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 ABSTRACT 

 The free vibration analysis of homogeneous isotropic micropolar thermoelastic cylindrical curved 
plate in circumferential direction has been investigated in the context of generalized 
themoelasticity III, recently developed by Green and Naghdi. The model has been simplified using 
Helmholtz decomposition technique and the resulting equations have been solved using separation 
of variable method. Mathematical modeling of the problem to obtain dispersion curves for curved 
isotropic plate leads to coupled differential equations and solutions are obtained by using Bessel 
functions. The frequency equations connecting the frequency with circumferential wave number 
and other physical parameters are derived for stress free cylindrical plate. In order to illustrate 
theoretical development, numerical solutions are obtained and presented graphically for a 
magnesium crystal.   
                                                                                  © 2010 IAU, Arak Branch. All rights reserved. 

 Keywords: Micropolar; Phase velocity; Circumferential wave number; Thermoelasticity type III; 
Thermoelasticity without energy dissipation. 

1    INTRODUCTION 

HE generalized thermoelasticity theories have been developed with the aim of removing the paradox of infinite 
speed of heat propagation inherent in the classical coupled dynamical thermoelasticity theory formulated by 

Biot [1]. In the generalized theories, the governing equations involve thermal relaxation times and they are of 
hyperbolic type. The extended thermoelasticity theory, which introduces one relaxation time in the thermoelastic 
process was proposed by Lord and Shulman [2] and the temperature - rate dependent theory of thermoelasticity was 
developed by Green and Lindsay [3], which takes into account two relaxation times. These theories are two well 
established generalized theory of thermoelasticity. 

The most recent theoretical development in this subject made by Green and Naghdi [4-6] has been the centre of 
active research during the last few decades. In this development Green and Naghdi proposed three different models 
of thermoelasticity in an alternative way and provided sufficient basic modifications in the constitutive equations 
that permit treatment of a much wider class of heat problems and labeled as thermoelasticity types I, II and III. The 
nature of these three types of constitutive equations is such that when the respective theories are linearized, type-I, 
corresponds to the classical heat equation (based on Fourier’s law) whereas the linearized versions of type-II and 
type-III theories are of different nature. The entropy flux vector in type-II and type-III (i.e. thermoelasticity without 
energy dissipation (TEWOED) and thermoelasticity with energy dissipation (TEWED)) are determined in terms of 
potential that also determines stress. Micropolar theory introduced by Eringen and Suhubi [7] and Eringen [8] 
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incorporates the local deformations and rotations of the material points of a body. The theory provides a model that 
can support body and surface couples and display a high frequency optical branch of the wave spectrum. For 
engineering applications, it can model composites with rigid chopped fibres, elastic solids with rigid granular 
inclusions and other industrial materials such as liquid crystals. The microplar theory was extended to include 
thermal effect by Nowacki [9] and Eringen [10]. Mathematical modeling of wave propagation in the axial direction 
of a cylinder has been studied extensively. However, for wave propagation in the circumferential direction, which is 
essential for nondestructive testing (NDT) of large diameter pipes, literature shows fewer investigations. 

Viktorov [11] established the fundamental mathematical modeling of the problem for isotropic material 
properties. He introduced the concept of angular wave number and derived, decomposed and solved the governing 
equations. He obtained the solution for convex and concave cylindrical surfaces by considering only one curved 
surface. Qu et al. [12] solved the problems of guided wave propagation in isotropic curved plates. Different aspects 
of the circumferential direction wave propagation along one or multiple curved surfaces were analysed by Liu and 
Qu [13-14] and Valle et al. [15].  Towfighi et al. [16] discussed the elastic wave propagation in circumferential 
direction in anisotropic cylindrical curved plates. They solved coupled differential equations and presented the 
dispersion curves for anisotropic curved plates of different curvatures. Tajuddin and Shah [17] discussed 
circumferential waves of infinite hollow poroelastic cylinders. Sharma and Pathania [18] investigated generalized 
thermoelastic wave propagation in circumferential direction of transversely isotropic cylindrical curved plates. 
Tyutekin [19] studied circumferential normal modes in an empty elastic cylinder. Jiangong, Bin and Cunfu [20] 
discussed circumferential thermoelastic waves in orthotropic cylindrical curved plates without energy dissipation. 
Waves in hollow cylinders - such as piping and tubing - have long been a topic of considerable interest from the 
viewpoints of mechanics and ultrasonic inspection. Guided wave inspection using circumferential of longitudinal 
modes has received a great deal of attention. From a mechanics point of view, the problem can be tackled in a 
manner similar to that used for rods and plates. 

The free vibration analysis of homogeneous isotropic micropolar thermoelastic cylindrical curved plate in 
circumferential direction has been carried out in the present work. 

2    BASIC EQUATIONS 

The equations of motion and the constitutive relations in a homogeneous isotropic micropolar thermoelastic solid in 
the absence of body forces, body couples and heat sources are given by Eringen [21]. 
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 is the Laplacian operator, , , , ,      and K are material constants,   is the 

density, j is the microinertia, ijt and ijm  are the components of stress and couple stress tensors, ( , , )r zu u u u
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displacement vector, ( , , )r z   
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 is the microrotation vector, 0T  is the uniform temperature, T is the temperature 

change, (3 2 ) tK      , t is  the coefficient of linear thermal expansion and  *K  is an additional material  
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Fig. 1 
Geometry of the problem. 

 
 
constant characteristic of the theory of thermoelasticity without energy dissipation given by Green and Naghdi [6], 

*
1K  is the  thermal conductivity , *C  is specific heat at constant strain, ij  is Kronecker delta. The comma notation 

denotes spatial derivatives. 

3    FORMULATION OF THE PROBLEM  

A homogeneous, isotropic, micropolar thermoelastic cylindrical plate with inner and outer radii a and b, respectively 
is considered. Let ( , , )r z be the cylindrical polar coordinates such that z-axis coincides with the axis of the plate 
and consider the problem of wave propagation in the direction of curvature. The aim of this study is to analyse the 
dispersive waves in the curved plate for waves propagating from the section 1S  to 2S as shown in Fig. 1. This 

analysis does not include the reflected guided waves from the plate boundary. The considered geometry of the 
problem can be a segment of a cylinder or a complete cylinder. For two dimensional problems, we take the 
displacement vector and microrotation vector as 
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the medium. We introduce the potential functions   and   through the relations 
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where   and   are velocity potential functions of longitudinal and shear waves. Using equations (6)-(8) in 

equations (1)-(2), (5) and after suppressing the primes for convenience, we obtain 
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where 2 2 * 2
1 0 1/T C c   , * * 2

2 1/  K C c  , * * * 2
3 1 1/  K C c   , 1  is the thermoelastic coupling factor, 2  is the 

characteristic parameter of the G-N theory (of type II) and 3  is the characteristic parameter of the G-N theory (of 

type III). We assume the solutions of Eqs. (9)-(12) of the form  
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where n is the integer number of waves around the circumference or angular wave number,   is the  angular 
frequency of the wave. Towfighi et al. [16] pointed out that in cylindrical geometry, the generation of surface waves 
in the circumferential direction with a plane wave front requires the circumferential wave speed to be a function of 
the radial distance. We also adopt the same formulation here and hence assume that the phase velocity is not 
constant but changes with radius. The phase velocity at a point having radius r is given by  
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where bc  is the phase velocity at the outer surface having a radius b. The angular wave number n, which is 

independent of r, is defined as 
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Substitution of Eq. (13) in Eqs. (9)- (12) gives us 

 
2 2
1( ) ( ) ( )r T r     (16)

 

2
2
1 2 2

( ) ( ) ( ) 0z

p
r r

  
 

     (17)
 

2
2 * * 2
1 12

1

( 2 ) ( ) ( ) 0z r r
    


       (18)
 

2 2 2 2 2
2 1 3 1 1 1( ) ( )   -  ( )i T r r             

where 
2 2

2
1 2 2

1
.

n

r rr r

 
   


 

(19)
 

 
The solution of Eqs. (16)-(19) is written as 
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Here nJ and nY  are the Bessel functions of first and second kind of order n. The displacements, microrotation, 

temperature and stresses are obtained as  
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where prime denotes differentiation with respect to radial coordinate r. The Eqs. (24)-(30) contain real as well as 
imaginary parts. However, only real part has been considered in depicting numerical results. 

3.1 Boundary Conditions 

Let us consider the following types of boundary conditions. The lower and upper surfaces r = a  and r = b of the 
plate are assumed to be 

(i) stress free, which leads to 0rr r rzt t m                                                                                                 (31) 

   (ii)       thermal condition  , 0rT hT                                                                                                                     (32) 

where h is the Biot’s heat transfer coefficient. Here h 0 corresponds to thermally insulated boundaries and h   
refers to isothermal one. 

4    DERIVATION OF THE SECULAR EQUATIONS  

Invoking the stress free and thermal boundary conditions (31)-(32) at the lower and upper surfaces ra, b of the 
plate and using Eqs. (24)-(30), one can get the free vibration equation as 

0, ,   = 1,2,3,4,5,6,7,8ijE i j  (33)
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Here ( 2, 4,6,8)ijE j   can be obtained by just replacing the Bessel functions of first kind in ( 1,3,5,7)ijE j  with 

those of second kind, while ( 5,6, 7,8)ijE i   can be obtained by replacing 1 in ( 1,2,3,4)ijE i  with 2 respectively, 

where     *
1 / 1 / 2a R  and     *

2 / 1 / 2b R  and   * ( ) /b a R  is the thickness to mean radius ratio of 

the plate. 

4.1 Particular case 

4.1.1 Micropolar thermoelasticity without energy dissipation (the linearized G-N theory of type II) 

In this case, *
1 0K   and 

*
* ( 2 )

4

C
K

 
 . 

5    NUMERICAL RESULTS AND DISCUSSION 

With the view of illustrating theoretical results obtained in the preceding sections and comparing these in the context 
of various theories of thermoelasticity, we now present some numerical results. The material chosen for this purpose 
is Magnesium crystal (micropolar thermoelastic solid), the physical data for which is given below. Following 
Eringen [22], Micropolar parameters are 
 

       3 3 10 2 10 21.74 10  Kg/m ,  9.4 10  N/m ,  4.0 10  N/m ,   

       10 2 9 19 21.0 10  N/m ,  0.779 10  N,  0.2 10  mK j   
 
Following Dhaliwal and Singh [23], thermal parameters are 

0 * 3 * 2 6 2
1 0 10.028,  298 K,  1.04 10  J/Kgdeg,  1.7 10  J/msecdeg,  2.68 10  N/m degT C K            
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The phase velocity of various modes of wave propagation has been computed for various values of 
circumferential wave number from secular equation (33) for stress free thermally insulated and stress free isothermal 
boundaries. The corresponding numerically computed values of phase velocity are shown graphically in Figs. 2-3 
for different modes (m0 to m2). The solid curves correspond to G-N theory of thermoelasticity of type III (GN-
III) and dotted curves refer to G-N theory of thermoelasticity of type II (GN-II). 

The phase velocity of higher modes of wave propagation attains quite large values at vanishing wave number, 
which sharply slashes down to become steady with increasing wave number. The phase velocity of lowest mode (m 
0) in stress free thermally insulated plate varies at lower wave number and becomes constant at higher wave 
number. It is observed that for modes m1, 2 in stress free thermally insulated plate, the values of phase velocity are 
smaller in GN-III than in GN-II. In case of lowest  mode (m0), phase velocity in GN-II is more than in case of GN-
III for wave number   0.8; the values of phase velocity are smaller in GN-II  than in GN-III for wave number  

lying between 0.8 and  3.8; and phase velocity in GN-III and GN-II is nearly same for wave number    3.8. 

For stress free isothermal plate, we notice the following from Fig. 3 for m0, phase velocity in GN-III is less 
than in case of GN-II for wave number 1.1  ; phase velocity in GN-III is more than in case of GN-II for wave 

number lying between 1.1 and 2.4; the phase velocity profiles in respect of GN-III and GN-II  coincide for wave 
number lying between 2.4 and 2.9; phase velocity in GN-III is slightly more than in case of GN-II  for wave number 

2.9   (b) for m1, phase velocity in GN-III is more than in case of GN-II  for wave number 2.2  and 3.9  ; 

phase velocity in GN-III is less than in case of GN-II for wave number lying between 2.2 and 3.9 (iii) for m2, 
phase velocity in GN-III  is slightly more than in case of GN-II for wave number 0.8  ; phase velocity in GN-III 

is less than in case of GN-II for wave number lying between 0.8 and 4.2; the phase velocity profiles in respect of 
GN-III and GN-II coincide for wave number 4.2  . 

 
 

 

Fig. 2 
Phase velocity profiles of wave modes in a stress free 
thermally insulated plate with circumferential wave number. 

  
  

 

Fig. 3 
Phase velocity profiles of wave modes in a stress free 
isothermal plate with circumferential wave number. 
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6    CONCLUSIONS 

The Bessel functions have been directly used to study the free vibration analysis along circumferential direction in 
homogeneous isotropic micropolar thermoelastic cylindrical curved plate in the context of Green and Naghdi (G-N) 
theories of themoelasticity. The phase velocity of various modes of wave propagation has been computed for various 
values of circumferential wave number from dispersion equation for stress free thermally insulated boundaries and 
stress free isothermal boundaries and has been represented graphically for different modes (m0 to m2). The phase 
velocities of higher modes of propagation attain quite large values at vanishing wave number which sharply slashes 
down to become steady and asymptotic with increasing wave number 
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