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 ABSTRACT 

 In the current research with novel first and second differentiations of a yield function, 

Euler forward along with Euler backward with its consistent elastic-plastic modulus are 

newly implemented in finite element program in rate-independent plasticity. An elastic-

plastic internally pressurized thick walled cylinder is analyzed with four famous criteria 

including both pressure dependent and independent. The obtained results are in good 

agreement with experimental results. The consistent/continuum elastic-plastic moduli for 

Euler backward method are also investigated. 

                                                   © 2014 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 LASTICITY describes the deformation of a material undergoing non-reversible changes of shape in response 

to applied forces. The main important of coding an elastic-plastic problem in a finite element program is how to 

update the state of stresses from 
1,n nt t    , where nt  is the first time and 1nt   is the end time of any load step. In 

general, there are four integration algorithm methods in updating stress, i.e. 1-exact integration algorithm methods, 

2-explicit integration algorithm methods such as Euler forward method, 3-explicit/implicit integration algorithm 

methods and 4-implicit integration algorithm methods such as Euler backward method. The first one is more 

accurate which solves a first order plasticity differential equation because of the difficulty of the complicated 

problems the other three are in much attention especially the fourth one. The main point in associated plasticity is 

the direction of the incremental plastic strain with respect to the yield surface. If one accepts that direction to be 

normal to the yield surface at the beginning of the load step then the explicit integration algorithm methods is used, 

and the intersection point of the trial stress with the yield surface must be obtained. On the other hand, if the 

direction of the incremental plastic strain is normal to the yield surface at the end of the interval of the load step, the 

implicit integration algorithm methods are employed. In these algorithms, obtaining the intersection of the trials 

stresses with initial yield surface is unnecessary and it needs some trial and error iterations to reach normality at the 

end of load step. During the iterations, obtaining the second differentiation of the yield surface is necessary. 

Moreover, using an elastic-plastic modulus in global finite element procedure which is consistent with the linearized 

implicit algorithm is inevitable to preserve the quadratic rate of asymptotic convergence. To overcome these 
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difficulties, obtaining the second differentiation of a general yield surface can help to accomplish the numerical 

procedures. In explicit/implicit integration algorithm method , the direction of the incremental plastic strain from the 

values of the beginning and the end of the interval of the load step with the aid of different criteria can be evaluated. 

 Krieg and Krieg [1] investigated the accuracy of the integration of the constitutive equations for an isotropic 

elastic-perfectly plastic von Mises material. Schreyer et al. [2] examined tangent predictor-radial return approach 

and the elastic predictor–radial corrector algorithm with von Mises, isotropic hardening model under plane stress 

condition. Simo and Taylor [3] demonstrated that the concept of consistency between the tangent operator and the 

integration algorithm employed in the solution of the incremental problem plays a crucial role in preserving the 

quadratic rate of asymptotic convergence of iterative solution scheme based on Newton's method. Ortiz and Popov 

[4] investigated the accuracy and stability for integration of elastic-plastic constitutive relations. Potts and Gens [5] 

introduced five methods to treat this draft and recommended the 'correct' method in finite element calculations. Ortiz 

and Simo [6] proposed a new class of explicit integration algorithms for rate-independent and rate-dependent 

behaviors, with plastic hardening or softening, associated or non-associated flow rules and non-linear elastic 

response. Simo and Taylor [7] developed an unconditionally stable algorithm for plane stress elastoplasticity 

condition, based upon the concept of elastic predictor-return mapping (plastic corrector). Dodds [8] derived an 

extension of elastic-plastic-radial return algorithm and a consistent tangent operator which satisfy the requirements 

for stable, accurate and efficient numerical procedure for plane stress condition with mixed hardening. Ortiz and 

Martin [9] characterized the conditions under which an elastic-plastic stress update algorithm preserves the 

symmetries inherent to material response. Gratacos et al. [10] investigated the generalized midpoint rule for the time 

integration of elastic-plastic constitutive equations for pressure-independent yield criteria and the existence and 

uniqueness of the incremental solution was discussed. Ristinmaa and Tryding [11] introduced a unified approach to 

establish an exact integration of the constitutive equation in elastoplasticity, assuming the total strain-rate direction 

to be constant. Kadkhodayan and Zhang [12] proposed a new efficient method, the consistent DXDR method, to 

analyze general elastic-plastic problem. 

 In recent years, Foster et al. [13] modified spectral decomposition technique in implicit algorithms for models 

that include kinematic hardening for geomaterials. Kim and Gao [14] presented a general method to formulate the 

consistent tangent stiffness for plasticity. Hu and Wang [15] proposed a yield criterion with three independent 

invariants of the stress tensor and the deviatoric stress tensor to fulfill the experimental observations. Ding et al. [16] 

developed a stress integration scheme to analyze a three-dimensional sheet metal forming problems and 

implemented into ABAQUS/Explicit via User Material Subroutine (VUMAT) interface problem. Nicot and Darve 

[17] showed that employing regular flow rule for granular materials disappeared as soon as more general loading 

condition was applied. Their model highlighted the great influence of the loading history on the shape of the plastic 

Gudehus response-envelope. Oliver et al. [18] proposed an implicit/explicit scheme for non-linear constitutive 

scheme which provided an additional computability to those solid mechanics problems where robustness is an 

important issue. Ragione et al. [19] described the inelastic behavior of a granular material in the range of 

deformation that precedes localization by idealizing the material as a random array of identical, elastic, frictional 

spheres and assuming that particles moved with the average strain. Kossa and Szabo [20] presented semi-analytical 

solutions for the von Mises elastoplasticity by combined linear isotropic-kinematic hardening. Tu et al. [21] 

presented a semi-implicit return mapping algorithms for integrating generic non-smooth elastic-plastic models. 

Valoroso and Rosati [22] presented a general projected algorithm for general isotropic three-invariant plasticity 

method under plane stress conditions. Gao et al. [23] using experimental and numerical studies demonstrated that 

stress state had strong effects on both plastic response and ductile fracture behavior of an aluminum 5083 alloy. 

Cardoso and Yoon [24] derived a stress integration procedure based on the Euler backward method for a non-linear 

combined isotropic/kinematic hardening model based on the two-yield surfaces approach. Ghaei and Green [25] 

developed an algorithm for numerical implementation of Yoshida-Uemori two-surface plasticity model into finite 

element program with the aid of the return mapping procedure. Ghaei et al. [26] introduced a semi-implicit scheme 

to implement Yoshida-Uemori two-surface model into finite element method. Kossa and Szabo [27] proposed a new 

integration scheme for the von Mises elastic-plastic model with combined linear isotropic-kinematic hardening. 

Rezaiee-Pajand et al. [28] proposed two new exponential-based approximate formulations for associative Drucker-

Prager criterion plasticity and could obtain the accurate solution of the problem. Becker [29] proposed a new 

plasticity algorithm based upon observation from the closed form integration of a generalized quadratic yield 

function over a single step. 

 Moayyedian and Kadkhodayan [30] presented a new first and second differentiation of a general yield surface 

and implemented it for different time stepping schemes including the explicit, trapezoidal implicit and fully implicit 

time stepping schemes in rate-dependant plasticity. Moayyedian and Kadkhodayan [31] presented a new non-
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associated viscoplastic flow rule (NAVFR) with combining von Mises and Tresca loci in place of yield and plastic 

potential functions and vice verse with the aid of fully implicit time stepping scheme. 

 Two important factors in integration algorithms are accuracy and stability. In explicit algorithms the size of load 

step plays a crucial role in stability and accuracy, i.e. a very large load step cannot guarantee the stability and 

accuracy of the algorithm. On the other hand, in the full implicit algorithms, even by choosing a large load step, the 

stability is guaranteed. In fact, this is the main advantage of implicit algorithms to explicit algorithms. However, 

choosing a large load step may not give a proper accuracy. 

 

 
  
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 1 

Program flow chart for two-dimensional elastic-plastic applications [32]. 

 

In this paper, with the aid of obtained expressions for the first and second differentiation of a general yield 

surface in the previous work of the authors in [30] an internally pressurized thick walled cylinder is considered with 

perfectly plastic and linear-isotropic hardening behavior of material and coded in Compaq Visual Fortran 
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Professional Edition 6.5.0 with the aid of references [32-36] in finite element and [37-40] in plasticity theories. 

Euler forward method with sub-increment and Euler backward method along with the continuum and consistent 

elastic-plastic moduli with different criteria are investigated and the obtained results are compared to each other and 

experimental results. Fig. 1 shows the flow chart of the program for two-dimensional elastic-plastic applications for 

a global finite element. 

2    EULER FORWARD (EXPLICIT) - MATRIX FORMULATION 

The yield F can be written as: 

 

 , 0,F     (1) 

 

where   is the stress vector and   is the hardening T
pd d    for the work hardening. Defining  
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We have 
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(4) 

 

Thus H   is obtained to be the local slope of the uniaxial stress/plastic strain curve and can be determined 

experimentally [30]. 

3 EULER BACKWARD (IMPLICIT), (GENERAL CLOSEST PONT PROJECTION) - MATRIX 

FORMULATION 

For a linear-isotropic hardening in any load step we have 
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The yield function can take the following form 
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(6) 

 

The following steps have to be followed in a fully implicit algorithm. 
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1. Assume plastic loading, that is 1 0trial
nF   , the plastic flow residual 1nR   and yield condition can be defined 

as: 
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and the Hessian matrix is: 
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3. Solve the linearized problem to obtain 
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4. Update the plastic strain 
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and 
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The procedure summarized above is simply a systematic application of Newton’s method to the system of Eq. 

(10) that results in the computation of the closest point projection from trial state onto the yield surface. Note that in 
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the Euler backward method normality is enforced at the final (unknown) iteration. The above procedure converged 

when    1 1

T

n nR R   and 1nF   in Eq. (7) reach to prescribed tolerances. 

4    CONSISTENT ELASTIC-PLASTIC MODULUS - MATRIX FORMULATION 

By differentiating the elastic stress-strain relationships and the discrete flow rule, we obtain 
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The following algorithmic relationship is obtained: 
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On the other hand, differentiating the discrete consistency condition yields 
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Thus, from Eqs. (14) and (15) we have 
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(16) 

 

Finally, substituting Eq. (16) into Eq. (14) yields the expression for elastic-plastic relation 
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where the consistent elastic-plastic modulus is defined as below 
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(18) 

 

Note that the structure of Eq. (18) is analogous to Eq. (4). The elastic modulus D   as the continuum modulus 

in Eq. (4) is substituted by the algorithmic modulus 1n    defined by Eq. (9). It should be noted that to compute 

1n    in Euler backward method to update stress state and construct the consistent elastic-plastic modulus, the 

derivation of the second differentiation of the yield surface is inevitable and for a complicated criteria is 

cumbersome where a comprehensive approach to overcome this difficulty was presented in the earlier work of the 

authors is employed in current research [30]. 
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5    RESULTS AND DISCUSSIONS 

In the following, different investigations and comparisons are achieved contained with the new expressions for 

differentiation of a general yield surface as in [30] for rate-independent plasticity: 

1. Comparing between Euler forward and backward methods for four different criteria containing independent 

and dependant criteria to hydrostatic pressure. 

2. Comparing the results obtained from Euler forward and backward methods with those of experimental data. 

3. Comparing the continuum and consistent elastic-plastic moduli for Euler backward method. 

Figs. 1 and 2 show the variation of circumferential strain and stress at the inner surface with the internal pressure 

while the von Mises criterion, perfect-plastic material and also linear isotropic hardening behavior such that '

10

E
H   

are used. The geometry of the cylinder is assumed as b/a=2. The variations of circumferential strain of the inner 

surface (r/a=1) with pressure and also circumferential stress distributions in the interval of (1 / 2) r a  for Euler 

forward and backward methods are considered here. Fig. 2 shows that with increasing the pressure and development 

of plastic zone, the differences between the results of Euler forward and backward methods increase. Moreover, in 

the same pressure, the hoop strain predicted by the implicit integration algorithm is larger than that of explicit one. 

In addition, the hoop stress predicted by Euler backward method is smaller than that of Euler forward method, Fig. 

3. Furthermore, the results show that the material hardening increases the difference between two integration 

algorithm methods. Figs. 4, 5, 6, 7 and 8, 9 show the same parameters based on Tresca, Mohr-Coulomb and 

Drucker-Prager criteria, respectively. In using Mohr-Coulomb criterion it is assumed that 0.879tan  and for the 

linear isotropic hardening material ' / 20H E  and in Drucker-Prager criteria it is assumed that ' / (10 3)H E . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 

Circumferential strain of the inner surface with increasing 

pressure using von Mises criterion. 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 

Circumferential stress distributions using von Mises criterion. 
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Fig. 4 

Circumferential strain of the inner surface with increasing 

pressure using Tresca criterion. 

  

 

 

 

 

 

 

 

 

 
 
 
Fig. 5 

Circumferential stress distributions using Tresca criterion. 

 

 

 

 

 

 

 

 

Fig. 6 

Circumferential strain of the inner surface with increasing 

pressure using Mohr-Coulomb criterion. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 

Circumferential stress distributions using Mohr-Coulomb 

criterion. 
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Fig. 8 

Circumferential strain of the inner surface with increasing 

pressure using Drucker-Prager criterion. 

  

 

 

 
 
 
 
 
 
 

Fig. 9 

Circumferential stress distributions using Drucker-Prager 

criterion. 

 

 

The results show the same trend as explained for Figs. 2 and 3 previously. The results show the differences 

between the explicit and implicit integration algorithm methods in Mohr-Coulomb and Drucker-Prager criteria are 

larger than those in Tresca and von Mises criteria, respectively. In other words, when the yielding criteria are 

dependent to the hydrostatic pressure, the differences between the results obtained from the Euler forward and 

backward methods are more significant than those of the hydrostatic pressure independent yielding criteria. 

 Furthermore, it can be shown that in non-linear isotropic hardening materials these differences increase compared 

with perfect-plastic materials. Table 1. shows the required iteration number for converged results when the 

consistent and continuum elastic-plastic moduli in Euler backward method are used. As it is seen, the required 

iterations in each increment for consistent elastic-plastic modulus is less than that of the continuum one, i.e. the 

former preserves the asymptotic rate of quadratic convergence in implicit integration algorithm. Moreover, the 

Mohr-Coulomb and von Mises criteria have the highest and the lowest required number of iterations, respectively. 

Furthermore, the number of required iterations increases when plastic zone is developed. In perfect-plastic 

materials, in addition, the number of iterations in last increments increases which can be attributed to the initiation 

of some kinds of instability in this type of material. It is also observed that employing the consistent elastic-plastic 

modulus instead of the continuum one causes more decreasing in required iteration number in hydrostatic pressure 

dependent yielding criteria compared to independent ones. Finally, employing the consistent elastic-plastic modulus 

with Euler backward method for non-circular shape criteria in deviatoric plane needs more iteration in each load 

step. 

Fig.10 show a comparison between the results obtained by Euler forward and backward methods and 

experimental results. The figure demonstrates the variations of internal pressure in over strain 100% 1( )/  YE  

at external surface of the vessel with the ratio of external radius/internal radius, (b/a), for perfect-plastic material 

and von Mises criterion. It is seen that using Euler backward method could predict the experimental result more 

accurately. It is also observed that differences between the numerical simulations and experimental data are 

maximum in b/a=1.6 and minimum in b/a=2.4. It should be noted the results agree with the results in [30] too.  
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Table 1 

The number of required iteration in each load step using, (a) von Mises criterion, (b) Tresca criterion, (c) Mohr-Coulomb 

criterion, (d) Drucker-Prager criterion. 

 
(a) 

von Mises criterion and perfect-plastic material 

Step 1 2 3 4 5 6 

State el el-el el-pl pl-pl pl-pl pl-pl 

Continuum 1 1 2 3 5 8 

Consistent 1 1 2 2 3 5 

                von Mises criterion and linear isotropic hardening material 

Step 1 2 3 4 5 6 

State el el-el el-pl pl-pl pl-pl pl-pl 

Continuum 1 1 3 4 5 7 

Consistent 1 1 2 2 3 4 

 

(b) 

Tresca criterion and perfect-plastic material 

Step 1 2 3 4 5 

State el el-pl pl-pl pl-pl pl-pl 

Continuum 1 3 3 6 9 

Consistent 1 2 2 3 5 

Tresca criterion and linear isotropic hardening material 

Step 1 2 3 4 5 

State el el-pl pl-pl pl-pl pl-pl 

Continuum 1 4 4 5 9 

Consistent 1 2 3 3 4 

  

(c) 

 

 (d) 
Drucker-Prager criterion and perfect-plastic material 

Step 1 2 3 4 5 6 

State el el-el el-pl pl-pl pl-pl pl-pl 

Continuum 1 1 4 5 7 10 

Consistent 1 1 2 2 4 5 

               Drucker-Prager criterion and linear isotropic hardening material 

Step 1 2 3 4 5 6 

State el el-el el-pl pl-pl pl-pl pl-pl 

Continuum 1 1 4 6 6 9 

Consistent 1 1 3 3 3 4 

Mohr-Coulomb criterion and perfect-plastic material 

Step 1 2 3 4 5 

State el el-pl pl-pl pl-pl pl-pl 

Continuum 1 4 6 8 11 

Consistent 1 2 3 4 6 

                 Mohr-Coulomb criterion and linear isotropic hardening material 

Step           1                   2            3             4            5 

State el el-pl pl-pl pl-pl pl-pl 

Continuum 1 4 7 8 10 

Consistent 1 2 3 3 5 
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Fig. 10 

Comparison between the Euler forward/backward methods 

and experimental data. 

6    CONCLUSIONS 

A new procedure with using newly obtained first and second differentiation of a yield function [30] is implemented 

for Euler forward and backward method in rate-independent plasticity. In the following, some more obtained results 

are explained: 

1. Applying more loads and development of plastic zone make the differences between the obtained results 

from Euler forward and backward and also continuum and consistent operators more obvious. 

2. It was demonstrated that the hydrostatic pressure dependent yield criteria continuum and consistent elastic-

plastic moduli were more sensitive in employing Euler forward and backward methods. 

3. Comparing the results obtained from von Mises and Tresca and also Drucker-Prager and Mohr-Coulomb 

criteria show that employing consistent elastic-plastic modulus in implicit integration algorithm for non-

circular surfaces in deviatoric plane needs more number of iterations to converge. 
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