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 ABSTRACT 

 This paper presents the governing equations on the rectangular plate with the 

variation of material stiffness through their thick using higher order shear 

deformation theory (HSDT). The governing equations are obtained by using 

Hamilton's principle with regard to variation of Young's modulus in through their 

thick with regard sinusoidal variation of the displacement field across the 

thickness. In addition, the effects of the substances in FG-porous plate are 

investigated.                                  © 2018 IAU, Arak Branch. All rights reserved. 

 Keywords: Functionally graded materials; Navier solution; Porous material; 

Rectangular plate.  

1    INTRODUCTION 

 NE of the deep understanding consequences of mechanical behavior existing material in nature such as bone 

and sea plate is using it to form the different material. Functionally graded materials (FGMs) are the material, 

which produces by using developed technology and forming process. One of the functions is effect tension 

concentration and its continuation in surface regard to monotonous changes of synthesis volume deduction [1]. 

Nowadays, FGMs have substituted by material in biomechanics, navel, machinery industry, and other functions. 

Although, FGM material are very heterogeneous but material function change is very monotonous [2]. The material, 

which their structure has constituted of two solid phase and liquid phase called porous material. Mineral, solid 

levels, stones, plants wooden structure and etc. are the porous material, which exists richly in the ambience. 

Nowadays, using the porous material in reason of low weight, high flexibility resistance against hairy cracks, heat 

insufficiently and vocal insufficiently have gained high popularity in different industries has been developed.  In the 

present study, one FG plate response under influence of monetary load is analyzed. Also, different mathematical 

volume fraction for example in exponent rule of some of the scholarly uses exponential rule and same others use 

power distribution rules [3-6]. More solution methods in shear deformation based on classic theory which could be 

resulted in appropriated outputs. This theory has been used by some researchers [7-9]. Several studies have been 

carried out using FSDT [10-14]. For eluding the use of shear correction factors, several HSDT, such as, the third-

order shear deformation theory (TSDT) [15-18], the sinusoidal shear deformation theory (SSDT) [19-21] and the 

hyperbolic shear deformation theory [22-23] have been proposed. In addition, all two-dimensional plate theories 

ignore the thickness stretching effect. Indeed, a constant transverse displacement through the thickness was 

considered [24-26].   
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In this theory the extension effect in the line of thickness slight is ignored, and rather than the use of ordinate 

removal constant. In this paper, the higher order theory with elasticity extension effect in the line of thickness has 

been used, and also sinusoidal shear deformation and extension across the thickness removal layers include bending, 

shear and thickness stretching, and resulted in the motion equations of Hamilton principle and been attained stress 

and removal formulas for bending. 

2    SOLUTION METHOD    

One rectangular FG plate is shown in Fig. 1, where the porous material is considered as thickness h, length a, and 

width b. The coordinate origin is on the middle surface and considered elasticity and heterogeneous plate by 

changing the elasticity model in the thickness axis. One plate volume fraction distribution follows of exponent 

distribution law and ordered in follow method. 
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which p is the parameter, which depends on features changes in the thickness axis. Poisson effect changes remained 

constant and considered young module changes for porous FG plate as follow [20]. 
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which in this relation 
cE is ceramic elasticity module, and 

mE is metal elasticity module, and   is porous biot 

coefficient.  

 

 

 

 

 

 

 

Fig. 1 

Schematic representation of the geometry of the plate. 

3    FIELD EQUATIONS  

Removing field is being based on following theories by Belabed and coworker [21]. (1) Ordinate removal divides 

into three section: bending, shear, and stretching components. (2) The shear component in plane removal is sinus 

consequences of traction process. In the basis of these theories removal field relation attained as: 
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(3) 

 

In this equation, 
0 ( , )u x y and 

0 ( , )v x y  are the displacement functions of the middle surface of the plate. 

( , ), ( , )b sw x y w x y
 

are the bending and shear components of the transverse displacement, respectively. In 

addition, the additional displacement
 

( , )x y accounts for the stretching effect, and 
1 2,   are rotations of yz and xz 

planes [22]. The sinusoidal features described as the following model: 
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And 
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which h is the thickness of the plate. Displacements and rotations are assumed to be small and obey Hooke's law. 

The linear strains associated with the above displacement field are: 
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To simple relations writing way consider derivational operators as well as follow: 
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4    STRUCTURAL EQUATIONS    

Young model mentioned in relation (2), so the structural equations for FG-porous plate can be written as follow: 
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(8) 

 

which the elastic constants is determined with regard to relation (2): 
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The axial forces, shear forces, bending momentum and shear momentum are determined by integrating stresses 

along the thickness of the FG plate as follows: 
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The coefficients are calculated as follow: 
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4    GOVERNING EQUATIONS    

Governing equations in considered theory derived from Hamilton
’
s principle which its relation is as well as follow: 
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In this relation , ,U V K   are the variations of the strain energy, the potential energy, and the kinetic energy, 

respectively. 
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In this relation, the kinetic Energy is ignored duo to the 0K  , Substituting the expressions for stresses and 

strains from Eqs. (6) and (8) into Eqs. (12) and (13) integral then adding efficiency 0 0, , , ,b su v w w    
 
attain 

dominate equation on the plate. 
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By substituting Eq. (11) in (14), relations can be stated balance equations in the basis of removal filed terms as 

follow: 
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which mnQ to distribute monotonous extensive load is as follow: 
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By substitution (16), (17) relations in relation (14) result one group of algebra equation which can be arranged 

them as follow: 
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where the coefficients of the above matrix are given as follows: 
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5    CONCLUSIONS AND DISCUSSIONS   

A rectangle porous FG plate of metal and ceramic with size of a=b=5h, p=3, the ratio of a=b=1, and the thickness 

h=0.2 that are given in Table 1, is considered.  Moreover, the various structural technique for FGM is considered so 
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that is depend on the applied programs such as  (a) porous drive, (b) chemical synthesis of one phase materials, (c) 

the volume fraction exponent of the material phases. 

 
Table 1 

The plate materials. 

 /Al ZrOz )ceramic) 6 4Ti Al v   ) metal) 

117
c

GpaE   

0.33   

66.2
m

E Gpa  

0.33   
 

In Fig. 2, the mid-plate digression is in slight of plate length with regard to the maximum digression in plate 

center. By comparing the result with implemented research by Amirpoor [23], it can be shown that the Young’s 

modulus is changed in slight of the thickness. In addition, the material volume fraction is varied along the thickness 

caused the maximum digression in the plate core while the time of Young’s modulus is changed along the length 

maximum digression dose not occurs in the plate core but occur in right side, which the materials concentrations are 

fallen [23]. 
 

 

 

 

 

 

 

 

Fig. 2 

Deflection of the FG plate with variation of the material 

stiffness through the thickness. 

 

 

Fig. 3 shows Young’s modulus changes in direction of the plate thicknss. It can be seen that in the mideal plane 

for p=3, the more Young’s modulus changes changes changes is occurred. In latter determin contraction and 

consider their changing process along the thickness. 

Fig. 4 shows the strain changes in direction of thickness. It should be noted that in Fig. 4, the natural plate of the 

porous FG plate is in the mideal plate. 
 

 

 

 

 

 

 

 

 

Fig. 3 

Variation of Young's modulus (E(x)) through the length 

with different power-law indices. 

 

  

 

 

 

 

 

 

 

Fig. 4 

The strain z at the center of the FG plate with variation of 

material stiffness through the thickness. 

 
 

 

Fig.5 shows the resulted responses of analytic soulotion for porous FG plate from relation (8). Here, it must be 

mentioned that the effect of the sinusoid function ( ), ( )z z    in relation(6) in x  response to comparing with 
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bending, which is linear function of z mentioned little. In other words, sinusoid terms are shorter than the liner terms 

because of this difraction is dominated issue. 

In Fig. 6 we see that  the effect of porous volume fraction ( ) in porous FG plate diffraction that inceased 

maximum digression by increasing   considerably, which shows that this amount decrease by increasing in 

response to diffraction. 
 

 

 

 

 

 

 

 

 

Fig. 5 

The stress
xx

S at the mid-plane of the FG plate with 

variation of the material stiffness through the thickness. 

  

 

 

 

 

 

 

 

 

Fig. 6 

Effect of porous volume fraction ( ) in porous FG plate 

diffraction. 

 

 

In Fig.7 stress changes 
xx  in middel porous FG plate is shown that results of porous volume fraction effect  , 

and it is shown that the traction and stressed strain maximum occurs in the plate low and high levels, which in it 

stress becomes zero in z=0. 

 

 

 

 

 

 

 

 

Fig. 7 

Stress changes 
xx

 in mideal porous FG plate have show 

that results of porous volum fraction effect . 

 

Fig. 8 show porous volum fraction effect   in resulted strain in slight of plate thickness. It shows that 

coefficient increasing α occure maximum change in plate lowed high levels and occure 0
zz
    in mideal level. 

 

 

 

 

 

 

 

 

 

Fig. 8 

Porous volum fraction effect   in resulted strain in slight 

of plate thickness. 
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In Fig.9 comparison among FG plate digression with young model changes in slight [23] of porous FG plate with 

young model changes in slight of thickness. It is observed that in FG plate with young model changes in slight of 

length maximum digression doesn
’
t occure in the mid-plate and on the rigth side.while in porous FG plate with 

young modol changes occur maximum digression in plate core. and also porous coefficient decrease plate severity 

and increase maximum digression. 

 

 

 

 

 

 

 

 

Fig. 9 

Comparison among FG plate digression with young model 

changes in slight of porous FG plate with young model 

changes in slight of thickness. 

 

6    CONCLUSIONS 

In this study, the sinusoidal change is investigated for rectangular thick FG plate by using of power distribution rule 

of volume fraction along the thickness. The solution is achived using the simple boundary conditions and under 

monotonous loading. Formulas investigation attained for tension and shear deformation without regard to corrected 

efficiency which can summarize conclusions in comparison with completed research by amirpoor [23] as follow: 

 Maximum digression occurs in plate core. 

 Stress distribution 
xx

  is linear because the sinusoid terms are small in comparing with linear terms. 

 General plate severity is more depends on constituent material changes and Young’s modol proportion 

/
c m

E E
 
and the volume porous feraction coefficient ( ). 

 More digression is not depended on the thickness and many digressions with indicator increasing (p) in 

slight of thickness. 
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