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 ABSTRACT 

 Safety analysis has been done for the torsion of a functionally graded thick-walled  

circular cylinder under internal and external pressure subjected to thermal loading. In 

order to determine stresses the concept of Seth’s transition theory based on generalized 

principal strain measure has been used. This theory simplifies the set of mechanical 

equations by mentioning the order of the measure of deformation. This theory helps to 

achieve better agreement between the theoretical and experimental results. Results have 

been analyzed with or without thermal effects for functionally graded and 

homogeneous cylinder with linear and nonlinear strain measure. From the analysis, it 

has been concluded that in creep torsion cylinder made up of less functionally graded 

material (FGM) under pressure is better choice for designing point of view as compared 

to homogeneous cylinder. This is due to shear stresses which are maximum for cylinder 

made up of functionally graded material as compared to homogeneous material.  

                                                                 © 2017 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

OLLOW cylinder subjected to creep torsion finds its application in aerospace, chemical plants, nuclear power 

plants etc. Therefore, the highest quality is necessary to manufacture these systems for safe, long term stability 

and reliable operations. Functionally graded materials are new generation non-homogeneous engineering materials 

whose composition changes over volume fraction so that a certain variety of the local material properties can be 

achieved [1-3]. Functionally graded materials are used as thermal barriers for designing structural component in 

aerospace applications and nuclear reactors. Due to better thermal resistance and mechanical performance of 

functionally graded materials their applications found in structural components which operate under extremely high-

temperature environment to reduce the possibility of fracture. The classical theory of deformation considered the 

jump conditions, yield criterion and linear strain measure to determine the stresses using the concept of infinitesimal 

strain theory [4, 5]. However, transition theory given by Seth’s [6] does not require any of the above assumptions 

and thus solves a more general problem using the concept of generalized strain measure [7, 8]. This generalized 

strain measure approach can be used to find the stresses in plasticity and creep problems by determining the 

asymptotic solution at the transition points of the governing differential equation. The investigation of torsion in a 

cylinder made up of homogeneous materials has been analyzed by some researchers using transition theory [9, 10]. 
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Shear stresses for a circular cylinder made up of transversely isotropic material subjected to torsion have been 

determined by Gupta and Rana [11]. They found that the value of shear stresses for a cylinder made up of 

transversely isotropic material is more than that of cylinder made up of isotropic incompressible material. 

Lekhnitskii’s [12] elaborated exact solution for the stress function in a hollow cylinder made up of anisotropic 

material. Rooney et al. [13] studied cylindrical bar made up of inhomogeneous material with constant shear modulus 

and discussed the impact of material inhomogeneity on the torsion response. Ting [14, 15] solved the problem of 

cylindrically elastic tube made up of anisotropic material subjected to pressure, torsion and extension. Horgan et al. 

[1] investigated torsion in a solid cylindrical bar made up of isotropic material whose shear modulus is varying with 

position and concluded that maximum shear stress  does not occur on the boundary of the rod. Chen et al. [16] 

solved the same problem, including the influence of a uniform temperature change, using Lekhnitskii’s stress field 

approach. Tarn [17] solved the problem of circular tube or bar subjected to torsion, pressure, uniform electric 

loading and temperature change. Batra [18] has analyzed analytically the torsion of circular cylindrical bar made of 

isotropic linear elastic material with varying material moduli in the longitudinal direction. Uscilowska [19] studied 

the torsion problem of a hollow rod made up of functionally graded material using the method of fundamental 

solution. Bayata et al. [20] gave a general solution for the torsion of hollow cylinders made up of functionally 

graded materials and determine the angle of twist and shear stress for material whose Young’s modulus and 

Poisson’s ratio varying in the radial direction. Sharma et al. [21] have studied elastic-plastic torsion in a functionally 

graded cylinder under external pressure using Seth’s transition theory. They observed that the shear stresses are less 

for less compressible non-homogeneous cylinder as compared to highly compressible non-homogeneous cylinder.  

In this work, creep behavior of a functionally graded cylinder in torsion under internal and external pressure 

which is subjected to thermal loading is analyzed. The material properties i.e. Young’s modulus of the cylinder 

varying using power law in the radial direction. The influence of various paramters such as  pressure, temperature 

and strain measure on creep stresses has also been studied. The results have been discussed numerically and 

depicted graphically. 

2    MATERIAL AND GEOMETRIC PROPERTIES OF THE CYLINDER 

Consider a thick-walled functionally graded circular cylinder shown in Fig. 1. In cylinder, a and b are the internal 

and external radii, respectively, and r is the radial distance  a r b  . Cylinder is subjected to internal pressure 1p  

and external pressure 2p  with thermal loading as can be seen in Fig. 1. Creep analysis is more significant at high 

temperature as compare to atmospheric temperature. Therefore, thermal analysis of torsion in creep help engineers 

in the designing of structural components like steam generators, nuclear power plants and other structures according 

to industrial demand.
 

The components of displacement  , ,u v w  in cylindrical polar coordinates  , ,r z  [8] are given by  

 

(1 )  , nd . ,u r v rz a w d z      (1) 

 

where   is a function of 2 2r x y  , d is a constant and  is the angle of twist per unit length. 

The compressibility of functionally graded cylinder is taken as: 

 

0 ,kC C r  (2) 

 

where ,a r b   0C is material constant and   0k   is geometric parameter.               

   The generalized components of strain [9] are expressed as: 
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where  1 1
nnD d   

 
, n is the strain measure and

d

dr


   , m is geometric parameter. 

In secondary creep state, creep strain rate is minimum and retains its ability to experience deformation [22]. 

Therefore, in this work, we assumed that 1m  , which holds for secondary creep. 

According to theory of elasticity, the thermal stress-strain relationship for isotropic material is given by  

 

 1 , ,    1,2,3       2    ij ij ij ijeT i jI       (4) 

 

where ,ij ijT e  are stress and strain tensors, respectively,  1 kkI e
 
is strain invariants, ,   are Lame’s constants, ij  

is Kronecker’s delta,  3 2     ,   is the coefficient of thermal expansion and   is temperature. 

The temperature function   has to satisfy the Laplace equation i.e.  

 

, 0ii   (5) 

 

The temperature field satisfying Eq. (5) is 0   at , 0r a    at r b , where 0  is a constant, given by 
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Eq. (4) using Eq. (3)  with 1m 
 
can be rewritten as: 
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(6) 

 

The equation of equilibrium in the absence of body forces is defined as: 
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where andrrT T  are radial and circumferential stresses, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 

A functionally graded thick-walled cylinder under pressure 

and thermal loading subjected to torsion. 
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2.1 Identification of transition point  

As there exists a intermediate state, i.e., transition state in between elastic and creep state and at transition, the 

differential system defining the elastic state should reach some kind of criticality. The non-linear differential 

equation at transition state is obtained by substituting Eq. (6) in Eq. (7) as, 
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where 
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and 1  is a constant. 

Eq. (8) shows that the transition points of differential equation are 1 andP P    . The transition point are 

critical points of the differential equation where differential equation is asymptotically stable and derivatives are not 

differentiable. At this physical point, distinction between elastic and creep disappears. The asymptotic solution 

through 1P   gives creep stresses [6, 8, 10, 11] depends upon the transition function used. 

The boundary conditions are 

 

1rrT p   at r a  and 2rrT p   at .r b  (9) 

 

The resultant axial force in the circular cylinder is given by  
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2.2 Solution through the principal stress difference 

For finding the creep stresses at the transition point 1P  , we define the transition function [6, 8-11] through the 

principal stress difference as follows: 
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Taking the logarithmic differentiation of the Eq. (11) with respect to r, we have 
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Substituting the value of 
dP

d 
 from Eq. (8) in Eq. (12) and taking the asymptotic value 1P  , we get 
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where  
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Integration of Eq. (13) yields  
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where ( )f r X dr   and  A is a constant of integration.  

Using Eq. (11) and Eq. (14), we have 
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The asymptotic value of   from Eqs. (11) and (15) is 
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Substituting Eq. (15) in Eq. (7) and integrating, we get 

 

,rrT B A F dr    (17) 

where B is a constant of integration and asymptotic value of   is 
D

r  

as 1P  , D is a constant.  

The constants A and B are obtained by using the boundary conditions from Eq.(9) in Eq.(17) as: 
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Substituting the value of B in Eq. (17), we get 
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The circumferential, axial and shearing stresses are obtained from Eqs. (15), (18) and Eq. (6) are 

 

 

 

 

 

 

 
2

2 /2 3 /2

1 3 2 3 2
, ( ) 2 2 ,

2 2 2

exp ( ) .

b

zz rr zz

r

n n

z

C C C
T p A F dr rF T T T e

C C C

r
T A f r

C

 



  

  

    
        

   

 
  

 


 

 

 

(20) 



                                                                                                                                                         S.Sharma et al.                        307 

 

© 2017 IAU, Arak Branch 

The twisting couple M is given by 
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Stresses for functionally graded thick-walled cylinder whose compressibility varying in the radial direction are 

given as: 
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Now we introduce the components in non-dimensional form as: 
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Now thermal creep principal and shear stresses under internal and external pressure in non-dimensional form 

from Eq. (22) are expressed as: 
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Eq. (23) represents thermal radial, circumferential, axial, shear stresses and twisting couple in a non-dimensional 

form for secondary creep state. 

3    RESULTS AND DISCUSSION 

The material properties of the cylinder made up of functionally graded material are defined as: thermal expansion 

coefficient 6 o 117.3 10 C       (Stainless steel), compressibility coefficient 0 0.5C  , Poisson’s ratio 0.3  . 

The inner and outer radii of the cylinder are taken as   1 [ ]a m  and   2 [ ]b m , respectively. The geometric 

parameters of the compressibility are 0, 0.5, 1, 1.5k     .  

To observe the effect of temperature and pressure with different parameters of strain measure and 

compressibility, Figs. 2 and 3 and Table 1. have been drawn between  radii ratio and stresses. The angle of twist is 

considered as 1 50   with internal pressure greater than that of external pressure. 

Influence of strain measure and non-homogeneity on circumferential stresses without temperature: It is observed 

from Fig. 2 and Table 1. that without thermal effects, circumferential  stresses are tensile in nature while radial 

stresses are compressive in nature and are maximum at internal surface with linear strain measure. It has been 

noticed that circumferential stresses are maximum for cylinder made up of less functionally graded material as 

compared to highly functionally graded material or homogeneous material. It is noticed that with the change in 

measure from linear to nonlinear, circumferential stresses are maximum at external surface. Also, circumferential 

stress decreases significantly with the change in measure from linear to nonlinear which further decreases with the 

increase in nonlinearity of measure. Also, it has been noticed that circumferential stresses are high for highly 

functionally graded cylinder as compared to homogeneous and less functionally graded cylinder. 

Influence of strain measure and non-homogeneity on circumferential stresses in the presence of temperature: 

From Fig. 3 and Table 1. it has been noticed that with the introduction of thermal effects, circumferential stresses are 

tensile in nature. Circumferential stress also increases for homogeneous cylinder while decreases for functionally 

graded cylinder with linear and nonlinear strain measure.  
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Fig.2 

Creep stresses in thick-walled FGM cylinder for 1 1P   and 2 0.2P 
 
with 1, 3, 5N  . 
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Fig.3 

Thermal creep stresses in thick-walled FGM cylinder for 1 1P   and 2 0.2P   at temperature 1 0.1   with 1, 3, 5N  . 

 

Figs. 4, 5 and Table 1. describe the behavior of creep stresses against radii ratio when internal pressure is less 

than that of external pressure. 

Influence of strain measure and non-homogeneity on circumferential stresses without temperature: From Fig. 4 

and Table 1. it is observed that circumferential stresses are compressive and maximum at internal surface for linear 

measure. These stresses are maximum at external surface for nonlinear measure. However, these stresses are 

maximum for less functionally graded cylinder with linear measure and maximum for highly functionally graded 

cylinder with nonlinear measure.  

Influence of strain measure and non-homogeneity on circumferential stresses with temperature: from Fig. 5 and 

Table 1. it is observed that the introduction of temperature creep stress increases for homogeneous and functionally 

graded cylinder with nonlinear measure. For linear measure, these stress increases for homogeneous and less 

functionally graded cylinder while decreases for highly functionally graded cylinder. Moreover, circumferential 

stresses are maximum at internal surface with linear measure. However, for highly functionally graded cylinder 

these circumferential stresses are maximum at external surface when strain measure is nonlinear.  
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Fig.4 

Creep stresses in thick-walled FGM cylinder for 1 0.2P   and 2 1P   with 1, 3, 5N  . 

 

0.6 0.7 0.8 0.9 1.0
R

3.0

2.5

2.0

1.5

1.0

0.5

Stresses

 

0.6 0.7 0.8 0.9 1.0
R

2.0

1.5

1.0

0.5

Stresses

 
  

0.6 0.7 0.8 0.9 1.0
R

2.0

1.5

1.0

0.5

Stresses

 

 

 

 
 

 

 

Fig.5 

Thermal creep stresses in thick-walled FGM cylinder for 1 0.2P   and 2 1P   at temperature 1 0.1   with 1, 3, 5N  . 

 

A shear stress generated when a structural component is twisted. Due to torsion, shear stress generated in 

addition to principal stresses. The localized parallel shear forces will be highest when the normal forces are high. 

Due to combined loading i.e. axial and torsional loading, stresses generated in functionally graded material 

intersecting stresses generating in homogeneous material. As cylinder is subjected to different normal forces on each 

side and thus when internal pressure is greater than that of external pressure, forces on outer side are small and inner 

side are high. Non-uniform distribution of pressure and twist creates shear stress that tries to distort the cube. Shear 

stress act as support force and support force are not evenly distributed because of non-uniform distribution of 

pressure. Figs. 6-13 and Table 2. have been drawn for shear stresses against radii ratio subjected to pressure which 

justified above mentioned results. Figs. 6-9 and Table 2. have been drawn for shear stresses against radii ratio when 

internal pressure is greater than that of external pressure. 

Influence of strain measure and non-homogeneity on shear stresses without temperature: At room temperature, 

creep shear stresses with angle of twist (say, 50) are compressive in nature. These stresses are maximum at internal 

surface for functionally graded and homogeneous cylinder with linear measure. However, shear stresses for cylinder 
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made up of highly functionally graded material with nonlinear strain measure are maximum at external surface as 

can be seen from Fig. 6 and Table 2. It is also found that shear stresses are maximum for less functionally graded 

cylinder as compared to homogeneous and  highly functionally graded cylinder.  

Influence of strain measure and non-homogeneity on shear stresses with temperature: from Fig. 7 and Table 2. it 

is noticed that, with the introduction of thermal effects, shear stress increases at internal surface while decreases at 

external surface. With linear measure, these stresses increases for highly functionally graded cylinder. However, 

with nonlinear measure shear stress decreases for highly functionally graded cylinder. It is also noticed that shear 

stresses are more for linear measure as compared to nonlinear measure. From Figs. 8 and 9, it is noticed that, with 

the increase in internal and external pressure, shear stresses increase significantly. It is also found that these shear 

stresses are maximum for less functionally graded cylinder as compared to cylinder made up of highly functionally 

graded material. 
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Fig.6 

Creep shear stresses in thick-walled FGM cylinder for 1 1P   and 2 0.2P   with 1, 3, 5N  . 
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Fig.7 

Thermal creep shear stresses in thick-walled FGM cylinder for 1 1P   and 2 0.2P   at temperature 1 0.1   with 1, 3, 5N  . 
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Fig.8 

Creep shear stresses in thick-walled FGM cylinder for 1 2P   and 2 0.4P   with 1, 3, 5N  . 
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Fig.9 

Thermal creep shear stresses in thick-walled FGM cylinder for 1 2P   and 2 0.4P   at temperature 1 0.1   with 1, 3, 5N  . 

 

Figs. 10 to 13 and Table 2. have been drawn for shear stresses against radii ratio when internal pressure is less 

than that of external pressure.  

Influence of strain measure and non-homogeneity on shear stresses without temperature: it is observed that creep 

shear stresses are tensile in nature and are maximum at internal surface with linear and nonlinear measure as can be 

seen from Fig. 10 and Table 2. it is also noticed that with the increase in nonlinearity shear stress decreases. It is 

observed that shear stresses are maximum for cylinder made up of less functionally graded material as compared to 

cylinder made up of highly functionally graded material and homogenous material for linear and nonlinear measure.  

Influence of strain measure and non-homogeneity on shear stresses with temperature for linear measure: from 

Fig. 11 and Table 2. it is observed that with the introduction of temperature, shear stress decreases at external 

surface and increases at internal surface for homogeneous and less functionally graded cylinder. These shear stresses 

decrease at internal surface and increases at external surface for highly functionally graded cylinder. With the 

increase in internal and external pressure, these shear stresses increase significantly as can be seen from Figs. 12 and 

13. These shear sterner maximum for less functionally graded cylinder as compared to homogeneous cylinder. 
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Fig.10 

Creep shear stresses in thick-walled FGM cylinder for 1 0.2P   and 2 1P 
 
with 1, 3, 5N  . 
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Fig.11 

Thermal creep  shear stresses in thick-walled FGM cylinder for 1 0.2P   and 2 1P   at temperature 1 0.1   with 1, 3, 5N  . 
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Fig.12 

Creep shear stresses in thick-walled FGM cylinder for 1 0.4P   and 2 2P   with 1, 3, 5N  . 
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Fig.13 

Thermal creep shear stresses in thick-walled FGM cylinder for 1 0.4P   and 2 2P   at temperature 1 0.1   with 1, 3, 5N  . 

 

 
Table 1  

Thermal creep stresses for FGM cylinder with 1 21, 0.2P P   and 1 20.2, 1P P  . 

  1N   3N   5N   

1  
 0.5 0.75 1 0.5 0.75 1 0.5 0.75 1 

 0 1.133 0.541 0.333 0.600 0.600 0.600 0.504 0.608 0.664 

0  with P1 > P2 0.5 1.466 0.500 0.189 -0.226 0.657 1.186 -0.655 0.644 1.671 

 -1 1.782 0.460 0.076 0.450 0.610 0.713 0.231 0.619 0.892 

 -1.5 1.868 0.475 -0.022 0.907 0.567 0.432 0.671 0.581 0.594 

 0 1.321 0.517 0.254 0.659 0.597 0.566 0.532 0.606 0.643 

0.1  with  P1 > P2 0.5 1.320 0.520 0.243 0.229 0.626 0.863 0.058 0.623 1.047 

 1 1.637 0.480 0.127 0.580 0.606 0.599 0.374 0.616 0.763 

 1.5 1.978 0.454 -0.020 0.910 0.576 0.394 0.700 0.589 0.535 

 0 -2.333 -1.741 -1.533 -1.800 -1.800 -1.800 -1.704 -1.808 -1.864 

0   with  P1 < P2 0.5 -2.666 -1.700 -1.389 -0.974 -1.857 -2.386 -0.545 -1.844 -2.871 

 1 -2.982 -1.660 -1.276 -1.650 -1.810 -1.913 -1.431 -1.819 -2.092 

 1.5 -3.068 -1.675 -1.178 -2.107 -1.767 -1.632 -1.871 -1.781 -1.794 

 0 -2.521 -1.717 -1.454 -1.859 -1.797 -1.766 -1.732 -1.806 -1.843 

0.1  with  P1 < P2 0.5 -2.520 -1.720 -1.443 -1.429 -1.826 -2.063 -1.258 -1.823 -2.247 

 1 -2.837 -1.680 -1.327 -1.780 -1.806 -1.799 -1.574 -1.816 -1.963 

 1.5 -3.178 -1.654 -1.180 -2.110 -1.776 -1.594 -1.900 -1.789 -1.735 
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Table 2  

Thermal creep  shear stresses for FGM cylinder with 
1 21, 0.2P P   and 

1 20.2, 1P P  . 

z  1N   3N   5N   

1  
 0.5 0.75 1 0.5 0.75 1 0.5 0.75 1 

 0 -24.634 -13.409 -8.709 -3.616 -2.579 -2.030 -2.453 -1.847 -1.510 

0  with P1 > P2 0.5 -28.440 -12.071 -6.056 -1.749 -2.968 -3.464 -0.563 -2.202 -3.243 

 -1 -32.084 -10.736 -3.821 -3.277 -2.610 -2.197 -2.007 -1.919 -1.850 

 -1.5 -33.072 -10.114 -1.216 -4.308 -2.336 -1.209 -2.725 -1.743 -1.173 

 0 -26.800 -12.801 -7.416 -3.733 -2.553 -1.943 -2.500 -1.836 -1.474 

0.1  with  P1 > P2 0.5 -26.753 -12.536 -6.905 -2.777 -2.744 -2.657 -1.725 -1.979 -2.161 

 1 -30.408 -11.178 -4.525 -3.571 -2.552 -1.921 -2.241 -1.874 -1.631 

 1.5 -34.342 -9.801 -1.230 -4.316 -2.346 -1.137 -2.773 -1.744 -1.085 

 0 24.634 13.409 8.709 3.616 2.579 2.030 2.453 1.847 1.510 

0  with  P1 < P2 0.5 28.440 12.071 6.056 1.749 2.968 3.464 0.563 2.202 3.243 

 1 32.084 10.736 3.821 3.277 2.610 2.197 2.007 1.919 1.850 

 1.5 33.072 10.114 1.216 4.308 2.336 1.209 2.725 1.743 1.173 

 0 26.800 12.801 7.416 3.733 2.553 1.943 2.500 1.836 1.474 

0.1  with  P1 < P2 0.5 26.753 12.536 6.905 2.777 2.744 2.657 1.725 1.979 2.161 

 1 30.408 11.178 4.525 3.571 2.552 1.921 2.241 1.874 1.631 

 1.5 34.342 9.801 1.230 4.316 2.346 1.137 2.773 1.744 1.085 

4    CONCLUSIONS 

In this paper, the influence of strain measure and temperature for creep behavior on functionally graded cylinder in 

torsion have been examined under internal and external pressure. It has been observed that with or without thermal 

effects, cylinder made up of less functionally graded material is on the safer side of design in torsion as compared 

cylinder made up of highly functionally graded material and homogeneous material for linear and nonlinear strain 

measures. This is because of the reason that shear stresses are maximum for less functionally graded cylinder as 

compared to cylinder made up of highly functionally graded material and homogeneous material. 
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