
 

© 2014 IAU, Arak Branch. All rights reserved.                                                                                                    

 

Journal of Solid Mechanics Vol. 6, No. 3 (2014) pp. 289-298 

Vibration Analysis of a Nonlinear Beam Under Axial Force by 
Homotopy Analysis Method 

A.A. Motallebi1,*, M. Poorjamshidian1, J. Sheikhi2 
1Department of Mechanical Engineering, Imam Hossein University, Tehran, Iran 

2Civil Engineering, Imam Hossein University, Tehran, Iran 

Received 10 April 2014; accepted 13 June 2014 

 ABSTRACT 

 In this paper, Homotopy Analysis Method is used to analyze free non-linear vibrations of a 
beam simply supported by pinned ends under axial force. Mid-plane stretching is also 
considered for dynamic equation extracted for the beam. Galerkin decomposition 
technique is used to transform a partial dimensionless nonlinear differential equation of 
dynamic motion into an ordinary nonlinear differential equation. Then Homotopy Analysis 
Method is employed to obtain an analytic expression for nonlinear natural frequencies. 
Effects of design parameters including axial force and slenderness ratio on nonlinear 
natural frequencies are studied. Moreover, effects of factors of nonlinear terms on the 
general shape of the time response are taken into account. Combined Homotopy-Pade 
technique is used to reduce the number of approximation orders without affecting final 
accuracy. The results indicate increased speed of convergence as Homotopy and Pade are 
combined. The obtained analytic expressions can be used for a vast range of data. 
Comparison of the results with numerical data indicated a good conformance. Having 
compared accuracy of this method with that of the Homotopy perturbation analytic 
method, it is concluded that Homotopy Analysis Method is a very strong method for 
analytic and vibration analysis of structures. 

                                                   © 2014 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 EAMS, which have a variety of applications in different sizes from micro/nano size structures, such as micro 
oscillators, to macro size airplane wings, flexible satellites and long span bridges, are among the most important 

engineering structures. Large amplitude vibrations usually lead to material fatigue and structure breakdown. These 
effects are more important on natural frequencies of structures [1]. Large amplitude vibration can lead to nonlinear 
effects in these systems. Nonlinear sources may be geometrical, inertial or material. Geometrical nonlinearity may 
stem from nonlinear stretching or large curvatures. Nonlinear effects are created by concentrated or distributed 
masses. Material nonlinearity breaks out when stress is a nonlinear function of strain [2]. Euler-Bernoulli's theorem 
of beam considers that cross-sectional planes which are prior to deformation, perpendicular to the main axis remain 
constantly perpendicular to the main axis and undergo no strain over the plane [3]. In effect it is assumed that effects 
of transverse shear deformation and transverse normal strains are negligible so they are not taken into account [4]. 
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Pillai- Rao studied the problem of free large amplitude vibrations in a simply supported uniform beam and obtained 
frequency response of the system through some methods including elliptic functions, harmonic balance and simple 
harmonic oscillations [5]. Foda employed multiple time-scale (MTS) method in order to analyze nonlinear 
oscillations of a beam with pinned ends in which effect of shear deformation and rotary inertia are considered [6]. 
Ramezani and et al utilized a uniform method for the same problem with doubly clamped boundary conditions and 
concluded that when beams theorem is used to study micro- and nano-sized electromechanical structures, effects of 
shear deformation and rotary inertia shall be taken into consideration for a precise dynamic analysis [7]. Generally it 
is very difficult to find a precise solution for nonlinear oscillations of beams. Hence, approximate analytic and 
numerical methods are used. Although numerical methods have some advantages, analytic solutions seem to be 
more attractive for parametric study of the problem and investigation of the problem physics. Analytic solutions also 
present a reference framework for validation and inspection of numerical methods. Even though it is not easy to use 
an analytic method for analysis of nonlinear oscillations of the beams, there can be certain analytic methods such as 
perturbation techniques for this problem. On the whole, analytic methods have their own constraints. For example, 
perturbation method, which enjoys the widest application among from analytic methods, is limited to weak non-
linearity and implemented on the basis of a single small parameter in the equation. Most of the nonlinear problems, 
particularly those with strong nonlinearity, lack a small parameter. Hence, Liao proposed the HAM for analytic 
solution of the complex nonlinear problems [8]. In this method , there is no need for a small parameter in the 
problem as a result of which researchers have resorted to this method for solving different problems and have also 
obtained acceptable responses. Seddighi and et al employed this method to arrive at precise resolution of vibrations 
of a beam under strong nonlinear damping and reached an analytic statement for it in the time range [9]. Hosseini 
and et al introduced a precise analytic solution for free nonlinear vibrations of a durable oscillator with inertia and 
third-order static nonlinearities [10]. Works of different authors, mentioned here, indicate this method has been able 
to overcome limitations and constraints of the traditional perturbation methods and predict nonlinear systems' 
behavior precisely.  

Hence, this paper has considered mid-plane stretching and utilized HAM for analysis of free nonlinear vibrations 
of a beam with pinned ends. To do so, first partial differential equation of the problem is transformed into a typical 
differential equation via Galerkin decomposition technique.  Then HAM is used to solve the problem, the response 
of which is compared with that of the fourth-order Runge–Kutta numerical method. After that effect of design 
factors and nonlinear terms' coefficients on time response is studied. Finally HPM is utilized to compare precision of 
the said method with that of the other analytic methods. To increase the speed of convergence, this method is 
combined with Pade mathematical method. 

2    PROBLEM FORMULATION     

Partial nonlinear differential equation of the beam will be as follows if mid-plane stretching is not ignored [11]. 
 

 
where E , elasticity module of the beam material, I , second moment of the beam cross-section with relation to 

bending axis, 


w ,beam transverse deformation , M , beam linear density , 

t , time, A, beam transverse cross-section, 

No, axial force applied to beam and L beam length. It is assumed that beam starts to oscillate with a natural 
frequency and dimensionless variables t, x ,w and t are introduced which are defined in Eqs. (2) to (4). Eq.(1) can be 
rewritten as dimensionless Eq.(6). 
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where in the above equation 
 

 
Now the solution of the Eq. (6) can be assumed as: 
 

 
To solve Eq.( 6) , ( )x  is assumed to be the dimensionless vibration model of the beam. Considering the simply 

supported boundary conditions, βn is taken as follow: 
 

 
As a result , ( )x can be expressed as Eq.(10).  

 

 
In accordance with Galerkin decomposition technique , Eq.(8) is placed in Eq.(6) and the remainder is integrated 

with ( )x over the entire domain of the problem, as a result of which a typical differential equation can be achieved 

as follows: 
 

 
In Eqs. (13) and (15) , (Ai)s ,(1≤i≤4) can be achieved as follow: 
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In the above-mentioned formulae, the sign of  Prim  indicates a differentiation with relation to the independent 
variable x . 

3    HOMOTOPY ANALYTIC METHOD     
3.1 Original idea 

Homotopy analysis is a general analytic method for solving nonlinear differential equations [12, 13]. This method 
transforms a nonlinear differential equation into indefinite number of linear differential equations with auxiliary 
parameter P varying between 0 and 1 [12]. As the value of P increases from 0 to 1, solution of the problem moves 
from initial conjecture to precise solution. In order to show initial idea of  Homotopy, a nonlinear differential 
equation is considered which follows:  
 

 
where N, a nonlinear differential operator and  q(t), an unknown function of variable t. Homotopy is created as 
follow: 
 

 
where φ, h and H(t) are a function of t, p, auxiliary parameter and auxiliary non-zero function respectively. 
Auxiliary parameter and auxiliary function set convergence area of the solution. Parameter L indicates a linear 
auxiliary operator. As value of P increases from Zero to One, φ(t,0) moves from initial approximation to precise 

solution. In other words, φ(t,0)=q0(t) which is solution of this Homotopy “ H (φ,p,h,H(t))│p=0=0” moves to 

φ(t,1)=q(t) which is solution of this Homotopy “ H (φ,p,h,H(t))│p=1=0”. Application of  H (φ,p,h,H(t))=0 will bring 
about Zero transformation as follow: 
 

 
Considering boundary conditions as follow: 

 

 
Functions φ(t,p) and ω(p) could be extracted as exponent series of P by means of Taylor theory,  
 

 
where qm(t) and ωm are M-order transformation. Differentiation of zero-order transformation equation towards P and 
setting values of P on zero will yield first-order transformation equation (m=1) as follow, which is first-order 
approximation of q(t). 
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Approximations beyond the order of solution could be reached through computation of m-order transformation 

equation (m>1) that is expressed as follow[14,15]: 
 

 
where qm-1, ωm-1 and Rm(qm-1,ωm-1) are defined as follow: 
 

 
Considering boundary conditions as follow: 
 

3.2 Application of the HAM 

Consider the problem equation which transforms as follow when variable τ = ωt : 
 

 
In order to solve this equation through Homotopy, the first conjecture of the problem solution , which satisfies 

initial boundary conditions ,can be stated as follow: 
 

 
Linear operator can be expressed as follow: 

 
where L[a0cos(τ)]=0 and nonlinear operator can be considered as follow: 
 

 
Having assumed auxiliary function H(τ)=1, first-order transformation equation can be achieved as follow with 
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Since final response is achieved by algebraic summation of different steps, and in order for the expansion to be 
uniform and have identical terms, auxiliary function H is considered as a unit and then coefficients of the term cos(τ) 
are set to zero in order to  prevent emergence of big terms in time response. As a result 
 

 
That conforms well to what Ahmadian and et al [1] have achieved. Similarly considering the conditions of Eq. 

(24), response of the first-order transformation equation will be as follows:  
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Values of q2(τ), q3(τ) and …. could be gained similarly and equivalent terms for nonlinear natural frequencies 

could be more precise with higher approximations. 

3.3 Homotopy-pade technique 

Pade approximation is the best approximation of function for the same -order fractional functions [14, 
15].Sometimes Pade method yields a better approximation of function compared to Taylor series. It is also possible 
to use Pade method in case Taylor series fail to converge. In order to calculate a Pade approximation of [m, n] type, 
let's assume f as an expanded function of exponential series as follow:  
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where coefficient of Am,k(t) and Bm,k(t) are concluded from (m, n) order approximations of q(t). It should be noted 
that making use of Homotopy-Pade technique helps to reduce the number of required approximations for a precise 
solution [15].  Hence, approximation of the [1,1] order of Homotopy-Pade could be written as follow for functions 
q(t) and ω. 
 

4    RESULTS STUDIED 

In order to show the accuracy and precision of the method in question, a numerical example is given for a beam with 
pinned ends. However, it should be noted that axes are dimensionless in all the charts. Fig. 1 indicates system 
response over the time range. As it is evident from this picture, results obtained from HAM conform well to those of 
the fourth-order Runge–Kutta method which is a highly accurate method. In order to compare the level of accuracy 
of this method with that of the other analytic methods, time- response obtained from HAM and HPM are indicated 
in Fig. 2  and the difference between these two methods is presented through numerical solution. It is clear that both 
methods have almost the same accuracy over small ranges, but as the range increases, accuracy of the HAM exceeds 
that of the HPM.  
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Fig. 1  
Time-response curve of a beam with pinned ends; 
comparison of numerical solution and analytic solution of 
fourth-order approximation Homotopy. 
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Fig. 2 
Time-response curve of a beam with pinned ends; comparison of HAM and HPM solutions, and their rate of deviation from 
numerical solution. 
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Fig. 3 shows time-response chart of the beam in three different states in order to reflect the difference between 
linear and nonlinear assumption and also effect of ignoring fifth-order nonlinear term in equations of the beam 
oscillations. In Fig. 4 coefficient of third-order nonlinear term is changed, while other parameters are constant, and 
time-response curve is drawn for three different values. Fig. 5 shows the same process for changing coefficient of 
the fifth-order nonlinear term.  
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Fig. 3  
Time-response curve of a beam with pinned ends; comparison of 
state a. nonlinear assumption, b. elimination of fifth-order 
nonlinear term, c. linear assumption. 
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Fig. 4 
Time-response curve of a beam with pinned ends; comparison of 
Homotopy analytic solution for three different values of third-
order term, 3.5, 5.5 and 7.5 respectively. 
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Fig. 5 
Time-response curve of a beam with pinned ends; comparison of 
Homotopy analytic solution for three different values of fifth-
order term, 0.8, 2.8 and 4.8 respectively. 

 
 
In Fig.6, the number of approximation times is reduced via calculation of [1,1] order Homotopy-pade 

approximation that is highly accurate and conforms well to numerical solution similar to values in Fig. 1 (which are 
summation of the orders above HAM). Fig. 7 shows the curve of nonlinear frequencies based on auxiliary parameter 
h. As it is clear approximation of the fourth-order Homotopy and [1, 1] order Homotopy-pade conform over a larger 
range. In Fig. 8 analytic response of HAM is obtained for different values of the auxiliary parameter h in a given 
point and then compared with numerical solution of the same point. It shows that analytic solution for h= -1 
conforms completely to numerical solution. Figs. 9 and 10 indicate effect of the initial conditions on nonlinear 
natural frequencies in two states a. different axial force b. different slenderness ratio. It can be noticed that as initial 
displacement increases, nonlinear natural frequency rises which is indicative of good conformance between linear 
and nonlinear natural frequencies under small deformations. Noteworthy is that when stretching force or slenderness 
ratio increases, period of oscillation decreases and frequency increases. It should be noted that arrows on the figure 
indicate direction of the increase of axial force or slenderness ratio. 
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Fig. 6  
Time-response curve using [1, 1] order Homotopy-pade 
approximation and its conformance with numerical solution. 
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Fig. 7 
Nonlinear frequencies curve based on auxiliary parameter h. 
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Fig. 8  
Curve of the value of function in a point with Homotopy for 
different values of h compared to numerical solution. 
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Fig. 9 
Nonlinear natural frequencies curve based on initial displacement 
in different axial forces. Arrow shows direction of force increase 
linearly. 

  

1 2 3 4 5 6
10

20

30

40

50

60

w

 

 
 
 
 
 
 
 
Fig. 10 
Nonlinear natural frequencies curve based on initial displacement 
in different slenderness ratio. Arrow shows direction of 
slenderness ratio increase linearly. 
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5    CONCLUSIONS 

In this study, mid-plane stretching was considered in Homotopy analytic method technique which was utilized in 
order to find nonlinear vibration behavior of a beam with pinned ends. Results are indicative of high accuracy 
compared to numerical solutions as well as other methods used in the previous works. Homotopy-Pade technique 
leads to reduced, number of approximations, while calculations accuracy remains similar to that of the upper orders 
of homotopy. In addition, effects of variations of the axial pre-stretching force and slenderness ratio on beam 
behavior were studied parametrically. It was noticed that as slenderness ratio and pre-stretching force of the beam 
increase, nonlinear natural frequencies of the beam increase too. Value of function was calculated for a certain 
amount based on the auxiliary parameter which concluded that for h= -1, function will conform fully to numerical 
value. As coefficient of the fifth-order nonlinear term increases, period of the time-response increases. However, 
increase of third-order nonlinear term coefficient leads to reduced period. It can be also concluded that compared to 
other current methods, Homotopy analytic method is a highly accurate and powerful method for solving nonlinear 
differential equations which makes it a good choice in solving a variety of engineering problems. 

REFERENCES 

[1] Ahmadian  M.T., Mojahedi M., 2009, Free vibration analysis of a nonlinear beam using homotopy and modified 
lindstedt-poincare methods, Journal of Solid Mechanics 2(1): 29-36. 

[2] Nayfeh A.H., Mook D.T., 1979, Nonlinear Oscillations, New York, Wiley, First Edition. 
[3] Shames I.H., Dym C.L., 1985, Energy and Finite Element Methods in Structural Mechanics, New York, McGraw-Hill, 

First Edition. 
[4] Malatkar P., 2003, Nonlinear Vibrations of Cantilever Beams and Plates, Virginia, Virginia Polytechnic Institute , PhD 

thesis. 
[5] Pillai S.R.R., Rao B.N., 1992, On nonlinear free vibrations of simply supported uniform beams, Sound and Vibration 

159(3): 527-531. 
[6] Foda M.A., 1999, Influence of shear deformation and rotary inertia on nonlinear free vibration of a beam with pinned 

Ends, Computers and Structures 71(1): 663-670. 
[7] Ramezani A., Alasty A., Akbari J., 2006, Effects of  rotary inertia and shear deformation on nonlinear free vibration of 

microbeams, ASME Journal of Vibration and Acoustics 128(5): 611-615. 
[8] Liao S.J., 1995, An approximate solution technique which does not depend upon small parameters: a special example, 

International Journal of Nonlinear Mechanics 30(1): 371-380. 
[9] Sedighi.H.M., Shirazi.K.H., 2012, An analytic solution of transversal oscillation of quintic non-linear beam with 

homotopy analysis method, Non-Linear Mechanics 47: 777-784. 
[10] Hoseinia S.H., Pirbodaghi T., 2008, Nonlinear free vibration of conservative oscillators with inertia and static type cubic 

nonlinearities using homotopy analysis method, Sound and Vibration 316: 263-273.  
[11] Samir A., Emam A., 2002, Theoretical and Experimental Study of Nonlinear Dynamics of Buckled Beams, Virginia, 

Virginia Polytechnic Institute, PhD thesis. 
[12] Liao S.J., 1992, On the Proposed Homotopy Analysis Techniques for Nonlinear Problems and its Application , Shanghai, 

Jiao Tong University, PhD thesis. 
[13] He J.H., 2000, A coupling method of a homotopy technique and a perturbation technique for non-linear problems, 

International Journal of Non-Linear Mechanics 35: 37-43. 
[14] Saff E.B., Varga R.S., 1977, Pade´ and Rational Approximation, Academic Press, New York. 
[15] Wuytack L., 1979, Pade´ Approximation and its Applications, Lecture Notes in Mathematics, Springer, Berlin. 
[16] Liao S.J., Cheung K.F., 2003, Homotopy analysis of nonlinear progressive waves in deep water, Journal of Engineering 

Mathematics 45(1): 105-116. 


