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 ABSTRACT 

 The present investigation deals  with the reflection and transmission phenomenon due to 

incident plane longitudinal wave at a plane interface between inviscid fluid half-space 

and a thermoelastic diffusion solid half-space with dual-phase-lag heat transfer (DPLT) 

and dual-phase-lag diffusion (DPLD) models. The theory of thermoelasticity with dual-

phase-lag heat transfer developed by Roychoudhary [10] has been employed to develop 

the equation for thermoelastic diffusion with dual-phase-lag heat transfer and dual-phase-

lag diffusion model. Amplitude ratios and energy ratios of various reflected and 

transmitted waves are obtained. It is found that these are the functions of angle of 

incidence, frequency of incident wave and are influenced by thermoelastic diffusion 

properties of media. The nature of dependence of amplitude ratios and energy ratios with 

the angle of incidence have been computed numerically for a particular model. The 

variations of energy ratios with angle of incidence are also shown graphically. The 

conservation of energy at the interface is verified. Some special cases are also deduced 

from the present investigation. 

                                                          © 2015 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 IOT [1] formulated the coupled thermoelasticity theory to eliminate the paradox inherent in the classical 

uncoupled theory that elastic deformation has no effect on the temperature. 

The generalized theories of thermoelasticity have been developed in order to remove the paradox of physical 

impossible phenomena of infinite velocity of thermal signals in the classical coupled thermoelasticity. Hetnarski and 

Ignaczak [2] examined five theories of the coupled theory of thermoelasticity. 

Lord and Shulman [3] formulated the thermoelasticity theory involving one thermal relaxation time. This theory 

is referred to as LS theory or extended thermoelasticity theory (ETE) in which the Maxwell-Cattaneo law replaces 

the Fourier law of heat conduction by introducing a single parameter that acts as a relaxation time. 

Green and Lindsay [4], developed a temperature rate-dependent thermoelasticity that includes two thermal 

relaxation times. This theory is called as the GL theory or temperature rate dependent theory (TRDTE).  
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The third coupled theory of thermoelasticity was developed by Hetnarski and Ignaczak[5] and was known as low 

temperature thermoelasticity. The fourth coupled theory of thermoelasticity was introduced by Green and Nagdhi 

[6]. They posulated a new concept of thermoelasticity which is called the thermoelasticity without energy 

dissipation. In this theory, the classical Fourier law is replaced by a heat flux rate-temperature gradient relation. The 

general idea is posulated by Green and Nagdhi [7] in making use of the general entropy balance. Three types of the 

constitutive response functions are suggested. Type I, after linearization of the theory, is the same as the classical 

heat conduction theory (based on Fourier’s law), while the types II and III permit propagation of thermoelastic 

disturbances with a finite speed, only type II without energy dissipation. Also GN model III of thermoelasticity 

theory involves a heat conduction law and one that involves the thermal displacement gradient among the 

constitutive variables. One can refer to Hetnarski and Ignaczak [5] for a review and presentation of generalized 

theories of thermoelasticity. 

The fifth coupled theory of thermoelasticity is developed by Tzou [8] and Chandrasekhariah [9] and is referred 

to dual phase-lag thermoelasticity. Tzou[8] proposed a generalized heat conduction law, referred as heat conduction 

law with dual-phase-lags, in which microstructural effects in the heat transfer mechanism have been considered in 

the macroscopic formulation by taking into account that photon-electron interactions on the macroscopic level 

causes a delay in the increase of the lattice temperature. A corresponding thermoelastic model with two phase lag 

was reported by Chandrasekharaiah [9]. In the models [8, 9] two different phase lags i.e., one for the heat flux vector 

and other for the temperature gradient have been introduced in the Fourier’s law. The phase-lag of heat flux vector is 

interpreted as the relaxation time due to fast transient effects of thermal inertia and the phase-lag of temperature 

gradient is interpreted as the delay time caused due to the microstructural interactions, a small scale effect of heat 

transport in space, such as photon-electron interaction or photon scattering. Roychoudhary[10] formulated a three-

phase-lag model of the linearized theory of coupled thermoelasticity by considering the heat conduction law that 

includes temperature gradient and the thermal displacement gradient among the constitutive variables.  

Sinha and Elsibai [11] discussed the reflection and refraction of thermoelastic waves at an interface of two semi-

infinite media with two relaxation times. Kumar and Sharma [12] obtained the amplitude ratios from the stress free 

boundary in a micropolar thermoelastic half space without energy dissipation. Kumar and Sarthi [13] discussed the 

reflection and transmission of thermoelastic plane waves at an interface of thermoelastic media without energy 

dissipation. Kumar and Singh [14] studied the propagation of plane waves in thermoelastic cubic material. Kumar 

and Kansal [15] discussed the reflection of plane waves of a transversely isotropic thermoelastic diffusive half-

space. Kumar and Kansal [16] discussed the reflection of plane waves of an elastic and thermoelastic solid half-

space with diffusion.  

Podstrigach[17] considered the problem of thermodiffusion in classical elastic material and investigated the 

fundamental corollaries and differential equations. Podstrigach and Pavlina[18] constructed the differential 

equations of thermodynamic processes in an n-component solid solution. Podstrigach [19] presented the diffusion 

theory of strain of an isotropic solid medium. Podstrigach [20]  examined the diffusion theory of inelasticity of 

metals.  Podstrigach and Pavlina[21, 22] investigated diffusion processes in a viscoelastic deformable body and 

layer respectively. Podstrigach, Shavets and Pavlina[23] studied a quasi-stationary couped spatial and plane 

problems of thermodiffusion and the physic-mechanical state of a circular cylinder under the action of cyclic forces. 

Nowacki [24, 25, 26, 27]  developed the theory of thermoelastic diffusion by using coupled thermoelastic model. 

Dudziak and Kowalski [28] and Olesiak and Pyryev [29], respectively, discussed the theory of thermodiffusion and 

coupled quasi-stationary problems of thermal diffusion for an elastic layer. They studied the influence of cross 

effects arising from the coupling of the fields of temperature, mass diffusion and strain due to which the thermal 

excitation results in additional mass concentration and that generates additional fields of temperature. Gawinecki 

and Szymaniec [30] proved a theorem about global existence of the solution for a non-linear parabolic thermoelastic 

diffusion problem. Wu and Zhu [31] studied the propagation of Lamb waves in a plate bordered with inviscid liquid 

layer on both sides. Propagation of Rayleigh surface waves in microstretch thermoelastic continua under inviscid 

fluid loading have been investigated by Sharma et al. [32]. The propagation of free vibrations in microstretch 

thermoelastic homogeneous, isotropic, thermally conducting plate bordered with layers of inviscid liquid on both 

sides subjected to stress free thermally insulated and isothermal conditions have been investigated by Kumar and 

Pratap [33]. Reflection and transmission at the interface of solid and fluid half-spaces in a general anisotropic 

poroelastic medium was studied by Sharma[34]. 

In the present paper, the reflection and refraction at a plane interface between an inviscid fluid half-space and a 

thermoelastic diffusion solid half-space has been analyzed. Dual-phase-lag heat transfer (DPLT) and Dual-phase-lag 

diffusion (DPLD) models are considered in the thermoelastic diffusion medium. Also in this medium potential 

functions are introduced to represent three longitudinal waves and one transverse wave. The amplitude ratios of 

various reflected and refracted waves to that of incident wave are derived. The amplitude ratios are further used to 
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find the expressions of energy ratios of various reflected and refracted waves to that of incident wave. The graphical 

representation is given for these energy ratios for different direction of propagation. The law of conservation of 

energy at the interface is verified. 

2    DUAL-PHASE-LAG DIFFUSION MODEL    

Analogous to Fourier’s law of heat conduction, the Fick’s law for mass flux is of the form [Sherief et al. [35]] 

 

,
,

i i
DP         (1) 

              

The mass concentration law is 

 

,
,

i i
C         (2) 

           

 
where D is the diffusivity, P is the chemical potential per unit mass, C is the concentration and 

i is the flow of 

diffusing mass vector. 

Introducing phase-lag of diffusing mass vector   and chemical potential  P in Eq. (1), we arrive at 

 

,
( , ) ( , ),

i i P
R t DP R t


         (3) 

 

The potential gradient at a point R(r) at time 
Pt   results in a mass flux at the same point at time t .  The 

phase-lag of diffusing mass flux vector  , represents the delayed time required for the diffusion of the mass flux 

and the phase-lag of chemical potential
P
 , represents the delayed time required for the establishment of the 

potential gradient. Eq. (3) indicates that for the case of P    the potential gradient established across a material 

volume located at the point R at time Pt    results in a mass flux to diffuse at a different instant of time t .   In 

the cases where P    , a mass flux diffused in a material volume at t .  would estimate a potential gradient at 

Pt   . Like the property D, the two lag times should depend upon environmental temperature as well as other 

process conditions and are treated as intrinsic properties characterizing the transient process of mass transport. For 

the special case of P     (though not necessarily equal to zero), Eq. (3) simplifies to Fick’s law. This implies 

that an instantaneous response between the mass flux vector and the chemical potential is the assumption behind the 

classical Fick’s diffusion theory. The other special condition of 
P

0   and 0  leads to a wave model with a 

mass transport speed of 
1/ 2

( / )D

   and a diffusion damping effect. 

The Taylor series expansion of (3) upto the first order terms in P,  leads to the following generalized Fick’s 

law valid at point R and time t as: 

 

     ,
1 / 1 / ,

i i P
t DP t


               (4) 

 

By taking the gradient of both sides of (4) and using Eq. (2), we arrive at 

 

      ,i
1 / 1 / P ,

P i
t C D t


                 (5) 

 

The relation between chemical potential P and mass concentration C is 

 

2
e ,

kk
P aT bC      (6) 

 

Using Eq. (6) in (5), we arrive at the mass diffusion equation in this case, namely 
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        2 , , ,
1 / / 1 / 0,

P kk ii ii ii
t D e DaT DbC t t C


                 (7) 

2.1 Hyperbolic dual-phase- lag diffusion model  

Retaining terms of the order 2

  in the taylor’s expansion of the generalized diffusion law (7), we have 

 

           22

2 , , ,
1 / / 1 / / 2 / 0,
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 
                    

(8) 

3    GOVERNING EQUATIONS   

Following Roy Choudhuri[10], Kumar and Kansal [16] , the basic equations in a homogeneous isotropic generalized 

thermoelastic diffusion medium with DPLT and DPLD models in the absence of body forces, heat sources and mass 

diffusion sources are  

The constitutive relations 
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2 ,

ij ij ij kk
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The equations of motion  

 

  , , 1 , 2 ,           j ij i jj i i iu u T C u  (11) 

 

The heat conduction equations  
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, 1 0 01 / 1 / / 2 /                   t ii q q E kkt KT t t C T T e aT C  (12) 

 

Eqs. (9)-(12) together with Eq. (8) constitutes the basic equations for homogeneous isotropic generalized 

thermoelastic diffusion with DPLT and DPLD models.      

where 
 
are the Lame’s constants,

 
ρ is the density assumed to be independent of time, iu are the components of 

displacement vector u, K is the coefficient of thermal conductivity,
 EC is the specific heat at constant strain, t q,   

are the phase-lag of the temperature gradient and heat flux respectively, 0  T T  is small temperature increment, 

  is the absolute temperature of the medium; 0T is the reference temperature of the body chose such that 

 0/ 1T T , a and b  are respectively, the coefficients describing the measure of thermodiffusion and mass 

diffusion effects respectively,  ij ije are the components of the stress and strain respectively, kke is the dilatation, S 

is the entropy per unit mass,  1 3 2     t and  2 3 2 ,      c t is the coefficient of thermal linear 

expansion,
 
c is the coefficient of  linear diffusion expansion. In the above equations, a comma followed by a suffix 

denotes spatial derivative and a superposed dot denotes the derivative with respect to time. 

4    FORMULATION OF THE PROBLEM 

We consider an inviscid fluid half-space lying over a homogeneous isotropic, generalized thermoelastic diffusion 

solid half-space with dual-phase-lag models (DPLT and DPLD). The origin of the Cartesian coordinate system 

 1 2 3 x x x is taken at any point on the plane surface (interface) and 3x -axis points vertically downwards into the 
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thermoelastic diffusion solid half-space. The fluid half-space occupies the region 3 0x (Medium I) and the region 

3 0x is occupied by the dissipative thermoelastic diffusion solid half-space (Medium II) with dual-phase-lag 

models (DPLT and DPLD) as shown in Fig.1. We consider plane waves in 1 3x x plane with wavefront parallel to 

the 2x -axis.  

For two dimensional problem , the displacement vector u in Medium II is taken as: 

 

 1 3
0u u u    (13) 

 

We define the dimensionless quantities 
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(14) 

 

The displacement components 1u and 3u  are related to the potential functions  and  as: 

 

       1 1 3 3 3 1/ / / /             u x x u x x   (15) 

                                                                                                                  

Eqs. (8), (11) and (12) with the aid of (13)-(15), after suppressing the primes yield 
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For the propagation of Harmonic waves in 1 3 x x plane, we assume 

 

    1 3

        i tT C x x t T C e   (20) 

 

where is the angular frequency of vibrations of material particles.  

Eqs. (16)-(19) with the aid of (20), after simplification, we obtain 
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The general solution of Eq. (21) can be written as: 

 

1 2 3          (23) 

 

where the potentials  i  i=1,2,3 are solutions of wave equations, given by 

 

 2 2 2/ 0, 1,2,3.       i iV i   (24) 

 

Here 1 2 3 V V V are the velocities of three longitudinal waves, that is, P, MD (Mass Diffusive) and T (Thermal) 

waves and derived from the roots of cubic equations in 
2V , given by 
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From Eq. (22), we obtain 
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where 4  V
 
is the velocity of transverse waves. 

Making use of Eq. (23) in the Eqs. (18) and (19) with the aid of Eqs. (20) and (24), we obtain 
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(27) 

 

where i in ,k , ( i=1,2,3) are given in Appendix A.   

Following Achenbach [36], the field equations can be expressed in terms of velocity potential for inviscid fluid 

as: 
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(29) 
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u   f f
 (30) 

             

For two dimensional problem,  f

1 3u 0 u  f fu  can be written in terms of velocity potential as: 
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Applying the dimensionless quantities (14) in Eqs. (28) and (29) and after suppressing the primes, we obtain 
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 
    
 
 

 

 

(33) 

 

where  
2f 2 f f f f f

1 1 0 p p 1 pc / T ,v / c , /         
 
and 

f is the bulk modulus, 
f is the density of the liquid,

fu  is the 

velocity vector and 
fp is the acoustic pressure of the inviscid fluid. 

5    REFLECTION AND TRANSMISSION 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.1 

Geometry of the problem. 
 

 

We consider a plane harmonic wave (P) propagating through the inviscid fluid half-space and is incident at the 

interface 3 0x . Corresponding to incident wave, one homogeneous wave (P) is reflected in inviscid fluid half-

space and four inhomogeneous waves(P, T, MD and SV) are refracted in isotropic thermoelastic diffusion solid half-

space with DPLT and DPLD models. 

In inviscid fluid half-space, the potential functions satisfying Eq. (33) can be written as: 

 

       0 1 0 3 0 1 1 1 3 1exp sin cos / exp sin cos /                   
f f f f f

p pA i x x v t A i x x v t  (34) 

  

The coefficients 0

fA
 
and 1

fA
 
are amplitudes of the incident P and reflected P waves, respectively. 

contact surface x 3 = 0 
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Following Borcherdt [37], the potential functions in isotropic thermoelastic diffusion half-space with DPLT and 

DPLD models, satisfying Eqs. (24) and (26) can be written as: 

 

        
3

1

1 Α r P r


          i i i i i

i

T C n k B exp exp i t  
 

(35) 

 

    4 3 3A r P r      B exp exp i t  (36) 

 

The coefficients 1 2 3 4    iB i  are the amplitudes of refracted P, T, MD and SV waves, respectively. The 

propagation vector P 1 2 3 4    i i and attenuation factor A 1 2 3 4    i i are given by 

 

1 3 1 3
ˆ ˆ ˆ ˆP A 1,2,3,4.        i R iR i I iIx dV x x dV x i  (37) 

 

where 

 

  2 2 2/ 1,2,3,4.         i iR iI idV dV idV p v V i  (38) 

 

And     R Ii
 
is the complex wave number. The subscripts R and I denote the real and imaginary parts of the 

corresponding complex number and p.v. stands for the principal value of the complex quantity derived from square 

root. 0 R  
ensures propagation in positive 1x -direction. The complex wave number  in the isotropic 

thermoelastic medium with DPLT and DPLD models is given by 

 

 i i i i iP sin A sin , i 1, 2, 3.          (39) 

 

where  i ,  i =1, 2, 3, 4 is the angle between the propagation and attenuation vector and i ,  i =1, 2, 3, 4 is the angle 

of transmission in Medium II. 

6    BOUNDARY CONDITIONS 

The boundary conditions considered are the continuity of stress and displacement components with insulated and 

impermeable boundary at the interface 3 0x   

Mathematically these can be written as: 

 

33 31 3 3 3 30 / 0 / 0f fp u u T x C x               (40) 

 

Making use of potentials given by Eqs. (34)-(36), we find that the boundary conditions are satisfied if and only if  

 
f f

R 0 p 1 psin / v sin / v ,        (41) 

 

and 0I   

It means that waves are attenuating only in 3x -direction. From Eq. (39), it implies that if A 0i  , then 

i i
   , i=1, 2, 3, that is, attenuated vectors for the four refracted waves are directed along the 3x -axis. 

Using Eqs. (34)-(36) in the boundary conditions with the aid of a Eqs. (15), (32), (41), we get a system of five 

non-homogeneous equations which can be written as:  

 
5

1

ij j i

j

d Z g


   
 

(42) 
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where  jZ , (j =1, 2, 3, 4, 5) are the ratios of amplitudes of reflected P-, refracted P-, refracted  T-, refracted MD- 

and refracted SV-waves to that of incident wave. 

where ijd , (i,j=1,2,3,4) are given in Appendix B.  

Here , p.v. is calculated with restriction 0jIdV  to satisfy decay condition in thermoelastic diffusion medium. 

The coefficients ig   i  =1, 2, 3, 4, 5, 6 on the right side of the Eq. (42) are given by 

 

1 11 2 21 3 31 4 41 5 0g d g d g d g d g             (43) 

 

Now we consider a surface element of unit area at the interface between two media. The reason for this 

consideration is to calculate the partition of energy of the incident wave among the reflected and refracted waves on 

both sides of the surface. Following Achenbach[36], the energy flux across the surface element, that is, rate at which 

the energy is communicated per unit area of the surface is represented as: 

 

lm m lP l u     (44) 

 

where lm is the stress tensor, ml are the direction cosines of the unit normal l̂ outward to the surface element and 

lu are the components of the particle velocity. 

The time average of P 
over a period, denoted by P 

, represents the average energy transmission per unit 

surface area per unit time. Thus, on the surface with normal along 3x -direction, the average energy intensities of the 

waves in the fluid medium are given by 

  
*

3Re Re
ff fP p u    (45) 

 

Following Achenbach [36], for any two complex functions f and g, we have 

 

     Re Re Re / 2f g f g     (46) 

 

The expression for energy ratio 1E  for the reflected P wave is given by 

 

1 0/ ,f fE P P    (47) 

 

where 

 

   
22

1 1/ 2 Re cosf f

pP v Z       (48) 

 

and for incident P-wave 

 

 2

0 0/ 2 cosf f

pP v       (49) 

 

Are the average energy intensities of the reflected  P- and incident P- , respectively. In Eq. (47), negative sign is 

taken because the direction of reflected waves is opposite to that of incident wave. 

For thermoelastic diffusion solid with DPLT and DPLD models, the average intensities of the waves on the 

surface with normal along 3x -direction, are given by 

 
       

1 313 33
Re Re Re Re

i ij j

ijP u u         (50) 
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The expressions for energy ratios for the refracted P-, refracted T-, refracted MD- and refracted SV- waves are 

given by
 

 

0/ , , 1,2,3,4f

ij ijE P P i j    (51) 

where
ij

P  ; i, j =1,2,3 are given in Appendix C. 

The diagonal entries of energy matrix ijE  in Eq. (51) represents the energy ratios of P, T, MD- SV- waves 

respectively, whereas sum of the non diagonal entries of ijE
 
give the share of interaction energy among all refracted 

waves in the medium and is given by  

 
3 3

1 1

RR ij ii

i j

E E E
 

 
   

 
   

 

(52) 

 

The energy ratios 1E , diagonal entries  and non diagonal entries of energy matrix ijE , that is, 11 22 33E E E  and 

RRE yield the conservation of incident energy across the interface, through the relation 

 

1 11 22 33 44 1RRE E E E E E        (53) 

7    PARTICULAR CASE 

In absence of DPLD model, that is, if we take P 0     in the Eqs. (42) and (51), we obtain the corresponding   

expressions for amplitude and energy ratios of reflected P-, refracted P-, refracted T-,   refracted MD-, and refracted 

SV- waves to that of incident wave at the interface of inviscid fluid and thermoelastic
 
with mass diffusion with 

DPLT model with changed values of constants  

 
11 11 11 11

t 1 q t q 2 1 2 4 3
A ,B ,I ,J ,E q ,F q ,G q ,H q .                     

 

In absence of DPLT and DPLD models, that is, if we take q t P 0         in the Eqs. (42) and (51), we 

obtain the corresponding expressions for amplitude and energy ratios of reflected P-, refracted P-, refracted T-, 

refracted MD-, and refracted SV- waves to that of incident wave at the interface of inviscid fluid and thermoelastic
 

with mass diffusion with changed values of constants  

1 2 1 2 4 3
A ,B ,I ,J ,E q ,F q ,G q ,H q .                   

 

In absence of DPLT, DPLD models and diffusion effect, that is, if we take 

2 q t Pa b D 0             in the Eqs. (42) and (51), we obtain the corresponding expressions for 

amplitude and energy ratios of reflected P-, refracted P-, refracted T-and refracted SV- waves to that of incident 

wave at fluid and thermoelastic solid interface. 
 
 

The velocities 1V  and 3V  in these expressions are derived from the roots of quadratic equation in 2V , given by 

 

 4

1V 1 0,     

      

and the coupling coefficients in ,i 1,3 , i=1,3 are given as
 

 

  2 2

i 1n / V ,i 1,3       
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8    NUMERICAL RESULTS AND DISCUSSION 

We now represent some numerical results for copper material (Sherief and Saleh [38]), the physical data for which is 

given below: 
10 1 2 10 1 2 3

0

3 1 1 5 1 4 1 3

4 2 2 1 5 1 5 2 8 3

3 3 3 1 1

7.76 10 , 3.86 10 , 0.293 10 ,

.3831 10 , 1.78 10 , 1.98 10

1.2 10 , 9 10 , 0.85 10 ,

8.954 10 , 0.383 10 .

E t c

Kgm s Kgm s T K

C JKg K K Kg m

a m s K b Kg m s D Kgsm

Kgm K Wm K

   

     

     

  

       

       

     

    

 

 

 

   

The relaxation times are: 

 

t q P0.1s, 0.3s, 0.2s, 0.4s          

 

The fluid parameters are taken as: 

 
f 9 1 2 f 3 1 22.1904 10 Kgm s , 1.0 10 Kgm s ,           

 

The software Matlab 7.0.4 has been used to determine the values of energy ratios 1E and an energy matrix 

ijE , i, j 1,2,3,4 defined in previous section for different values of incident angle  0 ranging from 0  to 90
for 

fixed frequency 2 100 Hz.  Corresponding to incident P, the variation of these energy ratios with respect to 

angle of incidence have been plotted in Figs. 2-7 for the cases of both DPLT and DPLD, DPLT and without DPLD 

and DPLT models and are represented by horizontal lines, vertical lines and horizontal boxes, respectively. To show 

the effect of different phase-lag models of thermoelastic diffusion graphs are drawn in 3D. 

Fig. 2-7 shows the variation of energy ratios 1 11 22 33 44E ,E ,E ,E ,E  and RRE  with change in angle of incidence 0  

for the following cases: 

Case(i)  

 

t q P0.1, 0.2, 0.3, 0.4          
   

             

Case(ii) 

   

t q P0.1, 0.2, 0, 0          
 
 

Case(iii)  

 

t q P0, 0, 0, 0          

  

It is clear from Fig. 2 that initially the values of energy ratios 1E  decrease but increase smoothly with increase in 

angle of incidence 0  for 0 10    for all the three cases, but increases sharply as 0  
approaches 90

 
for Case(i) 

and Case(ii) with difference in their magnitude values as compared to the Case(iii).  Fig. 3 indicates that for three 

cases of phase lag models of thermoelasticity, 11E  initially increase with small variation in magnitude values in the 

range 00 70   and increases sharply for 0 70  .  The maximum value is attained for Case(i) as compared to 

other cases.  Fig. 4 depicts that the values of energy ratios 22E  first increase smoothly and sharply for large values 

of 0 . For Case(i) and Case(ii),  22E attains maximum value as compared to case(i).  From Fig.5, It is noticed that 

behavior and variation of 33E  is similar to 22E with difference in their magnitude values. From Fig. 6 it is evident 

that the values of energy ratio 44E initially decrease for 00 10   and increases smoothly attaining maximum 
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value and sharply as 0  
approaches 90

. Maximum value of 44E  occurs in absence of phase-lag-models. From 

Fig.7, it is evident that RRE shows opposite behavior and variation as that of  11E  but with different magnitude 

values. It is noticed that the sum of the values of energy ratios 1 11 22 33 44E ,E ,E ,E ,E  and RRE  is found to be exactly 

unity at each value of 0 which proves the law of conservation of energy at the interface. Due to the small values of 

11 22 33E ,E ,E and 
44E their values are magnified by 10

5
, 10

2
, 10

4
, 10

2
 respectively. 
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Variation of energy ratio 22E  w.r.t. angle of incidence 0 . 
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Variation of energy ratio 
44E  w.r.t. angle of incidence 

0 . 

  

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0
10

20
30

40
50

60
70

80
90

Fig.7 Variation of energy ratio E
RR

 w.r.t. angle of incidence



 
t
=0.1,

q
=0.2,

P
=0.3,


=0.4

 
t
=0.1,

q
=0.2,

P
=0,


=0

 
t
=0,

q
=0,

P
=0,


=0

E
R

R

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7 

Variation of energy ratio 
RRE  w.r.t. angle of incidence 

0 . 

9    CONCLUSION 

In the present article, the classical Fick’s diffusion law is replaced by a generalized form which involves two phase-

lags. It allows a delayed response between the relative mass flux vector and the potential gradient. Also the 

reflection and refraction of obliquely incident elastic wave at the interface between an inviscid fluid half-space and a 

thermoelastic diffusion solid half-space with phase-lag models (DPLT and DPLD) has been studied. The four waves 

in thermoelastic diffusion solid medium are identified and explained through different wave equations in terms of 

displacement potentials. The energy ratios of different reflected and refracted waves to that of incident wave are 

computed numerically and presented graphically with respect to the angle of incidence for different phase-lag-

models. From numerical results, we conclude that the effect of phase lag (DPLT and DPLD) models and diffusion 

on the energy ratios of the reflected and refracted waves is significant. The sum of all energy ratios of the reflected 



                                                                                                                                                           R. Kumar and V.Gupta       325                    

© 2015 IAU, Arak Branch 

waves, refracted waves and interference between refracted waves is verified to be always unity which ensures the 

law of conservation of incident energy at the interface.  
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APPENDIX A  

     

      

4 2 2 4 2 2 4

i i i i

6 4 2 2 4 2 2 4

i i i i i

n EJ AH AH V / BGV GI HB JF V IH

k EI EB AF V / V BGV V GI HB JF IH

i 1 2 3

           

           

   

 

 

APPENDIX B  
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d c d dV d dV

d dV d d d d d d

d c dV c n c k

d dV d dV d n dV

d k dV j


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