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 ABSTRACT 

 In this research, a control feedback system is used to study the free vibration response 

of rectangular plate made of magnetostrictive material (MsM) for the first time. A 

new trigonometric higher order shear deformation plate theory are utilized and the 

results of them are compared with two theories in order to clarify their accuracy and 

errors. Pasternak foundation is selected to modelling of elastic medium due to 

considering both normal and shears modulus. Also in-plane forces are uniformly 

applied on magnetostrictive nano-plate (MsNP) in x and y directions. Nonlocal 

motion equations are derived using Hamilton’s principle and solved by differential 

quadrature method (DQM) considering different boundary conditions. Results 

indicate the effect of various parameters such as aspect ratio, thickness ratio, elastic 

medium, compression and tension loads and small scale effect on vibration behaviour 

of MsNP especially the controller effect of velocity feedback gain to minimizing the 

frequency. These finding can be used to active noise and vibration cancellation 

systems in micro and nano smart structures. 

  © 2016 IAU, Arak Branch.All rights reserved. 

 Keywords : Free vibration; Magnetostrictive rectangular nano-plate; A new 

trigonometric/tangential shear deformation theory;  Control feedback system. 

1    INTRODUCTION 

 AGNETOSTRICTION refers to the phenomenon in which an applied magnetic field generates elastic 

strain in ferromagnetic materials. The most known magnetostrictive material is Terfenol-D which may 

generate strains of about1.5×10
-3

 at a magnetic field intensity of 200KA/m and another magnetostrictive materials 

are iron, Ferrite, Nickel, Cobalt and their alloys which can be utilized for designing the magnetostrictive actuator, 

motor, transducer, sensor development of communications equipment and computers also one of the applications 

that today is investigating of a magnetostrictive actuator for contributing to the pollution reduction in novation of 

mechanical part designs in field of green energy [1-3]. 

Nanostructures have increased considerable attention among the experimental and theoretical research 

communities. One of the typical structures of nanosystems is rectangular nanoplates which are two dimensional 

nanostructures. Nanoplates have applications in various fields of nanotechnology, for example in nano-electro-

mechanical devices, can be potentially exploited as bio and mechanical sensors, electro-catalysts, DNA detectors, 

drug deliverer, and energy storage systems [4-6]. 
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Therefore plates of MsM at the nanoscale can improve properties plates and it can be nano and magnetostrictive 

features together and have applications at various means in leading years. The literature contains some of papers that 

have been analyzed MsM and it also reviews previous studies on nanoplates with several shear deformation plate 

theories and lastly has been introduced some of papers about plate based on new trigonometric shear deformation 

plate theory.  

Jia et al.[7] studied a novel magnetostrictive static force sensor with giant magnetostrictive material rod for 

realizing static force measuring and improving the sensitivity of magnetostrictive force sensor. They proposed a 

special structure surrounding Hall sensor to improve the sensitivity. They also developed the model based on the 

coupled linear magneto-mechanical constitutive equations and the experimental result shows that the model is good 

at reflecting the force. 

A micro-mechanical analysis was offered for the prediction of the effective behavior and internal field 

distribution of multiphase magnetostrictive composites based on the homogenization technique for periodic 

composites by Jacob Aboudi et al. [8]. 

Li et al. [5] presented buckling and free vibration of magneto-electro-elastic nanoplate based on nonlocal 

Mindlin theory resting on Pasternak foundation. The governing equations of magneto-electro-elastic nanoplate were 

derived by using of Hamilton’s principle. They concluded  that the buckling load and free vibration frequency 

decreased with increasing nonlocal parameter and the buckling load decreases with increasing lateral load for a 

magneto-electro-elastic nanoplate. 

The small scale effect on the vibration analysis of orthotropic single layered graphene sheets embedded in elastic 

medium was obtained using nonlocal elasticity and Classical shear deformation plate theory by Pradhan and Kumar 

[9]. Considering the principle of virtual work, the governing differential equations were derived and solved by 

differential quadrature method for various boundary conditions. 

Pradhan and Phadikar [10] proposed vibration of single and double layered nanoplates based on Classical and 

first order shear deformation plate theory for simply supported boundary conditions. Navier’s approach was used to 

solve the governing equations and investigate the effect of nonlocal parameter, length, height, elastic modulus and 

stiffness of Winkler foundation of the plate on non-dimensional vibration frequencies.  

Malekzadeh and Shojaee [11] presented free vibration of nanoplates based on a nonlocal two-variable refined 

plate theory for some different types of boundary conditions. The effect of small scale parameter on the frequency 

were studied. The equations of motion was derived by the nonlocal differential constitutive relations of Eringen and 

solved by DQM. 

Buckling of single layer graphene sheet based on nonlocal elasticity and higher order shear deformation theory 

for all edges simply supported boundary conditions was developed by Pradhan [12]. He utilized Navier’s approach 

to solve the governing equations and analytical solutions for critical buckling loads. Effects of several parameters 

such as length, nonlocal parameter, thickness of the graphene sheets and higher order shear deformation theory on 

the critical buckling load were investigated in this paper. 

Zenkour and Sobhy [13] analyzed thermal buckling of single-layered graphene sheets lying on elastic medium 

based on the nonlocal classical, first-order and sinusoidal shear deformation plate theories for various boundary 

conditions. Three types of thermal loading as uniform, linear and nonlinear temperature rise through the thickness of 

the plate formulated according to closed form solutions. They studied effect of different parameter such as plate 

aspect ratio, side-to-thickness ratio, nonlocal parameter and elastic foundation parameters on the thermal buckling 

temperature. 

Mantari et al. [14] reported a layerwise finite element formulation of a new (tangential) trigonometric shear 

deformation theory for the flexure of thick multilayered plates. They resulted that the new theory performs very well 

as other existing higher order layerwise deformation theories for analyzing the global and inter-laminar mechanical 

behaviour of multilayered sandwich and composite plates. And then, Mantari et al. [15] used this theory to obtain 

shear deformation for advanced composite plates and optimize the shear strain function and bi-sinusoidal load. 

One of the most important distinctive features of this paper deferred  from the mentioned ones is that material of 

selected structure which is MsM. MsM due to the reciprocal nature has made the choice for smart control systems 

where magneto-mechanical coupling lead to changes in strains and magnetization of them, like electro-mechanical 

coupling in piezoelectric materials. This feature is used to create a control feedback system in order to study 

vibrational behaviour of MsNP. In fact, velocity feedback gain acts as a controller parameter for changing the 

natural frequency to desire values. In the other hand, nonlocal continuum theory is used to investigate the effect of 

small scale parameter on MsNP for the first time. The result of this study can be useful to design smart control 

system in order to reduce the damage caused by the destructive vibration. 
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2    MAIN THEORIES TO MODELING OF MsNP 

An embedded MsNP system by two parameters foundation under the in-plane force ,x yN N  is considered in Fig.1 

in which geometrical parameters of length a, width b and thickness h are indicated and the cartesian coordinate 

system (x,y,z), is introduced. 

 

 

 

 

 

 

 

 

 

 
Fig.1 

Geometry and coordinate of MsNP. 

2.1 A new trigonometric/tangential shear deformation theory 

A new trigonometric higher order shear deformation theory involved six unknown displacement functions and does 

not require shear correction factor. Mantari et al. [16] for the first time presented this theory, and then, this theory 

has expanded for an analytical solution to the static analysis of FG plates and to study the static response of 

advanced composite plates [15,17]. Results of this theory have a high accuracy and performs as good as the Reddy’s 

and Touratier’s shear deformation theories for analyzing the static behavior of isotropic plate especially for 

composite laminated and sandwich plates [16]. The displacement field is described in the following equations [17]: 
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where 0 0 0 1 2(x, y, t), (x, y, t), (x, y, t), (x, y, t), (x, y, t)u v w   and 3(x, y, t)  are the six unknown displacement 

functions of middle surface of the plate along ),,( zyx direction and rotations, also 2 1
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The linear strain relations are presented by the Eq. (2): 
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Also Eq. (3) shows stress-strain relation for isotropic MsM [18,19]. The magneto-mechanical coupling in these 

materials can be observed in Eq. (3). 
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where ij and ij are stress and strain respectively. Also ijQ  are the terms of engineering constants: 
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(4) 

 

E and   are Young modulus and Poisson’s ratio, also ije  are magnetostrictive coupling modules which 

determined as follow [18]: 
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where represents the direction along which a given magnetic anisotropy may have been induced. zH is the 

magnetic field intensity and can be expressed as follows [18, 20, 21]: 
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where , ( )cK I t and )(tC  are the coil constant, coil current and the control gain in which ( )
c

K C t is introduced as 

velocity feedback gain. Also ( , , , )w x y z t  is displacement along z. 

2.2 Nonlocal continuum theory 

According to Eringen’s nonlocal elasticity theory [22] the stress at a point in a body depends on the strain at that 

point and all other points of the body. Therefore the constitutive equation can be presented to [22, 23]: 
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According to Eq. (7) and the magneto-mechanical coupling for isotropic MsM, stress-strain relation can be 

observed in Eq. (8). [18,19,22,24]: 
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3    NONLOCAL  GOVERNING EQUATIONS OF MOTION USING ENERGY METHOD    

3.1 Strain energy 

The strain energy of an elastic body for rectangular plate is expressed as [25]: 
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(9) 

 

Substituting Eq. (2) into Eq. (9), the strain energy of MsNP can be obtained. 

3.2 Kinetic energy 

Kinetic energy of the rectangular plate is calculated as [25]: 
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where m  and h is the thickness of MsNP. 
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3.3 In-plane forces 

Rectangular plates are usually subjected to in-plane forces, therefore the in-plane stresses effects must be considered 

in their analysis and vibrations. Uniform in-plane forces Nx and Ny applied in x and y directions as shown in Fig. 1 

and it is computed the following equation [26]: 
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3.4 Elastic medium 

Pasternak foundation is capable to consider transverse shear loads and normal loads. The effect of surrounding 

elastic medium on the nanoplate which is simulated with Pasternak model is considered as follows [27]: 
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where wK and GK are Winkler modulus for normal load and shear modulus for transverse shear loads, respectively. 

Therefore, the external work due to in-plane forces and elastic medium is calculated as: 
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3.5 Hamilton’s principle 

In this step, Hamilton’s principle is employed to obtain the motion equations and corresponding boundary 

conditions. This principle can be expressed as follows [25]: 
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where ,U K  and    are variation of strain energy, variation of Kinetic energy and variation of external work.  

Once substituting Eqs. (9), (10) and (13) into Eq. (14), afterward using dimensional parameters which introduced 

in Eq. (15): 
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The non-dimensional form of motion equations are yield by setting the coefficient 1 2 3, , , , ,U V W       

equal to zero as follow:  
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4    SOLUTION PROCEDURE   

There is no doubt that sophisticated coupled motion equations alongside with general boundary conditions are 

difficultly analysed by exact method, while theses equations can be numerically solved. One of the numerical 

methods is DQM with high rapid solution for linear and nonlinear partial differential equations in which its results is 

very close to exact solution. Before utilizing DQ method, the Navier solution is used considering following form: 
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(23) 

 

In which  and n are the dimensionless frequency and integer number which introduced as wave numbers. Eq. 

(23) is used when two edges of plate are simply supported. In DQ method F is a function representing, 1 2, , , ,u v w    

and 3  with respect to variables   in the domain of (0 )L   [28]: 
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(24) 

 

where 
)(k

pqA  is the weighting coefficients associated with k
th

-order partial derivative of F, and N is the number of 

grid points in longitudinal direction where Chebyshev polynomials [28] are selected for positions of the grid points. 

Substituting Eq.(24) into motion equations, the standard form of vibrational motion equation set 



                                                                                    Smart Vibration Control of Magnetostrictive Nano-Plate ….                    310 
 

© 2016 IAU, Arak Branch 

( 0)MX CX KX    are obtained and by considering boundary condition an eigenvalue problem is derived in 

which the eigen-values of state-space matrix  
   
   1 1

0 I
state space

M K M C 

  
    
     

 are the dimensionless frequency. It 

is worth to mention that M is the mass matrix, C is the damping matrix and K is the stiffness,  I and  0 are the 

unitary and zero matrixes. 

5    NUMERICAL RESULTS AND DISCUSSION    

In this study, a new trigonometric higher order shear deformation theory are used to derive the motion equation of 

embedded MsNP using nanlocal continuum theory. MsNP subjected to uniform magnetic field and undergoes in-

plane forces. The results of this study that included the effect of stimulus factors such as small scale parameter, 

velocity feedback gain, elastic medium and … report in this section along with corresponding figures. The plate has 

been made of Terfnol-D that listed its properties at following Table: 

 
Table 1 

 Elastic properties of Terfenol-D [18]. 

Properties E    m  31 32e e  

Terfenol-D 30 9e Pa  0.25  3 39.25 10 /kg m  442.55 / ( . )N m A  

 

Fig. 2 shows the variation of dimensionless frequency versus nonlocal parameter in different thickness ratios.   

introduces the ratio of thickness to length of MsNP where changes from 0.1 to 0.3 for thick plates. The figure has 

been plotted for constant values of elastic medium and velocity feedback gain. As can be seen from the figure 

increasing the nonlocal parameter lead to significant decreases in natural frequency of MsNP. It is asuumed that the 

MsNP becomes softer with considering nonlocal parameter. 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

  [K
c
C(t)=1e3, =1, K

*

w
=1e-2, K

*

g
=1e-2]

D
im

en
si

o
n

le
ss

 f
re

q
u

en
cy

  
( 

)

 

 

=0.1

=0.2

=0.3

 

 

 

 

 

 

 

 

 
Fig.2 

Variation of dimensionless frequency versus nanlocal 

parameters in different thickness ratios. 

 

Fig. 3 shows the variation of dimensionless frequency versus nonlocal parameter in different aspect ratios. 

Aspect ratio (  ) introduces the length to width ratio of MsNP where changes from 0.5 to 2 for thick plate with 

0.2  . Like Fig. 3 natural frequency of MsNP decreases when the nonlocal parameter increases. Then, it can be 

said that in the same values of dimensionless parameters, the natural frequency of local system is greater than its 

non-local where the values on the horizontal axes in 0   show the local frequencies. 
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Fig.3 

Variation of dimensionless frequency versus nanlocal 

parameters in different aspect ratios. 

 

Fig. 4 shows the variation of dimensionless frequency versus nonlocal parameter in different boundary 

conditions. The results have been reported for special conditions of MsNP in 

which * *0.01, 0.01, 0.2, 1w gK K      . Three boundary conditions of CSCS, SCSS and SSSS have been 

compared in Fig.4 where the value of natural frequency for CSCS is larger than the others. One of the important 

results that can be concluded from Figs.2 to 4 is the role of small scale parameter in Eringen’s theory on instability 

of system. In fact, nan-local parameter with decreasing natural frequency helps the system to instability. 

 

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

  [K
c
C(t)=1e3, =1, K

*

w
=1e-2, K

*

g
=1e-2]

D
im

en
si

o
n

le
ss

 f
re

q
u

en
cy

  
( 

)

 

 

CSCS

SCSS

SSSS

 

 

 

 

 

 

 
Fig.4 

Variation of dimensionless frequency versus nanlocal 

parameters in different boundary conditions for two 

theories. 

 

Fig. 5 shows the variation of dimensionless frequency versus nonlocal parameter in different elastic medium. 

The lowest curves ( * *0, 0g wK K  ) introduces the case of without elastic medium where the natural frequency has 

the minimum value to other cases. The second curve is belong to the Winkler foundation with 
* 0.01wK  , this value 

introduces the spring constant of elastic medium. Pasternak foundation includes two normal and shear modules and 

is more effective than Winkler type. The role of elastic medium in stability of system is observed in Fig.5 where 

increasing of Pasternak modules creates the larger values for natural frequency of MsNP. It is worth to mention that 

increasing elastic medium parameters follow this trend upward. 
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Fig.5 

Variation of dimensionless frequency versus nanlocal 

parameters in different elastic medium. 

 

Effect of velocity feedback gain is especially studied in Figs.6 in the presence of in-plane forces. The result 

shows that in-plane forces change effectively the vibration response of embedded MsNP in 1 0.2.and    Since 

the in-plane forces are vector quantity, the positive value indicates compression force and negative value shows the 
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extensional or tension force where in-plane compression forces decrease the dimensionless frequency and cause the 

instability of system, but tension force increases the frequency and system stability. Fig. 6 (a) displays the effect of 

unidirectional in-plane force on vibration response of MsNP. Increasing of tension force leads to increase of natural 

frequency while compression force has contrary effect. Fig. 6b depicts that both cases * *( 0, 0)x yN N   and 

* *( 1 2, 1 2)x yN e N e     report the same results. Also, both cases * *0, 0x yN N  and * *0, 0x yN N introduce 

the pure compression and pure tension, respectively. 
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Fig.6 

Variation of dimensionless frequency versus velocity feedback gain in different in-plane forces for two cases (a) and (b). 

 

A 3D plot of variation natural frequency versus velocity feedback gain and Pasternak module have been 

presented simultaneously in Fig.7 (a). This figure shows the effect of two parameters with contrary turnovers. The 

velocity feedback gain decreases the natural frequency while elastic medium increases it. In the other hand, Fig. 7 

(a) shows that it can be utilized several parameter with different effects to achieve desire value or appropriative state 

in the systems. It is worth to mention that the MsMs due to reciprocal nature deformed when subjected to magnetic 

field. It is clear from the Fig.7(a) that the velocity feedback gain ( )cK C t acts as a controller parameter where the 

natural frequency of MsNP significantly minimizes with increasing in velocity feedback gain. 

The same figure has been also plotted for studying the effect of in-plane forces on the natural frequency on 

MsNP in x and y directions (Fig.8) where applying these forces has the same result in both directions. It can be 

found the maximum values of frequency at the end of plotted surface and its minimum at the first. 
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Fig.7 

Three dimension plot of dimensionless frequency variation versus:a) velocity feedback gain and Pasternak constant.b) in-plane 

forces in x and y directions. 

 

Finaly, Fig. 8 compares the results of three plate theories to confirm the results of a new trigonometric higher 

order shear deformation theory. As can be seen from the Fig. 8 the result of this new theory is very close to first 

order shear deformation theory by considering shear correction factor and third order shear deformation theory and a 

little difference is due to the accuracy of this new theory where considers six independent parameters and does not 

ignored 0zz  . 
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Fig.8 

Comparison the results using three theories. 

6    CONCLUSIONS 

At the first time, a control feedback system is used to investigate the free vibration response of rectangular nanoplate 

made of MsM. In this regard, a new trigonometric higher order shear deformation theory was utilized in order to 

enhance the accuracy of results where normal shear stress was considered using six independent parameters. It is 

worth to mention that nonlocal continuum theory was rewritten for MsNP for the first time in this work while MsNP 

embedded on Pasternak foundation and the plate simultaneously undergone in-plane forces. The results of this 

research have been listed as follow: 

 Increasing small scale parameter leads to decrease the dimensionless frequency of MsNP. 

 Aspect and thickness ratios increases the dimensionless frequency of MsNP, but the frequency rate for 

increasing aspect ratio is greater than thickness ratio. 

 Velocity feedback gain can be controlled by the vibration behavior of MsNP where it minimizes the natural 

frequency as a controller parameter. 

 The dimensionless frequency of MsNP decreased due to in-plane compression forces and increased with 

applying tension forces. 

 Stability of MsNP is significantly affected by elastic medium where Pasternak modulus increased the 

dimensionless frequency of MsNP. 

According to above results, MsNP can be used for smart control vibration of nano-structure especially in sensor 

and actuators such as wireless linear micro-motor and smart nano-valves in injectors. 
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