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 ABSTRACT 

 Atomic force microscope (AFM) has been developed at first for topography 

imaging; in addition, it is used for characterization of mechanical properties. 

Most researches have been primarily focused on rectangular single-beam 

probes to make vibration models simple. Recently, the U-shaped AFM probe is 

employed to determine sample elastic properties and has been developed to 

heat samples locally. In this study, a simplified analytical model of these U-

shaped AFM is described and three beams have been used for modelling this 

probe. This model contains two beams are clamped at one end and connected 

with a perpendicular cross beam at the other end. The beams are supposed only 

in bending flexure and twisting, but their coupling allows a wide variety of 

possible dynamic behaviors. In the present research, the natural frequency and 

sensitivity of flexural and torsional vibration for AFM probes have been 

analyzed considering influence of scale effect. For this purpose, governing 

equations of dynamic behavior of U-shaped AFM probe are extracted based on 

Eringen's theory using Euler–Bernoulli beam theory and an analytical method 

is employed to solve these equations. The results in this paper have been 

extracted for different values of nonlocal parameters; it is shown that for a 

special case, there is a good agreement between reported results in available 

references and our results. The obtained results show that the frequencies of U-

shaped AFM decrease with increasing the nonlocal parameter. 

                                                  © 2018 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 OST recently, many researchers have been interested increasingly in scanning and manipulating structures at 

nanometer scale. One of the strongly and useful tools in nano-scale technologies is atomic force microscopy 

(AFM), with applications from surface specifications in material science to the study of living biological systems. 

After Binnig et al. from IBM, which firstly presented the contact mode AFM in 1986, many AFM systems, have 

been presented [1-3]. Contact resonance in an atomic force microscope (AFM) has been used to quantify the elastic 

and viscoelastic properties for a variety of materials such as polymers, biological materials, ceramics, and metals 

with spatial resolution about tens of nanometers. In all these types of samples, a piezoelectric scanner scans a pointy 

probe at the end of a cantilever interacting locally with the sample. The dynamic AFM is utilized by moving the 
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probe somewhat away from the sample surface and stumbling the probe at or near its topographical information of 

the natural resonance frequency of the sample and information on the tip–sample force action and reaction can be 

extracted by measuring the switch from its natural resonance frequency due to sample interactions [4-7]. It was 

shown that the flexural vibrations of micro cantilever probes were strongly influenced by the contact of the tip and 

the sample. This contact has been effectively “stiffened” the boundary condition for the beam and have increased the 

resonant frequencies. Measured shifts of the resonances were then modeled to determine the contact stiffness. In 

addition, the use of reference samples with known mechanical properties allowed these contact resonance AFM 

(CR-AFM);’approaches to produce more quantitative values within the limits of the beam vibration model 

(typically, an Euler-Bernoulli approach) and the tip-sample contact model [8-10]. Calculation of viscoelastic 

properties of polymers at the nano-scale was attracted attentions when a new type of AFM probe was developed in 

the late of 1990s. U-shaped AFM probes allow the probe tip to be heated locally such that the changes in the 

thermo-mechanical behavior of the sample can be modified or monitored. These probes have been used for specific 

applications such as storing thermo-mechanical data, growing carbon nanotubes by providing the required 

temperature and nano-scale manufacturing. Rabe et al. [11] studied the flexural vibration domain and the frequency 

of free and surface-coupled AFM cantilevers. Turner et al. [12] studied high-frequency answers of AFM cantilevers 

considering damping actions between the tip and the sample. Turner and Wiehn [13] centralized the sensitivity of 

vibration modes of AFM cantilevers to surface stiffness in both torsional and flexural vibrations. For simplicity, in 

all the above articles, it is supposed that the probe is equidistant to the sample surface, whilst in AFM joinery, a 

tilted cantilever is utilized which causes more complicated analysis. Chang[14] was successful in analysis of the 

sensitivity for the flexural vibration modes of the AFM cantilever. Considering the angle between the cantilever and 

the surface, inclusive of vertical and sidewise reaction forces, however, the tip–sample damping confined to the end 

of the beam has been ignored in his analysis. Damping in the tip-sample contact for the most elastic samples was not 

considerable and was usually ignored but this work found applications on multiple nano-scale materials similar to 

composite materials, glass [9, 15] dielectric materials, such as fluorosilicate glass (FSG)[16]ferroelectric 

ceramics[17-19] biological materials[18, 20] ferromagnetic materials, similar to yttrium iron garnet (YIG)[21]ultra-

thin bort-like carbon coatings[22]and of course metals[23, 24]. Rabe et al. [8] have considered the damping effects 

using the elastic beam model, and comparing the results with solutions of the point-mass model. Besides the tip–

sample damping, the damping of the probes is also very important. Two very different effects cause the damping of 

the cantilevers: system damping caused by internal casualties in the cantilever and by the surrounding air that affects 

all length elements of the beam in the same way. Mahdavi et al.[25] Have studied the high-frequency respond of 

AFM cantilevers using the elastic beam model and three different lumped models considering the damping of the 

cantilever. With lumped models, it is practical to model this inclusion tip–sample damping and derive the 

investigated solution, which is not simply practicable for the presented model. Barretta and Sciarra investigated 

Analogies between nonlocal and local Bernoulli–Euler Nano beams[26]. Romano et al. [27] showed that the 

nonlocal integral elastic law is equivalent to a problem composed of constitutive differential and boundary 

conditions. Also, Romano and Barretta[28] discussed the trueness of the proposed methodology for Eringen’s 

nonlocal integral model for a bending Euler-Bernoulli and Timoshenko beams in details. Demir and Civalek studied 

on torsional and longitudinal frequency and wave response of microtubules based on the nonlocal continuum and 

nonlocal discrete models[29]. Gao introduced a new Timoshenko beam model incorporating microstructure and 

surface energy effects[30]. Civalek et al. studied Static analysis of single walled carbon nanotubes (SWCNT) based 

on Eringen’s nonlocal elasticity theory[31]. Abbasi and Karami Mohammadi presented a new model for 

investigating the flexural vibration of an atomic force microscope cantilever[32]. In another investigations, Akgöz 

and  Civalek studied on a new trigonometric beam model for buckling of strain gradient micro beams[33]. Also they 

investigated Vibration analysis of micro-scaled sector shaped graphene surrounded by an elastic matrix[34]. Lee and 

Chang presented Coupled lateral bending–torsional vibration sensitivity of atomic force microscope cantilever[35]. 

Muraoka[36] has proposed concentrated-mass  cantilever to increase the sensitivity of the resonance frequency 

exceptionally for contacted with inflexible samples. He used a commercially available standard cantilever and a 

tungsten particle stickily attached to the free end. The cantilever boundary condition has been studied in many 

researches. Challamek et al. studied bending analysis of small scale bars based on some simplified nonlocal beam 

theory [37]. Moreover, Lim li et al. studied the nonlocal stress effect on a nano-cantilever considering axial 

torsion[38]. In addition, there have been studies based on clamp-free (cantilever) boundary conditions. Moreover, 

Narendar analyzed flatwise bending free vibration of a nanotube considering transverse shear deformation and 

rotating inertia on Eringen’s nonlocal theory [39]. Recently, U-shaped AFM probes have been expanded to allow 

local heating of samples. The resonances of these probes are much more complex. Rezaei and Turner [40] studied a 

simplified analytical model of U-shaped probes.They used a three beam model analysis. Three-beam model analysis 

comprises two beams fixed at one end and attached with a vertical crossbeam at the other end. The beams are 
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supposed only to be bent in flexure and to be deformed, but their connection allows an extensive domain of doable 

dynamic conductance. Issues are expanded for ten primary modes and the mode shapes are shown to have made a 

difficult connection between the flexure and deform of the beams, especially for the higher modes. The results of the 

all resonant frequencies are in good agreement with finite element results for the three probe designs and two values 

of thickness examined [40]. 

In this article, the out-of-plane vibrations of a U-shaped atomic force microscope probe considering the effect of 

nonlocal are modeled analytically. The simplified approach assumes three beams that are allowed only to be bent in 

flexure and to twist no lateral motion is considered for simplicity. The model allows resonances and mode shapes to 

be determined with respect to geometry and material properties very efficiently so that the overall response can be 

more clearly understood. The results for this model, in terms of the resonant frequencies and mode shapes, are 

compared with results without considering the nonlocal effect. It is anticipated that this work will expand the 

capabilities of U-shaped atomic force microscope probes, so that, they can be used eventually for quantitative 

measurements of material properties using a contact resonance approach during heating. 

2    THREE-BEAM MODEL (TBM) 

The analytical model of a U-shaped probe is based on the Euler-Bernoulli beam theory. Parallel “legs” with the 

same length are assumed to be connected with a crossbeam. In this model, two legs are clamped at one end, and the 

cross beam is coupled to them at the opposite end. In reality, the U-shaped probes are fabricated from a single 

silicon wafer with uniform material properties such that the U-shaped probe is more like a plate. However, for the 

geometries typical for these probes, appropriate assumptions of the beams are satisfied [41]. 

3    NONLOCAL BEAM MOEL 

Many researchers have focused on vibration analysis of the nanoscale structures using the nonlocal theory [42-51]. 

Nonlocal elasticity theory was firstly introduced by Eringen [52], and the stress field at a point  x  in an elastic 

continuum depends not only on the strain field at the same point but also on strains at all other points of the body. 

Therefore, the nonlocal stress tensor at the point x  is defined by [52] 

 

       ,
V

x K x x T x dV x      (1) 

 

     :T x C x x  (2) 

 

where
 

( )T x   is the classical macroscopic stress tensor at the point, x, and ( - , )K x x  is the nonlocal modulus or 

debilitation function combining into constitutive equations the nonlocal effects at the reference point x  produced by 

local strain at the source x  ,  C x is the fourth-order elasticity tensor,  x  is the strain tensor.   Is the material 

constant which is characterized by 2

0( )e a  , where, 
0e is a constant related to each material, a is the internal 

characteristic length. It is hard to solve the elasticity equations using the integral constitutive relation. Therefore, 

Eringen [36] determines a simplified constitutive relation in a differential form [36]: 

 

 2 2

01 , ( )T e a      (3) 

 

where  is the Laplacian operator. For a beam type structure, the nonlocal function can be disregarded along the 

thickness. So, for a homogeneous and isotropic beam, the fundamental nonlocal equation, according the Euler–

Bernoulli theory, can be obtain as the following form [36]: 
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where E is the modulus of elasticity and 0 0e a   is nonlocal parameter. Neglecting the rotary of inertia, the equation 

of motion for the free vibrating Euler–Bernoulli beam has the following form [37, 38] 

 
2

2

S w
A

x t


 


 
 (5) 

 

where  is the mass density of the beam, A is the  area of the cross-section, w is the transverse deflection of the 

beam, t denotes the time,  s is the shear force and the moment equilibrium condition produces  the following 

equation [53, 54]. 

 

M
S

x





 (6) 

 

where M is the resultant bending moment which is defined by 

 

( )
A

M z x dA   (7) 

 

The axial strain   for the Euler–Bernoulli beam is given by 

 
2

2
( )

w
x z

x



 


 (8) 

 

The bending moment for the nonlocal model, from relations (4), (7) and (8), takes the following form 

 

 
2 2

2

0 2 2

M w
M e a EI

x x

 
   

 
 (9) 

 

where 2

A

I z dA   is the moment of inertia. The clear expression of the nonlocal bending moment can be obtained 

by substituting Eq. (5) into Eq. (9) and considering Eq. (6) as: 

 

 
2 2

2

02 2

w w
M EI e a A

x t


 
  

 
 (10) 

 

Using Eqs.(5), (6) and (10), the equation of the motion for the nonlocal Euler–Bernoulli beam model in terms of 

the transverse displacement takes the following form: 

 

     4 2 4

4 2 2 2

, , ,
0

w x t w x t w x t
EI A A

x t x t
 

  
  

   
 (11) 

 

Likewise, nonlocal torsional vibrations for a beam presented by the following equation:  

 

     2 2 4

2 2 2 2

, , ,
0P P P

x t x t w x t
GI I I

x t x t

 
 

  
  

   
 (12) 
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where and 
PI are angular displacement and polar moment of inertia and G is the shear modulus and  is the shear 

strain. 

4    COUPLED FLEXURAL AND TORSIONAL VIBRATIONS  

It is convenient for the subsequent analysis to cast the equations of motion in dimensionless form. Fig. 1 describes 

the geometry definitions of the U-shaped AFM probe. All spatial dimensions including the coordinates x, y , and z , 

and the displacements are defined in relation with the length L of the legs of the system as well as the probe 

geometry and are denoted by a tilde: 

 

  
Fig.1 
Geometry definitions of a U-shaped AFM probe. 

 

 

 

3

1 2 1 3

1 2 1 1 3
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Lw w w x y

w w w x L y
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       (13) 

 

In addition, a dimensionless time   is defined as: 

 

1

4

1

( )
.

( )

EI
t

A L



  (14) 

 

Finally, the dimensionless equations of flexural and torsional motions for the three beams of the system are given 

by 

 
4 2 4

1 1 1 1

4 2 2 2 2

1

0
w w w

x L x



 

  
  

   
 (15) 

 
4 4 2 2 4
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2 4 2 2
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 (20) 

 

The parallel beams are clamped at one end and are connected to the cross beam at another end. The boundary 

conditions at the clamped ends are given by 

 

1(0, ) 0w    (21) 

 

1(0, )
0

w

x





 (22) 

 

1(0, ) 0    (23) 

 

2 (0, ) 0w    (24) 

 

2 (0, )
0
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x


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
 (25) 

 

2(0, ) 0    (26) 
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1
(1, ) ( , ).

2
w L w    (27) 

 

1 3

1
(1, ) ( , )

2
w       (28) 

 

1 3

1
(1, ) ( , ).

2
w     (29) 

 

2 3 3

1
(1, ) ( , )

2
w L w   (30) 

 

2 3

1
(1, ) ( , )

2
w      (31) 

 

2 3

1
(1, ) ( , )

2
w    (32) 

 

The balance on forces and momentums for the first leg and the cross beam; 
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1 32 2

1 3

( )( ) 1
(1, ) ( , ) 0
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E IE I
w w

L L
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1 3

1 3

1 3

( ) ( ) 1
(1, ) ( , ) 0

2

E I G J
w

L L
       (35) 

 

Likewise, the force and moment balance for the second leg and the cross beam is given by 

 

32

2 32 2

2 3

( )( ) 1
(1, ) ( , ) 0
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E IE I
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2

G JE I
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Eqs. (21) through (38) define all the boundary and continuity conditions for the probe. It should be noted that 

this model matches the conditions for the three beams only at a single point. However, it will be shown that this 

approach captures the salient aspects of the dynamics of the system in terms of the resonant frequencies and the 

mode shapes. 

4.1 Solutions 

Separating the variables, the governing equations given by Eqs. (15-20) can be solved. For example, for the flexural 

motion of leg 1, we seek solutions of the form 

 

1 1( , ) ( ).cos ( )w x X x   (39) 

 

where
1X and cos ( ) are functions only of a single independent variable, x  or , respectively. Substituting this 

form into the governing equation, the governing ordinary differential equation is found as: 

 

2 2

2

1

( ) ( ) ( ) 0X x X x X x
L


      (40) 

 

That defines the relation between the dimensionless frequency and dimensionless wavenumber. The general 

solution of this equation is given by  

 

1 11 1 21 1 31 2 41 2( ) sinh( ) cosh( ) sin ( ) cos( )X x C M x C M x C M x C M x     (41) 

 

A similar set of solutions is obtained for each of the six equations given by Eqs. (15-20). It should be noted that 

the entire beam oscillates at the same frequency for a given mode, so, the time dependence is identical for each 

equation. However, the wave numbers for the flexural and torsional motions are different for each beam. The 

boundary conditions at the clamped end of the legs allow the spatial dependence of the flexure to be written as: 

 

1 11 1 21 1 31 2 41 2( ) sinh( ) cosh( ) sin ( ) cos( )X x C M x C M x C M x C M x     (42) 

 

2 12 1 22 1 32 2 42 2( ) sinh( ) cosh( ) sin ( ) cos( )X x C M x C M x C M x C M x     (43) 
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3 13 3 23 3 33 4 43 4( ) sinh( ) cosh( ) sin( ) cos( )X y C M y C M y C M y C M y     (44) 

 

and the spatial dependence for the torsional motion: 

 

1 11 5 21 5( ) sin( ) cos( )x E M x E M x    (45) 

 

2 12 5 21 5( ) sin( ) cos( )x E M x E M x    (46) 

 

3 13 6 23 6( ) sin( ) cos( )y E M y E M y    (47) 

 

The wave numbers are given in Eqs. (42-47) are all related to by the relations 
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 (53) 

 

Finally, it is should be noted that the relation between the wavenumber and the frequency (in Hz) is given by 

 
2

1

2

1

( )1
.

2 ( )

EI
f

A L



 
  (54) 

 

The set of spatial functions given in Eqs. (42-47) includes twelve unknown coefficients. Eqs. (21-38) give the 

eighteen conditions provide a set of eighteen equations for eighteen unknowns that define the solution space for the 

TBM. They comprise a homogeneous 1818 system of equations that can be written as a matrix of the 

trigonometric functions and geometric parameters multiplying a vector of the unknown coefficients. The 

determinant of the matrix gives a characteristic equation and the solution of which gives the infinite set of allowable 

wave numbers for the probe and thus the frequencies from Eq. (54). Each wave number also defines a unique probe 

mode shapes. In such a system, the flexural and torsional motions of the three beams are coupled. As with all types 

of such eigenvalue problems [35], each mode shape can be found only within a multiplicative constant. 
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5    RESULTS AND DISCUSSION 

Table 1. shows the dimensionless frequency,   to free vibrational U-shape probes. To verify the accuracy of the 

results, dimensionless frequencies of U-shape probes are compared with results presented by Rezaei [40]. 

Dimensionless natural frequencies  of U-shape probes are represented in Table 1. for various values of thickness 

ratios and nonlocal parameter,  . It should be noted that, 0   corresponds to local beam theory. As it can be 

seen, the results of the present theory are in high agreement with those found by Rezaei [40] for all values of 

thickness ratios, where, the nonlocal parameter is equal to zero. 

 
Table 1  

Comparison of results for dimensionless frequency , for local case ( 0  ) of U- shaped probe. 

Mode shape Cantilever Present Rezaei[40] 

 A 2.9617 2.9584 

1st Flexural symmetry B 2.9247 2.9241 

 C 3.2697 3.2761 

 A 19.3136 19.2721 

2nd Flexural symmetry B 19.0977 19.0969 

 C 20.6576 20.6146 

 A 55.1608 54.9081 

3rd Flexural symmetry B 54.1172 54.4644 

 C 58.1842 58.0644 

 A 109.2050 112.3600 

4th Flexural symmetry B 108.1350 106.0900 

 C 114.5690 114.4900 

 

In order to know the effect of relative parameters on the natural frequency of probes, the material properties of a 

silicon wafer with crystallographic of direction is considered as follows: 3150 , 65 , 2329 / , 0.25.E GPa G GPa Kg m v     

In order to validate the results, five different types of U-shaped probes are selected (see Fig. 2), and each geometry 

is given in Table 2. Note that, the real probes are not perfectly U-shaped, as it is assumed. However, the goal of this 

work is to test the local frequencies of TBM with respect to nonlocal results for realistic and representative probe 

geometry. 

 

 

 
Fig.2 
Three different types of examined U-shaped probes (dimensions in nanometers). 

 

Table 1. shows the dimensionless geometry values for the selected probes (for probes a, b, c, d and e, the length 

scale 
1 3( )L L is 0.5, 1, 2, 2.5 and 3, respectively). Because the thickness of probes can be difficult to assess without 

the use of electron microscopy, one goal is to evaluate the sensitivity of the results to the thickness. 
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Table 2  

Dimensionless geometries of the studied cantilevers (See Fig. 3 for an explanation of the geometry). 

Cantilever 3L  h  b  

   2 0.1 0.2 

a   2   0.05 0.1 

   2   0.02   0.04 

   1 0.1 0.2 

 b   1   0.05 0.1 

   1   0.02   0.04 

 0.5 0.1 0.2 

c 0.5   0.05 0.1 

 0.5   0.02   0.04 

 0.4 0.1 0.2 

d 0.4   0.05 0.1 

 0.4   0.02   0.04 

   0.33 0.1 0.2 

e   0.33   0.05 0.1 

   0.33   0.02   0.04 

 

As it is seen in Table 2., the probes are selected in such a way that they cover a wide range of possible 

geometries relative to the length of the “legs” (L). The probe b has equal legs with its cross beam. The longitudinal 

of these probes (Fig. 2) have
1/ 10L h  . These geometrical differences are expected to influence the vibrational 

characteristics. The TBM assumes the probe consists of five beams and each beam can be deformed individually in 

different ways and in both flexure and twisting motion. Therefore, several mode shapes can be imagined. For this 

type of probe, the mode shapes are identified based on the relative motion of the legs for the TBM. First, note that 

the legs can be oscillated synchronously or asynchronously. 

Tables 3 to 5 exhibit the effect of the nonlocal parameter on incitement frequency to first three modes of the U-

shape probes. The response of higher modes can be ignored to purpose more verify the present results, the first three 

vibration frequencies of a U-shape probe with various aspect ratios 
1/ 10, 20, 50L h   and

 3 20L nm have been 

investigated and the results are compared with the results of local. It should be noted that 0   corresponds to the 

local beam theory. Here, the small-scale effect can be expressed by the nonlocal parameter 2

0( )e a  , and the 

frequencies are non-dimensionalized by Eq. (54). In these tables, it is shown, rising of the nonlocal parameter 

decreases the frequencies of U-shape probes. When the value of 
1L h  increases, the nonlocal parameter effect on 

the frequencies decreases. It is shown that, for a U-shape probe with a certain aspect ratio, frequencies decrease with 

increasing in nonlocal effect and increase with mode number increases. For example, probe (a), when 
1/ 10L h   and 

1,2,3,4  the decrements are 0.12%, 0.23%, 0.34%, 0.47, respectively, for the first mode, and the decrements are 

0.54%, 1.20%, 1.98%, 2.82%, respectively, for the second  mode, and the decrements are 2.71%, 4.89%, 7.87%, 

10.90%, respectively, for the third  mode. The reason of this action is, small wavelength make the small-scale effect 

more considerable for higher vibration modes of the probe. Following explanation is presented as: 

 

( ) 100%)local nonlocal local        
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Table 3  

The dimensionless frequencies for the first mode of the U-shape probes. 

Nonlocal parameter(µ) 1 /L h    Cantilever   

  a b c d e 

 10 1.4677 1.9973 2.4698 2.60707 2.71180 
0 20 1.4706 2.007  2.4739 2.61085 2.7135 

 50 1.4718 2.0029 2.4750 2.61190 2.71629 

 10 1.4660 1.9970 2.4698 2.60705 2.71179 

1 20 1.4693 2.0014 2.4738 2.61083 2.71530 
 50 1.4702 2.0026 2.4750 2.61188 2.71628 

 10 1.4643 1.9967 2.4697 2.60703 2.71179 

2 20 1.4676 2.0011 2.4738 2.61081 2.71529 
 50 1.4685 2.0023 2.4749 2.61187 2.71627 

 10 1.4626 1.9963 2.4697 2.60701 2.71177 

3 20 1.4658 2.0007 2.4737 2.61078 2.71527 
 50 1.4667 2.0019 2.4749 2.61184 2.61625 

 10 1.4607 1.9959 1.4696 2.60698 2.71175 

4 20 1.4639 2.0003 2.4737 2.61075 2.71624 

 50 1.4648 2.0015 2.4748 2.61181 2.71624 

 
 

Table 4  

The dimensionless frequencies for the second mode of the U-shape probes. 

Nonlocal parameter(µ) 1 /L h    Cantilever   

  a b c d e 

 10 3.25525 5.26802 8.98448 10.6562 12.1490 
0 20 3.25753 5.27933 9.08643 10.8386 12.4206 

 50 3.25817 5.28249 9.11495 10.8896 12.4960 

 10 3.23770 5.25860 8.9801   10.6530 12.1467 
1 20 3.23991 5.26978 9.08181 10.8353 12.4172 

 50 3.24053 5.27290 9.11025 10.8862 12.4931 

 10 3.21596 5.24612 8.97371 10.6482 12.1430 

2 20 3.21810 5.25712 9.07497 10.8299 12.4130 
 50 3.2169   5.26019 9.10329 10.8807 12.4891 

 10 3.19061 5.23071 8.96520 10.4619 12.1379 

3 20 3.19264 5.24151 9.06590 10.8225 12.4081 
 50 3.19321 5.24452  9.099407 10.8732 12.4831 

 10 3.16220 5.21256 8.95475 10.6333 12.1313 

4 20 3.16413 5.22312 9.08569 10.8135 12.4006 

 50 3.16467 5.22606 9.08269 10.8638 12.4753 

 
 

Table 5  

The dimensionless frequencies for the third mode of the U-shape probes. 

Nonlocal parameter(µ) 1 /L h    Cantilever   

  a b c d e 

 10 6.22442 14.2499 17.1560 17.6727 18.0625 
0 20 6.25729 14.5426 17.5344 18.0081 18.3628 

 50 6.26616 14.6216 17.6396 18.1015 18.4466 

 10 6.08908 14.1040 17.1385 17.6664 18.0582 
1 20 6.11936 14.3800 17.51448 17.9991 18.3552 

 50 6.12753 14.4544 17.6195 18.0923 18.4418 

 10 5.91966 13.8182 17.0953 17.6441 18.0473 

2 20 5.94607 14.0659 17.4663 17.9767 18.3463 
 50 5.95319 14.1325 17.5692 18.0692 18.4296 

 10 5.73402 13.4495 17.0278 17.6120 18.0301 

3 20 5.75634 13.6661 17.3904 17.9410 18.3275 
 50 5.76236 13.7243 17.7243 18.0325 18.4103 

 10 5.54540 13.0473 13.0473 17.5685 18.0066 

4 20 5.56403 13.2355 13.2355 17.8929 18.3018 

 50 5.56906 13.2859 13.2859 17.3872 18.3840 
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Fig.3 shows the first to third dimensionless frequencies with respect to selected aspect ratios (
1 3/ 0.5,1,2,25,3L L  ) 

for
1 / 10L h  . It is seen that in all curves, by increasing the aspect ratio, the dimensionless frequency increases, but 

the effect of aspect ratios on the third mode shape is greater than the first and the second mode shape. According to 

this figure, it is discerned that increase in the cross-beam (
3L ) length decreases the dimensionless frequency. 

 

 

 

 

 

 

 

 

Fig.3 
The effect of the cross beam length on dimensionless 

frequencies for
1 / 10L h  . 

 

Figs. 4-8 clearly show the fundamental dimensionless frequencies for various thicknesses of the U-shaped beam 

considering five various values of the nonlocal parameter ( 0 , 1 , 2 , 3 , 4 )   and for different values of the aspect 

ratios
1 3

( / 0.5 , 1 , 2 , 2.5 , 3)L L  . As it is evident from the figures, the results of dimensionless frequencies 

considering the nonlocal model effect are lower than those of local (classical).Another observation from the figures 

is that the dimensionless frequencies of the beam are such that, as aspect ratio becomes lower, the nonlocal effect 

will be severe. 

 

 

 

 

 

 

 

Fig.4 
The effect of the nonlocal parameter and the beam 

thickness on fundamental dimensionless frequencies 

for
1 3

/ 0.5L L  . 

 

  

 

 

 

 

 

 

Fig.5 
The effect of the nonlocal parameter and the beam 

thickness on fundamental dimensionless frequencies 

for
1 3

/ 1L L  . 

  

 

 

 

 

 

 

Fig.6 
The effect of the nonlocal parameter and the beam 

thickness on fundamental dimensionless frequencies 

for
1 3

/ 2L L  . 
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Fig.7 
The effect of the nonlocal parameter and the beam 

thickness on fundamental dimensionless frequencies 

for
1 3

/ 2.5L L  . 

 

  

 

 

 

 

 

 
Fig.8 
The effect of the nonlocal parameter and the beam 

thickness on fundamental dimensionless frequencies 

for
1 3

/ 3L L  . 

 

The most important observation from Figs. 4-8 is that, for the beam with a certain aspect ratio, the fundamental 

dimensionless frequencies go up as the thickness decreases. 

6   CONCLUSIONS 

In this article, the transverse vibration of the U-shaped probe was analyzed utilizing Euler-Bernoulli beam model. 

Governing equations and boundary conditions were derived by separation method. Results are presented to show the 

length scale parameter, the beam length 1
( )L , and the thickness (h) effects on the beam. Observations represented 

that, increasing the aspect ratio )(L h of the probe increases the dimensionless frequencies. In addition, the beam 

length 1
( )L

 
will be more effective on higher frequencies. 

In this article, it has been shown that the TBM appears to be reliable for a wide range of geometries, and it can 

be applied to almost all the probes, which have a similar shape. The value of the frequency is directly related to the 

aspect ratio,
 )(L h  of the probe and obviously is higher for thicker probes. In contrast with single-beam probes, the 

mode shapes of the U-shaped probes are a complex combination of bending and twisting motions, especially for 

higher modes. Such a complex behavior Creates tension for using such probes for dynamic imaging techniques like 

contact resonance AFM. The initial model needs to be adjusted and iterated to match the experimental results with 

possible remeshing at each iteration step. Limitations of probe manufacturing imply that this process needs to be 

repeated for each probe. In this case, contact resonance techniques would not be possible. The analytical form of the 

TBM provides the needed accuracy and computational efficiency to make such calculations possible. The model 

represented here can be extended to include tip-sample coupling as well this work is now underway. This aspect of 

the problem will also introduce an additional coupling mechanism for different types of vibration behaviors 

compounding the complexity of the inverse analysis. The efficiency of the TBM for inversion of experimental 

contact resonance frequency data as a means of quantifying sample elastic and/or viscoelastic properties remains to 

be determined, but this approach is likely to be valuable for such materials characterization measurements. 
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