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 ABSTRACT 

 In this paper, static analysis of functionally graded annular plate resting on elastic foundation with 
various boundary conditions is carried out by using a semi-analytical approach (SSM-DQM). The 
differential governing equations are presented based on the three dimensional theory of elasticity. 
The plate is assumed isotropic at any point, while material properties to vary exponentially 
through the thickness direction and the Poisson’s ratio remain constant. The system of governing 
partial differential equations can be writhen as state equations by expanding the state variables and 
using the state space method (SSM) about thickness direction and applying the one dimensional 
differential quadrature method (DQM) along the radial direction. Interactions between the plate 
and two parameter elastic foundations are treated as boundary conditions. The stresses and 
displacements distributions are obtained by solving these state equations. In this study, the 
influences of the material property graded index, the elastic foundation coefficients (Winkler-
Pasternak), the thickness to radius ratio, and edge supports effect on the bending behavior of the 
FGM annular plate are investigated and discussed in details. 

2010 IAU, Arak Branch. All rights reserved.  
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1    INTRODUCTION 

 OMPONENTS made of FGMs like plates/shells resting on elastic foundations often find application in 
aerospace, mechanical, nuclear and offshore structures. They are, in general, subjected to various types of 

mechanical loads. Therefore, the modeling and analysis of mechanical behavior of plates attached to elastic 
foundations have been widely used by many researchers during the past decades. To describe the interactions 
between the plate and supporting foundation various kinds of models have proposed by scientists. The Winkler-
Pasternak model is widely used to describe the mechanical behavior of structure-foundation interactions. 

Functionally graded materials (FGMs) have gained considerable attention in recent years. FGMs are a new kind 
of composite materials and have wide applications. Since their material properties vary as a function with respect to 
the coordinates, their problems are more complicated than those of homogeneous materials. FGMs are composite 
materials that are microscopically inhomogeneous, and the mechanical properties vary continuously in one (or more) 
direction(s). This is achieved by gradually changing the composition of the constituent materials along one direction, 
usually in the thickness direction, to obtain a smooth variation of material properties and an optimum response to 
externally applied loading. The static and dynamic analyses of FGMs structural components are important in the 
design of FGMs devices. Several results can be found in the literature. For example, Reddy et al. [1] investigated the 
axisymmetric bending of an FGM circular plate based on the first-order plate theory and obtained the relationships 
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between the first-order plate theory and the classical thin plate theory. Yang and Shen [2] dealt with the dynamic 
response of initially stressed functionally graded rectangular thin plates subjected to partially distribute impulsive 
lateral loads. Ma and Wang [3] studied the axisymmetric bending of an FGM circular plate with the third-order plate 
theory. Vel and Batra [4] presented a three-dimensional exact solution for free and forced vibrations of simply 
supported functionally graded rectangular plates. Chen [5] investigated the nonlinear vibration of functionally 
graded plates with arbitrary initial stresses and the effects of the amplitude of vibration, initial condition and volume 
fraction on nonlinear vibration were studied. Serge [6] considered the problems of free vibration, buckling, and 
static deflections of functionally graded plates in which material properties vary through the thickness. Park and 
Kim [7] investigated the thermal post buckling and vibration of the functionally graded plate considering the 
nonlinear temperature-dependent material properties. Li et al. [10] presented the elasticity solutions for a 
transversely isotropic FGM circular plate subject to an axisymmetric transverse load in terms of the polynomials of 
even orders. Huang, et al. [12] presented an exact solution for FG rectangular thick plates resting on elastic 
foundation, based on the three-dimensional theory of elasticity, using infinite dual series of trigonometric functions 
combined with the state- space method. Wang, Y. et al. [13] applied direct displacement method to investigate the 
free axisymmetric vibration of transversely isotropic Circular plate. Malekzadeh [14] used DQ method to the free 
vibration analysis of thick FG rectangular plates supported on two-parameter elastic foundation. Hosseini-Hashemi 
[15] investigated buckling and free vibration behaviors of radially functionally graded circular and annular sector 
thin plates subjected to uniform in-plane compressive loads and resting on the Pasternak elastic foundation by using 
DQ method. Nie and Zhong [8-16] investigated the bending of 2D FG circular and annular plates, the vibration of 
the FGM circular plates, and FGM annular sectorial plates, and dynamic behavior of 2D directional FG annular 
plates based on the three-dimensional theory of elasticity using the state- space method combined with the DQM.  

In a survey of literature, the authors have found no work on static analysis of functionally graded annular plates 
resting on elastic foundation. Therefore, this paper deals with static behavior of FGMs annular plates resting on 
elastic foundation subject to an axisymmetric transverse load. The material properties are assumed to be graded in 
the thickness direction according to an exponential distribution. The formulations are based on the three-dimensional 
theory of elasticity. A semi-analytical method, which makes use of the state space method and the one-dimensional 
differential quadrature method, is employed in the static analysis. Numerical results for the static response of 
annular plates resting on two parameter elastic foundation are presented. 

2    The MATHEMATICAL FORMULATION 

Consider a transversely isotropic annular plate composed of FGMs with inner radius b and outer radius a, and 
thickness h, resting on two parameter elastic foundation with the Winkler stiffness of wk  and shear stiffness of pik  

(ir, ), subject to an axisymmetric transverse load (uniform pressure), defined in cylindrical coordinate system r, 
 , z with the origin o on the center of the bottom plane as shown in Fig. 1. The plate is assumed isotropic at any 
point in the volume with constant Poisson’s ratio ν, while the elastic stiffness components are continuous functions 
of the coordinates and varies exponentially along the thickness direction of the plate according to the following 
form, 
 

 
 
  0  e

z

h
ij ijc c  (1)

 

 
where 0

ijc  denotes the elastic constants of the material at the bottom plane of the plate,   denote the mixture index 

along the thickness direction. Suppose that the grading of the material, applied loads, and boundary conditions are 
axisymmetric so that the circumferential displacement u  and /    are identically zero. 

2.1 Governing equations 

The equilibrium equations of the axisymmetric problem, in the absence of body forces, are 
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Fig. 1 
Geometry of FGMs annular plate with clamped-clamped supports resting 
on two parameter elastic foundations. 

 
 
where , , ,r z rz     are the stress components. The strains are related to the displacements by 

 

r z, , ,z zr r r
rz

u uu u u

r r z z r   
  

    
   

 (3)
 

 
where ru  and zu  are the displacements components; , ,r z    and rz  are the strain components. For a 

homogeneous, orthotropic material, the linear constitutive equations are 
 

11 12 13r r zc c c       

12 11 13r zc c c             , 55rz rzc   

13 13 33z r zc c c       
(4)

 

 
where ijc  denotes the elastic constants of the material at any arbitrary plane of the plate according Eq. (1). By 

considering Eqs. (1)-(4) the governing differential equations at lower surface of the plate can be written in terms of 
displacements as follow: 
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(5)
 

2.2 The effect of the elastic foundation 

It is assumed that the bottom plane of the plate subjected to Winkler-Pasternak elastic foundation (see Fig. 1). The 
interactions between the plate and supporting foundation can be expressed as 
 

2
0 0 0z w z p zk u k u     (6)

 

 
where 0z  denotes the foundation reaction per unit area, 2  is Laplace differential operator. For an axisymmetric 

problem, and isotropic foundation, that is, pr p pk k k   , this model can be writhen as follow 

2
0 0

0 0 2

1z z
z w z p

u u
k u k

r rr


  
     

 (7)
 

2.3 Boundary conditions 

In this study, the following cases of edges conditions are used: 
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(a) For an annular plate with Clamped inner and outer edges at  rb and ra (c-c): 
 

at  , 0, 0r zr b u u   ;     at  , 0, 0r zr a u u    (8)
 

 
(b) For an annular plate with simply supported inner and clamped outer edges at r = b and r = a (s-c): 

 
at , 0, 0r zr b u   ;        at , 0, 0r zr a u u    (9)

 

 
(c) For an annular plate with free supported inner and clamped outer edges at r = b and r = a (f-c): 

 
at , 0, 0r rzr b     ;      at , 0, 0r zr a u u    

 
(10)

 

The boundary conditions at bottom and top surfaces of an annular plate are as follow. 
 

at bottom surface (z0)        00, ( )rz z z r     (11)
 

at top surface (zh)        0, ( )rz z p r    (12)
 

 
where 0 ( )z r   is interactions between bottom surface of the plate and foundation, ( )p r  is external load at top 

surface of the plate. 

3    SEMI-ANALYTICAL MEHTOD 

A semi-analytical approach combining the state space method (SSM) and the one dimensional differential 
quadrature method (DQM) to solve the governing equations are shown in Eq. (5) The semi-analytical approach 
employs the state space method in the gradient direction (z-direction) of circular plates and uses the one-dimensional 
differential quadrature rule in the radial direction to establish a linear eigenvalue system from which the 
displacements and the static response can be obtained. 

3.1 Formulation for the SSM 

By letting the displacements ,r zu u  and their first derivatives / , /r zu z u z     be the state variables, the governing 

equations shown in Eq. (5) can be written as the state space formulation. 
 

   1

2

D
I I

Dz

 
    

 (13)
 

 

where 
T

/ /r z r zI u u u z u z
      
 

, and 1D  and 2D  are given in Appendix A. By considering the following non-

dimensional parameters 
 

0
0

0
33

, , , , ijzr
R Z ij

cuuz r
Z R U U C

h a h h c
      (14)

 

 
The governing equations, shown in Eq. (5) can be written as 

 

   1

2 ( )

D
I I

z D R
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where 
T

/ / ,R Z R ZI U U U Z U Z
      
 

 1D and 2 ( )D R  are 2×4 matrices. The elements of matrix 1D  are 

constant and the elements of matrix 2 ( )D R  are functions of the variable R. In order to get the solution of Eq. (15) 

we need to apply the DQM approximation to the elements of matrix 2 ( )D R . 

3.2 Differential quadrature method (DQM) 

The differential quadrature method is a numerical solution technique for initial and/or boundary problems. The DQ 
method approximates the derivative of a function at any discrete point by a weighted linear summation of the 
functional values in the whole domain. According to this method, the qth derivative of a function f(r) can be 
approximated as [17] 
 

( )

1

( )
( ), 1,2,3,..., , 1,2,3,..., 1

i

q N
q

ij rjq r r
j

f r
A f i N q N

r 



   

   (16)
 

 
where N denotes the total number of discrete points, ir  are the discrete points, ( )jf r  are the function values at these 

points. From this equation, one can conclude that the important components of DQ approximation are weighting 
coefficients and the choice of sampling points. The weighting coefficients for the first-order derivatives in the r-
direction are determined as [17] 
 

 
   

, , 1,2,3,...,i
ik

i k k

M r
A i k i k N

r r M r
  


 

1,

, 1,2,3,...,
N

ii ij
j j i

A A i k i N
 

     
(17)

 

 
where M(r) is defined as 
 

1,

( ) ( )
N

i i j
j j i

M r r r
 

   
(18)

 

 
The weighting coefficients of the second-order derivative can be obtained from the following relationship 

 
2

ij ij ij ijB A A A                 (19)
 

 
In the present study, the grid points are taken non-uniformly spaced and are given by the following equation. 

 

   
11

1 cos , 1,2,...,
2 1i

i
r b a b i N

N

 
      

 (20)
 

3.3 Application of the DQM 

According to the differential quadrature rule, the partial derivatives with respect to R of the unknown functions 

,R ZU U  at arbitrary point iR  can be expressed as: 

1 1

,
i i

N N
R Z

R R ij Rj R R ij Zj
j j

U U
A U A U

R R 
 

 
 

    (21)
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where , , /Rj Zj RjU U U Z   and /ZjU Z   are the function values at the discrete point , ,j ij ijR A B  , are the weighting 

coefficients of the first derivative and second derivative, respectively. By substituting Eq. (21) into (15), the 
following state space equation at discrete points is then obtained 
 

   1

2

, 1,2,3,...,
( )

i

i i
i

D
I I i N

Z D R

 
  

   
 (22)

 

 

where the elements of matrix 2 ( )iD R  are constant. The elements of matrixes 1
iD  and 2 ( )iD R  are given in Appendix 

B. The boundary conditions shown in Eqs. (8)-(10) in discretized forms can be expressed as follows, respectively. 
 

1 1at , 0, 0 at 1, 0, 0R Z RN ZN
b

R U U R U U
a

       (23)
 

1 1at , 0, 0 at 1, 0, 0R Z RN ZN
b

R U R U U
a
       (24)

 

1 1at , 0, 0 at 1, 0, 0R RZ RN ZN
b

R R U U
a
        (25)

 

 
The boundary conditions at the top and bottom surfaces of the plate Eqs.(11) and (12) can be written in 

discretized forms at Z0, 
 

 

1
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


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
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

            
       

  



    (26)
 

 
where WK  and PK are the non dimensional elastic coefficients of the foundation. At Z1, 

 

1

0
13 0 0

33 331

0

, ( 1,2,3,..., )

N
Ri

ij Zj
j

N
Zi Ri

ij Rj
ij

U h
A U

Z a

U Uh P
C A U i N

Z a R e C C






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

      
   




 (27)

 

 
By implement the boundary conditions in Eq. (22), the solution to Eq. (15) can be written as: 

.( ) (0)iM Z
i iI Z e I  (28)
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     
   

 

(29)
 

 
From Eq. (28), we get 

   1 0iM
i iI e I  (30)

 

 

where iMe  is the global transfer matrix, and  1iI  are the values of the state variables at the top plane Z1. Eq. 30 

forms the global transfer relation of the state vectors at the bottom and top surfaces of the plates. Substituting Eqs. 
(26) and (27) and the corresponding boundary conditions shown in Eqs. (23)-(25) for different plates in to Eq. (30), 
the algebraic equations for static analysis can be obtained 

 
.G T Q  (31)

 

 
where G is a 4(N-2)×4(N-2) matrix, Q is a traction force vector and 

 

         0 0 1 1 , 2,3,..., 1
T

ii ii ii ii
R Z R ZT U U U U ii N     

 (32)
 

 
By solving Eq. 31, all state parameters at Z0, Z1 are obtained. We can use the Eqs. (28) and (4) to calculate 

the displacements and the stresses in FGMs annular plates. 

4    NUMERICAL RESULTS 

For numerical illustration, an annular plate (a1.0 m, b0.1 m, h0.04 a) with clamped-clamped support conditions, 
on linear elastic foundations is considered. The material properties are assumed as the exponential distributions in 
the thickness of the plate shown in Eq. (1). The boundary conditions on the top and the bottom surfaces of the plate 
are 

 

          0at 0, 0, , at , 0, 1 GParz z z rz zZ Z h  (33)
 

 
Effects of the material property graded index, the thickness to radius ratio, foundation stiffness, and the edge 

supports effect on bending behavior of a FG annular plate will be extensively discussed in the following text. The 
numerical results are shown in Figs. 2-7. 

4.1 Convergence of the DQ method and validation 

Since analytical and numerical solutions do not exist for the bending response of FGMs circular plates resting on 
elastic foundations in literature; hence, to show the effect of the number of the selected discrete points, convergence 
of the DQ method is conducted firstly, and is used as an evaluation criterion. The non-dimensional transverse 
deflection ( 0ZU ) vs. number of discrete points (N) at a point located at r/a0.55 is depicted in Fig. (2). To achieve 
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the numerical data in Fig. 2 01,  70 GPa,  0.3,  1W PE v K K      and h/a0.04 are considered. It can be seen 

from Fig.2.that the non-dimensional deflection of the plate at the midpoint of radius approaches to a specific value 
with an increase in the number of the discrete points. Non-equally spaced discrete points are adopted and the number 
of discrete points in the radial direction is eleven. Fig.2. confirms that the convergence of this method is great. 

For validation, a comparison is done between the present solution and the available results in the literature. For 
this purpose, the results derived for a solid circular plate with clamped edge support and Kw0, Kp0, h/a0.1, 

0 380 GPa,  1.E = =  The variation of the radial stress component r  (GPa) versus z/h at a point located at r/a0.5, 

for this plate are illustrated in Fig.3 and is compared with the results of Ref. [9]. From Fig. 3 it can be found that the 
present results are in good agreement with the available results in Ref. [9]. 

4.2 The effect of material property graded index 

In this stage, effects of the material property graded index on bending behavior of the plate (clamped-clamped 
support) are considered. The through-thickness distributions of displacements and stresses of the plate 

0( 70 GPa,  0.3)E v   on elastic foundation are plotted in Fig. 4. It is seen from Fig. 4. that displacements and 

stresses distribution through the thickness of the plate are nonlinear, and all displacements decrease, and all stresses 
increase gradually as λ increase. Decrease of displacements; indicate that increasing the gradient index will certainly 
enhance the deformation rigidity of the plate. The neutral surface of FGMs plate is not at the mid-surface but 
depends on the through-thickness of Young’s moduli. 
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Fig. 2 
Non-dimentional deflections of the plate at R=0.55 for different 
numbers of the discrete points 
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Fig. 3 
Comparison of the radial stress component  (GPa)r  versus z/h 
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Fig. 4 
Effect of the material property graded index on variation of displacement and stress components versus z/h at a point 
located at (r/a = 0.55) for an annular plate resting on elastic foundation (Kw=1, Kp=1) with h/a0.04: a) radial displacement 
component (UR), (b) transverse displacement component (UZ), (c) radial stress component r (GPa), (d) tangential stress 

component  (GPa), (e) transverse normal stress component Z (GPa), (f) transverse shear stress component rz (GPa).  

4.3. The effect of thickness to radius ratio 

The effects of the thickness to radius ratio on static behavior of the plate are plotted in Fig. 5. It is seen from Fig. 
5 that , ,R Z rU U  and   decrease, and stresses ,Z rz   increase gradually as h/a ratio increase. The distribution of 

transverse normal and shear stresses through the thickness of the plate converges to the horizontal lines with 
decreasing the thickness of the plate. It is obvious, that increasing the h/a ratio will enhance the deformation rigidity 
of the plate. 
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Fig. 5 
Effect of the thickness per radius ratio on variation of displacement and stress components versus z/h at a point located at 
(r/a0.55) for an annular plate resting on elastic foundation (Kw=1, Kp=1) with λ = 1: a) radial displacement component 
(UR), (b) transverse displacement component (UZ), (c) radial stress component r (GPa), (d) tangential stress 

component  (GPa), (e) transverse normal stress component Z (GPa), (f) transverse shear stress component rz (GPa).  
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4.4. The effect of foundation stiffnesses 

Effects of the foundation stiffness for the plate, and the metal rich plane attached to the elastic foundation on 
physical quantities are plotted in Fig. 6. It can be found from Fig. 6, that , ,R Z rU U  and   decrease, and stresses 

,Z rz   increase through the thickness direction of the circular FG plate with increasing Kw, Kp. The effect of Kw on 

physical quantities of the plate more than the effect of Kp on the same physical quantities. 
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Fig. 6 
Effect of the elastic foundation coefficients on variation of displacement and stress components versus z/h at a point 
located at (r/a = 0.55) for an annular plate resting on elastic foundation with λ = 1, h/a0.04 : a) radial displacement 
component (UR), (b) transverse displacement component (UZ), (c) radial stress component r (GPa), (d) tangential stress 

component  (GPa), (e) transverse normal stress component Z (GPa), (f) transverse shear stress component rz (GPa).  
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4.5. The effect of edges supports 

Effect of the edges supports on variation of physical quantities through thickness for the plates 

0( 70 GPa,  380 GPa)hE E  , with different supports are plotted in Fig. 7.  
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Fig. 7 
Effect of supports on variation of displacement and stress components versus z/h at a point located at (r/a = 0.55) for 
annular plates resting on elastic foundation with λ = Ln  0/hE E h/a = 0.04, (metal rich plane on the foundation) : a) radial 

displacement component (UR), (b) transverse displacement component (UZ), (c) radial stress component r (GPa), (d) 

tangential stress component   (GPa), (e) transverse normal stress component Z (GPa), (f) transverse shear stress 

component rz (GPa)  
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It is seen from Fig. 7 that maximum variation of physical quantities through thickness of the plates at a desired 
location occurs in free-clamped annular plates. Variation scheme of stresses through thickness for the free-clamped 
annular plate resting on linear elastic foundations is different with variation scheme of these quantities to other 
plates. 

  
5    CONCLUSIONS 

Axisymmetric bending of functionally graded annular plates resting on Winkler-Pasternak elastic foundations with 
various boundary conditions is investigated in this paper using semi-analytical approach (SSM-DQM). The 
analytical solution in the graded direction can be acquired using the state space method and approximate solution in 
the radial direction can be obtained using the one-dimensional differential quadrature method. By using this method 
some results are derived, with the most important conclusions that, (1)-the numerical results have specified that the 
material in homogeneity has an important effect on the bending behavior of the plate on elastic foundation. (2)- 
displacements and stresses varying nonlinear through thickness of the plate.(3)- the neutral surface of the FGMs 
plate is not at the mid-surface but depends on the through-thickness variation of Young’s moduli. (4)-increasing the 
gradient index will certainly enhance the deformation rigidity of the plate. (5)-with decreasing the thickness of the 
FGMs plate, the rigidity of the plate decreases, which is the characteristic of thin plate. (6)-the effect of Kw on 
displacement and stress components of the plate is more than the effect of Kp on the same physical quantities. (7)-in 
the presence of elastic field the transverse normal stress through thickness of the plate varies gradually from 
specified value at bottomed surface (foundation interactions) to another value (external load) at top surface. (8)-
maximum variation of physical quantities through thickness of the plates occurs to free-clamped annular plate. (9)- 
Variation scheme of stresses through thickness for the free-clamped annular plate is different with variation scheme 
of these quantities to the plate with other supports. 

6    APPENDIX 

Appendix A 

Elements of the matrices 1 2,D D  

The matrixes 1 2,D D are given as 
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Appendix B 

Elements of the matrices 1 2, ( )i
iD D R  
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