1.424 
0.1 1.268 1.239 1.253  1.198 1.147 1.172  1.078 0.9971 1.036 
0.2 0.7597 0.7488 0.7546  0.733 0.7136 0.7238  0.6854 0.6515 0.6682 

             
Roller- 
supported 
 

0 3.766 3.522 3.636  3.227 2.883 3.043  2.504 2.112 2.289 
0.05 1.915 1.849 1.881  1.762 1.653 1.704  1.516 1.362 1.435 
0.1 1.277 1.247 1.262  1.206 1.153 1.179  1.084 1.002 1.041 
0.2 0.7629 0.7520 0.7571  0.7360 0.7162 0.7264  0.6880 0.6541 0.6707 
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Effects of Winkler and Pasternak elastic foundations on reducing the radial bending and transverse shear stresses 
of the simply-supported plates (at r0.9) are illustrated in Figs. 5 and 6, respectively. Comparing results shown in 
Figs. 5 and 6 confirms that Pasternak foundation reduces the resulting stresses more significantly. Results 
corresponding to the clamped plate are depicted in Figs. 7 and 8, respectively. These figures also confirm the 
previous conclusion. 

 
 

 
(a) 

 
(b) 

Fig. 2 
Radial distributions of the dimensionless lateral deflection of thick FGM (g=1, τ=0.2) circular plates with: (a) clamped and (b) 
simply-supported edges. Curves plotted with solid, dashed, and dotted lines correspond to uniform, purely linear, and purely 
parabolic distributions of the transverse load, respectively. 
 

 

 
(a) 

 
(b) 

Fig. 3 
Through-the-thickness distributions of the radial bending and transverse shear stresses of a simply-supported FGM plate 
subjected to a uniform transverse load.   
 
 

 
(a) 

 
(b) 

Fig. 4 
Through-the-thickness distributions of the radial bending and transverse shear stresses of a clamped FGM plate subjected to a 
uniform transverse load. 
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(a) 

 
(b) 

Fig. 5 
Effects of uniform: (a) Winkler and (b) Pastrenak stiffness coefficients of the foundation on the through-the-thickness distribution 
of the transverse shear stress of a simply-supported FGM plate subjected to a uniform transverse load, at r=0.9. 
 
 

 
(a) 

 
(b) 

Fig. 6 
Effects of uniform: (a) Winkler and (b) Pastrenak stiffness coefficients of the foundation on the through-the-thickness distribution 
of the radial bending stress of a simply-supported FGM plate subjected to a uniform transverse load, at r=0.9. 
 
 

 
(a) 

 
(b) 

Fig. 7 
Effects of uniform: (a) Winkler and (b) Pastrenak stiffness coefficients of the foundation on the through-the-thickness distribution 
of the transverse shear stress of a clamped FGM plate subjected to a uniform transverse load, at r=0.9. 
 
 

3D plots are presented for the dimensionless in-plane displacement u D u Pb4ˆ 64 * / ( )= distributions of the 
simply-supported and clamped plates in Fig. 9.

 
 Figs. 10 and 11 present 3D plots for the radial bending and 

transverse shear stresses of the simply-supported and clamped plates, respectively. Results are given for g1 while 
other specifications are retained. Fig. 11 confirms that due to the sign change in the bending moment, signs of the 
bending stresses at r0 and r1 are opposite for each layer. However, due to using the 3D theory of elasticity, the 
transverse shear stress varies according to a somewhat parabolic function through the thickness. 
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(a) 

  
(b) 

Fig. 8 
Effects of uniform: (a) Winkler and (b) Pastrenak stiffness coefficients of the foundation on the through-the-thickness distribution 
of the radial bending stress of a clamped FGM plate subjected to a uniform transverse load, at r=0.9. 
 
 
 

 
(a) 

 
(b) 

Fig. 9 
3D plots for the dimensionless in-plane displacement distribution for the: (a) simply-supported and (b) clamped plates. 
 
 

 
(a) 

 
(b) 

Fig. 10 
3D plots for the dimensionless radial bending and transverse shear stresses of the simply-supported FGM plate (g=1, τ=0.2, λ=1, 
P/Ec=1). 
 
 

Fig. 12 illustrates effect of the volume fraction index of the clamped FGM circular plate on the through-the-
thickness distribution of the dimensionless transverse normal stress  z z cE/= . The stress is mainly affected by 

the externally applied loads and the foundation reaction. Hence the results which are not included here show a 
similar distribution for the simply-supported plate. Some researchers have reported that a monotonic increase in the 
volume fraction index may not lead to a unique pattern of variations in the results [27]. 
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(a) 

 
(b) 

Fig. 11 
3D plots for the dimensionless radial bending and transverse shear stresses of the clamped FGM plate (g=1, τ=0.2, λ=1, P/Ec=1). 
 
 
 

 
 

 
 
 
 
Fig. 12 
Effect of the volume fraction index on the through-the-thickness 
distribution of the transverse normal stress of a clamped FGM 
circular plate. 

 
 

 
 

 
 
 
 
Fig. 13 
Comparison of the present results for the through-the-thickness 
distribution of the transverse shear stress for a clamped three-layer 
sandwich plate (at r=0.5) with ABAQUS results and results of the 
traditional first-order shear-deformation theory. 

 
 
Example 4: Finally, it is intended to prove that present approach may be extended and employed even for analysis of 
the sandwich plates. In other words, since a 3D elasticity correction is employed in the present paper for the 
transverse stresses, in contrast to the tradittional Mindlin theory that cannot satisfy the transverse stresses continuity 
at the interfaces between the layers, results of the present approach guarantee the mentioned continuity. To confirm 
this claim, a clamped three-layer (face sheet/core/face sheet) sandwich panel with the following material and 
geometry specifications is considered: E1E3200 GPa, E270 GPa, τ1τ30.1, τ20.2. where the subscript 2 denotes 
the core. The through-the-thickness distribution of the dimensionless transverse shear stress predicted by the present 
approach (denoted by FSDT_E) is plotted in Fig. 13 for r0.5 and compared with results of the 3D theory of 
elasticity (ABAQUS results) and results of the traditional constitutive-law-based first-order shear-deformation 
Mindlin theory (FSDT). Present results are almost coincident with results of the theory of elasticity. As Fig. 13 
shows, in this case, results of the traditional first-order theory may not be reliable. 
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7    CONCLUSIONS 

In the present paper, bending and stress analyses of two-directional functionally graded (FG) circular plates resting 
on non-uniform two-parameter foundations (Winkler-Pasternak foundations) is investigated using a semi-analytical 
solution. Some of the novelties of the present work are: 
- Bending and stress analyses of the two-directional functionally graded circular plates are performed for the first 

time. 
- The differential transform method (DTM) has not been used for stress analysis so far.  
- The proposed semi-analytical solution is presented based on a first-order shear-deformation theory whose 

results are modified based on the 3D theory of elasticity. 
- The presented solution is general and can be used for problems of two-directional heterogeneity, non-uniform 

transverse load, non-uniform stiffness distribution of the foundation, and various edge conditions.  
- In contrast to the available first-order shear-deformation theories, present results are accurate enough, even for 

the thick plates. 
- The proposed solution may be used for stress analysis of the sandwich plates, too. It guaranties continuity of the 

transverse stresses at the layer interfaces. 
    Results show that for identical values, in comparison with Winkler coefficient, Pasternak coefficient affects the 
results more remarkably and influence of the radial exponent of the modulus of elasticity is greater than that of the 
transverse exponent. 

REFERENCES 

[1] Reddy J.N., Wang C.M., Kitipornchai S., 1999, Axisymmetric bending of functionally graded circular and annular plates, 
European Journal of Mechanics A/Solids 18: 185-199.  

[2] Ma L.S., Wang T.J., 2004, Relationships between axisymmetric bending and buckling solutions of FGM circular plates 
based on third-order plate theory and classical plate theory, International Journal of Solids and Structures 41: 85-101.  

[3] Saidi A.R., Rasouli A., Sahraee S., 2009, Axisymmetric bending and buckling analysis of thick functionally graded circular 
plates using unconstrained third-order shear deformation plate theory, Composite Structures 89: 110-119. 

[4] Sahraee S., Saidi A.R., 2009, Axisymmetric bending analysis of thick functionally graded circular plates using fourth-order 
shear deformation theory, European Journal of Mechanics A/Solids 28: 974-984. 

[5] Jomehzadeh E., Saidi A.R., Atashipour S.R., 2009, An analytical approach for stress analysis of functionally graded 
annular sector plates, Materials and Design 30: 3679-3685. 

[6] Golmakani M.E., Kadkhodayan M., 2011, Nonlinear bending analysis of annular FGM plates using higher-order shear 
deformation plate theories, Composite Structures 93: 973-982. 

[7] Nie G., Zhong Z., 2007, Axisymmetric bending of two-directional functionally graded circular and annular plates, Acta 
Mechanica Solida Sinica 20: 289-295. 

[8] Li X.Y., Ding H.J., Chen W.Q., 2008, Elasticity solutions for a transversely isotropic functionally graded circular plate 
subject to an axisymmetric transverse load qrk, International Journal of Solids and Structures 45: 191-210. 

[9] Li X.Y., Ding H.J., Chen W.Q., 2008, Three-dimensional analytical solution for functionally graded magneto–electro-
elastic circular plates subjected to uniform load, Composite Structures 83: 381-390. 

[10] Yang B., Ding H.J., Chen W.Q., 2008, Elasticity solutions for a uniformly loaded annular plate of functionally graded 
materials, Structural Engineering and Mechanics 30(4): 501-512. 

[11] Lei Z., Zheng Z., 2009, Exact solution for axisymmetric bending of functionally graded circular plate, Tsinghua Science 
and Technology 14: 64-68. 

[12] Wang Y., Xu R.Q., Ding H.J., 2010, Three-dimensional solution of axisymmetric bending of functionally graded circular 
plates, Composite Structures 92: 1683-1693. 

[13] Nie G.J., Zhong Z., 2010, Dynamic analysis of multi-directional functionally graded annular plates, Applied Mathematical 
Modelingl. 34(3): 608-616. 

[14] Sepahi O., Forouzan M.R., Malekzadeh P., 2010, Large deflection analysis of thermo-mechanical loaded annular FGM 
plates on nonlinear elastic foundation via DQM, Composite Structures 92(10): 2369-2378.  

[15] Sburlati R., Bardella L., 2010, Three-dimensional elastic solutions for functionally graded circular plates, European 
Journal of Mechanics A/Solids 2011, dx.doi.org/10.1016/j.euromechsol.2010.12.008. 

[16] Shariyat M., Alipour M.M., 2011, Differential transform vibration and modal stress analyses of circular plates made of two-
directional functionally graded materials, resting on elastic foundations, Archive of Applied Mechanics 81: 1289-1306.  

[17] Alipour M.M., Shariyat M., Shaban M., 2010, A semi-analytical solution for free vibration of variable thickness two-
directional-functionally graded plates on elastic foundations, International Journal of Mechanics and Materials in Design 
6(4): 293-304.  

[18] Reddy J.N., 2007, Theory and Analysis of Elastic Plates and shells, Second Edition, CRC/Taylor and Francis, Philadelphia. 



M.M. Alipour and M.M. Shariyat                   331 
 

© 2010 IAU, Arak Branch 

[19] Shen, H.-S., 2009, Functionally Graded Materials: Nonlinear Analysis of Plates and Shells, CRC Press, Taylor and Francis 
Group, Boca Raton. 

[20] Ugural A.C., Fenster S.K, 2003, Advanced Strength and Applied Elasticity, Forth Edition, Prentice Hall, New Jersey. 
[21] Reddy J.N., Wang C.M., Kitipornchai S., 1999, Axisymmetric bending of functionally graded circular and annular plates, 

European Journal of Mechanics A/Solids 18: 185-199. 
[22] Nosier A., Fallah F., 2008, Reformulation of Mindlin–Reissner governing equations of functionally graded circular plates, 

Acta Mechanica 198: 209-233. 
[23]  Shariyat M., 2011, Non-linear dynamic thermo-mechanical buckling analysis of the imperfect laminated and sandwich 

cylindrical shells based on a global-local theory inherently suitable for non-linear analyses, International Journal of Non-
Linear Mechanics 46(1):253-271. 

[24]  Shariyat M., 2011, A double-superposition global-local theory for vibration and dynamic buckling analyses of viscoelastic 
composite/sandwich plates: A complex modulus approach, Archive of Applied Mechanics 81: 1253-1268. 

[25] Lezgy-Nazargah M., Shariyat M., Beheshti-Aval S.B., 2011, A refined high-order global-local theory for finite element 
bending and vibration analyses of the laminated composite beams, Acta Mechanica 217: 219-242. 

[26] Lezgy-Nazargah M., Beheshti-Aval S.B., Shariyat M., 2011, A refined mixed global-local finite element model for bending 
analysis of multi-layered rectangular composite beams with small widths, Thin-Walled Structures 49: 351-362. 

[27] Hosseini S.M., Sladek J., Sladek V., 2011, Meshless local Petrov–Galerkin method for coupled thermoelasticity analysis of 
afunctionally graded thick hollow cylinder, Engineering Analysis with Boundary Elements. 35: 827-835. 


