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 ABSTRACT 

 The buckling behavior of functionally graded carbon nanotube-reinforced composite 

(FG-CNTRC) plates resting on Winkler-Pasternak elastic foundations under in-plane 

loads for various temperatures is investigated using element-free Galerkin (EFG) 

method based on first-order shear deformation theory (FSDT). The modified shear 

correction factor is used based on energy equivalence principle. Carbon nanotubes 

(CNTs) are embedded in polymer matrix and distributed in four types of arrangements. 

The temperature-dependent material properties of an FG-CNTRC plate are assumed to 

be graded along the thickness direction of the plate and estimated through a 

micromechanical model based on the extended rule of mixture. Full transformation 

approach is employed to enforce essential boundary conditions. The modified shear 

correction factor is utilized based  on  energy  equivalence  principle involving  the  

actual  non-uniform  shear  stress  distribution  through  the  thickness  of  the  FG-

CNTRC plate. The accuracy and convergency of the EFG method is established by 

comparing the obtained results with available literature. Moreover, the effects of elastic 

foundation parameters are investigated for various boundary conditions, temperatures, 

plate width-to-thickness and aspect ratios, and CNT distributions and volume fractions. 

Detailed parametric studies demonstrate that the elastic foundation parameters, CNT 

distributions along the thickness direction of the plate and the temperature change have 

noticeable effects on buckling behavior of carbon nanotube-reinforced composite 

(CNTRC) plates.                                       © 2016 IAU, Arak Branch.All rights reserved. 

 Keywords : Buckling; Composite plate; Carbon nanotubes; Elastic foundation; 

Meshfree method; First-order shear deformation theory. 

1    INTRODUCTION 

 HE supreme and outstanding characteristics of carbon nanotubes (CNTs) broadly attract researchers’ attention 

in recent years. The extraordinary mechanical, electrical and thermal properties of CNTs make them as one of 

the most promising reinforcement materials for high performance structural and multifunctional composites instead 

of conventional fibers [1-4]. Introducing CNTs as reinforcements for polymers leaded to several important studies to 

estimate their mechanical properties accurately [5-9]. These studies have proved that applying small amount of 

CNTs to the matrix can effectively enhance overall mechanical and electrical properties of polymeric composites [7-

10].In practice, this behavior makes them appropriate for aerospace applications as well as electronics and transport 

industries [11].  

______ 
*
Corresponding author. Tel.: +98 9128092210 ; Fax: +98 361 5912424. 

E-mail address: bsoltani@kashanu.ac.ir (B. Soltani). 

T 



263             Sh. Shams et al. 

© 2016 IAU, Arak Branch 

Recently, many investigations considering structural applications of carbon nanotube reinforced-composites 

(CNTRCs) have been done. Jafari Mehrabadi et al. [12] presented mechanical buckling of nanocomposites 

rectangular plate reinforced by aligned and straight single-walled carbon nanotubes (SWCNTs) based on first-order 

shear deformation theory (FSDT). They used both the Eshelby-Mori-Tanaka approach and the extended rule of 

mixture to evaluate the effective material properties of CNTs. Buckling analysis of quadrilateral laminated plates 

with CNTRC layers employing a mapping-differential quadrature technique is investigated by Malekzadeh and 

Shojaee [13]. They examined the effects of volume fraction of CNTs, geometrical parameters, thickness-to-length 

ratio, CNT distribution profiles and boundary conditions on the critical buckling load. 

Functionally graded carbon nanotube-reinforced composites (FG-CNTRCs) are new types of nanocomposites in 

which the material composition is varied continuously along thickness direction according to CNT volume fractions. 

The material properties of FG-CNTRCs can be evaluated through a micromechanical model in which CNT 

efficiency parameters are estimated by matching the elastic moduli of the CNTRCs observed from the molecular 

dynamics (MD) simulation with that of numerical results obtained from the rule of mixture [14]. Analysis of FG-

CNTRC plates were first presented by Shen [14] in which he studied the nonlinear bending behavior of FG-CNTRC 

plates in thermal environment. He concluded that the load-bending moment curves of the plate could be significantly 

increased as a result of functionally graded CNT reinforcements. Zhu et al. investigated linear bending and free 

vibration behaviors of FG-CNTRC plates with various distributions of reinforcements under different width-to-

thickness ratios using finite element method (FEM) [15]. Sobhani Aragh et al. studies the vibration behavior of 

continuously graded CNTRC cylindrical panel using an equivalent continuum model based on Eshelby-Mori-

Tanaka approach [16]. They demonstrated that continuously graded oriented CNT volume fractions can be used for 

management of vibration behavior of structures. Recently, Alibeigloo and Liew [17] presented a thermoelastic 

analysis of FG-CNTRC plates based on three-dimensional theory of elasticity. They investigated the effects of 

uniform and functionally graded distributions of CNTs, their volume fractions as well as length-to-thickness ratio of 

the plate. Static analysis of FG-CNTRC cylinders considering an axisymmetric model using element-free Galerkin 

(EFG) method was presented by Moradi-Dastjerdi et al. [18]. Large deflection analysis of FG-CNTRC plates by 

element-free kp-Ritz method based on von Kármán assumption was  studied by Lei et al. [19]. Obtained results 

revealed that the change of CNT contents, plate width-to-thickness ratios and boundary conditions have pronounced 

effects on nonlinear responses of different types of CNTRC plates. Furthermore, buckling analysis of functionally 

graded carbon nanotube-reinforced composite plates using element-free kp-Ritz method was presented by Lei et.  al 

[20]. They concluded that the distribution type of CNT significantly affects buckling strength of CNTRC plates. 

Nonlinear vibration of shear deformable CNTRC cylindrical panels resting on elastic foundations in thermal 

environments was studied by Shen and Xiang [21]. They revealed that the natural frequencies are increased by 

increasing the CNT volume fraction, while the CNTRC panels with intermediate CNT volume fraction do not 

necessarily have intermediate nonlinear to linear frequency ratios. 

In structural engineering, the problem of plates supported by elastic foundations is investigated by many 

researchers [22,23]. Two main models are commonly used to represent the interaction between the plate and the 

foundation. In Winkler or one-parameter model [24], the interaction is solely represented by series of separated 

spring. Adding shear springs, this model was improved by Pasternak or two-parameter model [25] to account for 

more realistic interaction between separated springs. Several more studies considering functionally graded (FG) 

plates on elastic foundations include [26-28].  

In this article, buckling analysis of FG-CNTRC plates resting on elastic foundations based on FSDT subjected to 

in-plane loads is analyzed using the EFG method. Material properties of FG-CNTRCs are assumed to be 

temperature-dependent and vary continuously along the plate thickness direction. Uniform and three types of 

functionally graded distributions of CNTs are considered. The principle of minimum potential energy is employed to 

obtain Galerkin weak-form formulation of the FG-CNTRC plate on two-parameter elastic foundations. The full 

transformation method is applied to impose essential boundary conditions. The effects of distribution and volume 

fractions of CNTs, plate width-to-thickness ratio, plate aspect ratio as well as parameters of elastic foundation and 

temperature change under various boundary conditions on the buckling behavior of FG-CNTRC plates are 

investigated. 

2    CARBON NANOTUBE-REINFORCED COMPOSITES 

Consider a CNTRC plate with length a , width b and thickness h on an elastic foundation (Fig. 1). The plate is made 
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of mixture of SWCNTs and an isotropic matrix. Employing the rule of mixture the effective elastic properties of the 

CNTRC plate can be expressed as follows [14] 
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where 11 22,CNT CNTE E denote Young’s moduli of the CNTs in the longitudinal and transverse directions, respectively 

and 12

CNTG  is its shear modulus. mE and 
mG are the corresponding properties of the isotropic matrix. ( 1,2,3)j j   

are the CNT efficiency parameters accounting for the scale-dependent material properties evaluated by comparing 

the effective material properties obtained from MD  simulations and that of numerical  results [14]. Moreover, the 

Poisson’s ratio is assumed to be constant and expressed as: 
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where 12

CNT  and 
m  are Poisson’s ratios of the CNT and the matrix, respectively. CNTV and mV are the CNT and 

matrix volume fractions related by 

 

1.CNT mV V             (5) 

 

The SWCNTs are either uniformly distributed (UD) or functionally graded (FG) along the thickness direction 

according to Eqs. (6) for V-, O- and X- distribution types as shown in Figs. 1.  
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*

CNTV is the CNT volume fraction in which , CNT

CNTw  and 
m are the mass fraction of CNTs, densities of CNTs 

and matrix, respectively. It is to be noted that for both UD and FG cases the values of mass fractions of CNTs are 

considered to be the same. Similarly, the thermal expansion coefficients in either material coordinates are as 

follows: 
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22 12 22 12 11(1 ) (1 ) ,CNT CNT m m

CNT mV V                      (9) 

 

where 11 22,CNT CNT  and m  are thermal expansion coefficients of the CNT and the matrix, respectively. It should be 

noted that 11  and 22  are graded along thickness direction. According to these considerations, the elastic 

properties of the CNTs and the matrix are temperature-dependent. 

3    THE EFG FORMULATION 

According to MLS approximation, an unknown scalar function, (x)u , defined in the domain   can be 

approximated by (x)hu as follows: 
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In which p(x) is the basis function of spatial coordinates, a(x)  is a vector of coefficients, and m is the number of 

basis functions. The quadratic bases commonly used are 

 
T 2 T 2 2p [1,x,x ] in 1D,m 3, p [1,x, y,x ,xy, y ] in 2D,m 6.               (11) 

 

The unknown coefficients (x)ja  can be determined by minimizing the following weighted discrete 2L  norm  

 

T 2

1

(x x )[p(x ) a(x) u ]
n

i i i

i

J W


              
 

(12) 

 

where (x x )iW  or (x)iW  is the weight function associated with node i, n is the number of nodes in  , and iu is 

the nodal parameter. Minimizing J in Eq. (10) with respect to a(x)  leads to a set of linear relations 
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The coefficients a(x)  are then obtained from Eq. (11) 

 
1a(x) A (x)B(x)u.            (16) 

 

Substituting Eq. (14) into Eq. (8), the approximation (x)hu  can be expressed in a standard form as: 
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where the shape function for node i, denoted by (x)i is given by  
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A quintic spline weight function is defined as: 
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In which x xi  is the distance from node x i  to the sampling point x, and sd  is the size of support domain for 

the sampling point x. 

4    GOVERNING EQUATIONS OF CNTRC PLATES RESTING ON ELASTIC FOUNDATIONS 

4.1 Displacement field and strains 

Employing the FSDT for a CNTRC plate, the displacement field of the plate can be expressed as: 
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where ( , , )u v w  are the displacements of an arbitrary point ( , , )x y z  in the domain of FG-CNTRC plate along x-, 

y- and z- directions, respectively. 0 0 0( , , )u v w  represent the displacements of a point at the mid-plane of the plate 

and ( , )x y   denote rotations of the unit normal to the mid-plane of plate at the martial point ( , y)x  about positive 

y- and negative x- axes, respectively. The strains of the plate are given by 
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and 
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Then, the constitutive relations are expressed as: 
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T is the temperature change with respect to the reference state. 11E  and 22E  are the effective Young’s moduli 

of a CNTRC plate in the principle material coordinates; 12 13,G G and 23G  are the shear moduli, and 12  and 21  are 

the Poisson’s ratios. Note that 21 22 11 12( )E E  .  

ij  are the modified shear correction factors evaluated based on energy equivalence principle involving the 

actual non-uniform shear stress distribution through the thickness of the FG-CNTRC plate and defined as [29] 
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where id  are the distances of neutral surface from the mid-surface of the plate in the principle material coordinates 

given by 
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According to FSDT, the relation between the stress resultants and the strains can be written as: 
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where the in-plane force resultants, moment resultants, transverse force, thermal force resultants and thermal 

moment resultants are defined as: 

 



The Effect of Elastic Foundations on the Buckling Behavior of Functionally….               268 

 

© 2016 IAU, Arak Branch 

 
/2

/2

,

N,M , (1, z) ,

,

xx xx xx
h

yy yy yy
h

xy xy xy

N M

N M dz

N M








   
   

    
   

  

  

 

(34) 

 

/2
s

/2
Q ,

s
h

yzy

s h
xzx

Q
dz

Q





    
    
    

  
 

(35) 

 

 
11 12 11

/2

12 22 22
/2

66

, ( ) ( ) 0

N ,M , (1,z) ( ) ( ) 0 .

, 0 0 ( ) 0

th th

xx xx
h

th th th th

yy yy
h

th th

xy xy

N M Q z Q z

N M Q z Q z Tdz

N M Q z






    
    

      
   
   

  

 

(36) 

 

The components of extensional A, bending-extensional coupling B , bending D and transverse shear sA  

stiffnesses are defined as: 
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4.2 Stiffness matrices  

Total potential energy of the plate resting on an elastic foundation subjected to a transverse load is expressed as: 
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The strain energy of the foundation can be expressed as: 
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where Fk  and Gk  are Winkler and the shear stiffnesses of an elastic foundation, respectively. It should be 

mentioned that the foundation is assumed to be compliant which implies that no parts of the plate lift off the 

foundation. Considering the in-plane loads, 
1 xR  and 

2 yR  as depicted in Fig. 1 applied on the plate, W can be 

expressed as: 
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Substituting Eq. (40), Eq. (42) and Eq. (44) into Eq. (39) and following the standard procedure of EFG method 

the following system of eigenvalue equations is derived. 
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Tb b b

ij i j


   (49) 

 
sK B A B d ,

Ts s s

ij i j


   (50) 

 

K B BB d B BB d ,
T Tc m b b m

ij i j i j
 

     (51) 

 

0 0 0 0 0

0 0 0 0 0

K ,0 0 0 0

0 0 0 0 0

0 0 0 0 0

f

ij ijL

 
 
 
 
 
 
 
 

 

 

 

(52) 

 

B S B d ,
Tf f

ij i f jL


   (53) 
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TK H RH d ,g

ij i j


   (54) 

 

In which 

 

i,

,

, ,

0 0 0 0
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0 0 0

x

m

i y

i y i x




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 
 

  
 
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(55) 
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(57) 

 

, ,B ,f
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

 
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Fig.1 

Schematic configuration of a carbon nanotube-reinforced 

composite plate resting on an elastic foundation with four 

types of CNT distributions: (a) UD CNTRC (b) FG-V 

CNTRC (c) FG-O CNTRC (d) FG-X CNTRC. 

5    BOUNDARY CONDITIONS 

The essential boundary conditions cannot be directly imposed in EFG method due to the fact that the MLS shape 

functions do not satisfy the Kronecker delta property. Several approaches are used to impose boundary conditions 

including the Lagrangian multiplier method [30] and the penalty method [31]. The adopted method used in this 

paper is the full transformation method proposed by Chen et al. [32] and used by many researchers, e.g. [18], [20] 

and [33] due to its good accuracy and simple implementation.  

The boundary conditions considered in this study are as follows: 

Simply supported (S) 

 

0 0

0 0

0, at 0, ,

0, at 0, .

y

x

v w x a

u w y b





   

   
 

 

(61) 
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Clamped (C) 

 

0 0

0 0

0, at 0, ,

0, at 0, .

x y

x y

v w x a

u w y b

 

 

    

    
 

 

(62) 

 

The supports of the plate edges are denoted by S, C or F for simply supported, clamped or free boundary 

conditions, respectively.   

6    NUMERICAL RESULTS AND DISCUSSION  

In this section, to examine the convergency and accuracy of the present method; firstly, the buckling load parameters 

of isotropic and CNTRC plates are presented and compared with previous studies. Then to demonstrate the effects 

of elastic foundation parameters, CNT volume fraction and distribution, and width-to-thickness and aspect ratios of 

the plate, temperature changes as well as boundary conditions on the buckling behavior of the CNTRC plates resting 

on elastic foundations several parametric studies are presented and investigated in detail. 

6.1 Convergence study and validation 

The buckling problem of isotropic plates resting on elastic foundations is presented to investigate the convergency 

and accuracy of the present method. The results are listed in Table 1. for a plate without any elastic foundation, 

Winkler and Pasternak elastic foundations using various node schemes. The elastic foundation parameters 1 2( , )K K   

are defined as: 

 
24

1 2, Gf
k bk b

K K
D D

   
 

(63) 

 

where
3 2/12(1 )D Eh   is the flexural rigidity of an isotropic plate. The results are compared with that of 

presented by Lam et al. [22] and Malekzadeh et al. [34]. As can be seen, the solution converges when the number of 

nodes is increased and the results are converged with 21 21  regular nodal distribution. Accordingly, this node 

scheme is used for discretization of the domain in the following studies. Moreover, following numerical 

experiments, the dimensionless sizes of rectangular support domains along x- and y-directions are chosen to be 

/ 3.2sx sy s cd d     where sd  is defined in Eq. (20) and cd  is the nodal spacing near the point of interest. 

The problem of a CNTRC square plate with all edges simply supported (SSSS) subjected to the uniaxial 

1 2( 1, 0)     and biaxial 
1 2( 1, 1)      compressive loads is considered to examine the accuracy of the 

present numerical method. Buckling load parameters 
2 3( / h )m

cr crN N b E  are presented in Table 2. for the first 

four modes. The geometrical and material properties of the plate are considered as mentioned in [20]. It can be seen 

that the obtained results are in good agreement with the reported results in [20].   

 
Table 1 

Convergence study of critical buckling load parameters
 

* 2 2( / )cr crN N b D  for an isotropic square 

plate (h/ a 0.01, 0.3)  on elastic foundations subjected to a uniaxial compressive load
1 2( 1, 0).     

  
1 2( , )K K  

 Number of Nodes (0,0)
  

(100,0)
  

(100,100)
  

Present 13 13   4.0115  5.0448  19.2488 

 15 15   4.0118  5.0427  19.2575 

 17 17   4.0134  5.0430  19.2729 

 19 19   4.0002  5.0288   19.1797 

 21 21   4.0002  5.0288   19.1797 

Ref [22]  4.000 5.027    19.17      
Ref [34]  4.000 5.027 19.172 
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Table 2 

Comparison study of buckling load parameters 
2 3( / h )m

cr crN N b E for a simply supported isotropic square plate subjected to 

uniaxial  and biaxial compressive loads
*( 0.11,b/ h 20).CNTV  

 
 

Mode
 

 Uniaxial Compression 1 2( 1, 0)   
                Biaxial Compression 1 2( 1, 1)    

 
UD FG-O FG-X UD FG-O FG-X 

1
 

Present 31.1572 18.7988 40.8191 9.5615 7.0039 11.6256 

 Ref [20] 30.9076 18.7534 40.8005 9.3805 6.9161 11.4231 

2 Present   47.9739 35.1408 58.3313 10.6664 9.1219 12.0071 

 Ref [20] 46.9779 34.4733 57.3978 10.3981 8.9197 11.6524 

3 Present 70.5572 49.5965 81.6055 14.5637 9.3992 15.8074 

 Ref [20] 69.3955 48.4971 82.0077 14.0470 9.3380 15.0540 

4 Present 76.3942 55.8230 87.3672 15.5780 13.1982 20.4082 

 Ref [20] 74.5610 54.0994 86.8162 15.3108 12.7496 19.6846 

6.2 Parametric studies 

In the following, buckling analysis of CNTRC plates resting on two-parameter elastic foundations subjected to in-

plane loads is presented. Buckling load parameters 
2 3( / )m

cr crN N b E h  of CNTRC plates under uniaxial 

compression 
1 2( 1, 0)    , biaxial compression 

1 2( 1, 1)      and biaxial compression and tension 

1 2( 1, 1)     are listed in Table 5-7. for various boundary conditions. Poly methyl methacrylate, referred to as 

PMMA and (10,10) SWCNTs are selected as the matrix and the reinforcement materials, respectively. Four types of 

uniform, FG-V, FG-O and FG-X CNT arrangements are considered. The material properties of CNTs are listed in 

Table 3. in various temperatures. The elastic properties of PMMA matrix are considered as: 0.34m  ,  
645(1 0.0005 T) 10 / Km       and (3.52-0.0034 )GPamE T , in which 

0T T T  and 
0 300KT   is the 

room temperature. Values of ( 1,2and 3)i i   for different CNT volume fractions are presented in Table 4. Note 

that 3 20.7  , 13 12G G  and 
23 121.2G G  following the assumptions mentioned in [35]. The CNT volume fraction 

is considered to be 
* 0.12CNTV  . The plate width-to-thickness ratio and thickness are taken to be / 10b h   and 

2.0mmh  . The effects of Winkler and Pasternak foundations considering the influence of each elastic foundation 

parameter on buckling behavior of CNTRC plates subjected to in-plane loads are investigated. Note that for CNTRC 

plates, D defined in Eq. (63) is replaced by 
mD  which is the flexural rigidity of an isotropic plate made of polymer 

matrix.  

It can be seen that as more constrains are applied on the edges of the plate the buckling load parameters are 

increased. Thus the minimum values of buckling load parameters occurred in SFSF boundary conditions and the 

maximum ones correspond to CCCC boundary conditions. In addition, elastic foundation parameters have 

significant influence on the buckling load parameters of the CNTRC plates. In other words, adding elastic 

foundations increases the stability of the plates subjected to various types of in-plane loads. Due to considering the 

shear layer in Pasternak elastic foundations, the buckling load parameters correspond to this type of elastic 

foundation is greater than that of Winkler elastic foundation. Moreover, the most and the least stable CNTRC plates 

on elastic foundations correspond to FG-X and FG-O distribution of CNTs, respectively. This behavior can be 

justified by the fact that in an FG-X CNT arrangement, the CNTs are denser close to the top and bottom of the 

CNTRC plate which leads to higher plate stiffness. Comparing the results in Tables 5-7. shows that the buckling 

load parameters of biaxial compression and tension load 
1 2( 1, 1)     are higher than the other two load cases. 

It implies that applying the tension load along two opposite edges of the plate while the other two edges are under 

compression increases the buckling load parameters of the plate. 

 
Table 3 

Elastic properties of the (10,10) SWCNT in various temperatures 12( 0.175)CNT  [35]. 

Temperature (K)
 

11 (TPa)CNTE  22 (TPa)CNTE  12 (TPa)CNTG  
6

11 ( 10 /K)CNT 
 

6
22 ( 10 /K)CNT 

 
300 5.6466 7.0800 1.9445 3.4584 5.1682 

500 5.5308 6.9348 1.9643 4.5361 5.0189 

700 5.4744 6.8641 1.9644 4.6677 4.8943 

1000 5.2814 6.6220 1.9451 4.2800 4.7532 
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Table 4 

CNT efficiency parameters for different values of volume fractions[35]. 

*
CNTV  1  2  3  

0.12 0.137 1.022 0.715 

0.17 0.142 1.626 1.138 

0.28 0.141 1.585 1.109 

 
Table 5 

Buckling load parameters 2 3( / )m

cr crN N b E h of CNTRC square plate resting on elastic foundations with various boundary 

conditions under uniaxial compression load 
1 2( 1, 0).   

 

  
1 2( , )K K  

  (0,0)
  

(200,0)
  

(200,20)
  

 Mode Boundary Conditions
 

Boundary Conditions Boundary Conditions 

  SSSS SCSC CCCC SFSF SSSS SCSC CCCC SFSF SSSS SCSC CCCC SFSF 

UD 1 15.6687 19.0022 23.2837 13.9767 17.5807 20.9135 23.7434 15.8856 21.3491 24.9620 26.1200 17.7766 

 2 21.6627 22.4830 23.5303 14.5864 22.1407 22.9610 23.9677 16.4954 24.4942 25.3773 26.2132 20.5328 

 3 23.5875 23.9406 24.6433 21.0218 23.8000 24.1531 24.7728 21.4990 25.8915 26.2686 26.8047 23.3855 

 4 24.3504 24.5385 24.7786 21.2969 24.4693 24.6574 24.8874 21.8879 26.4686 26.6677 26.8693 24.2975 

FG-V 1 12.9297 16.2986 20.7859 11.1216 14.8416 18.2101 21.2391 13.0306 18.6100 22.2562 23.6073 14.9233 

 2 18.9200 19.7484 20.9220 11.7937 19.3980 20.2265 21.4147 13.7027 21.7515 22.6413 23.6977 17.7481 

 3 21.0958 21.4517 22.3411 18.2229 21.3083 21.6642 22.4739 18.7002 23.3998 23.7791 24.5087 20.5877 

 4 21.9953 22.1846 22.4731 18.6428 22.1142 22.3034 22.5943 19.1202 24.1135 24.3134 24.5840 21.5337 

FG-O 1 11.0258 14.2375 19.2196 9.2541 12.9378 16.1492 19.7067 11.1630 16.7063 20.2030 22.0740 13.0575 

 2 17.1532 17.9480 19.2579 9.9352 17.6312 18.4261 19.8118 11.8442 19.9847 20.8418 22.1651 15.8906 

 3 19.6411 19.9848 21.1236 16.4446 19.8536 20.1973 21.2584 16.9218 21.9452 22.3125 23.2945 18.8106 

 4 20.7170 20.9010 21.2378 16.6531 20.8359 21.0199 21.3833 17.3474 22.8352 23.0301 23.3884 19.7644 

FG-X 1 18.1843 21.6867 24.4050 16.5002 20.0962 23.5959 24.8631 18.4092 23.8641 26.8287 27.1624 20.2982 

 2 23.0787 23.9360 24.6666 17.0750 23.5566 24.4138 24.9871 18.9840 25.9101 27.1526 27.1887 23.0174 

 3 24.4587 24.8255 25.2289 22.4518 24.6712 25.0379 25.3581 22.9291 26.7627 27.3027 27.3847 24.8147 

 4 24.9801 25.1739 25.3241 22.8341 25.0990 25.2928 25.4145 23.3115 27.0983 27.3810 27.3894 25.7175 

 

Table 6 

Buckling load parameters 2 3( / )m

cr crN N b E h  of CNTRC square plate resting on elastic foundations with various boundary 

conditions under uniaxial compression load 
1 2( 1, 1).    

 
  

1 2( , )K K  

  (0,0)
  

(200,0)
  

(200,20)
  

 Mode Boundary Conditions
 

Boundary Conditions Boundary Conditions 

  SSSS SCSC CCCC SFSF SSSS SCSC CCCC SFSF SSSS SCSC CCCC SFSF 

UD 1 6.0349 7.8678 8.9298 3.2024 6.4177 8.2137 9.2303 3.4389 8.3022 10.0982 11.1149 5.3234 

 2 7.8338 7.8967 9.5777 3.6961 8.1068 8.4455 9.9042 3.8705 9.9914 10.3300 11.7888 5.7550 

 3 7.9155 11.2179 12.8419 7.3003 8.7900 11.6077 13.3086 7.3796 10.6745 13.4922 15.1931 9.2642 

 4 10.7641 12.9278 13.1563 7.4125 10.876

2 

13.0914 13.3136 7.4889 12.7607 14.9759 15.1981 9.3735 

FG-V 1 5.5687 6.9718 8.5746 2.8812 5.9515 7.6458 8.8813 3.1318 7.8360 9.5303 10.7658 5.0163 

 2 6.4646 7.5347 9.0977 3.4344 7.4206 7.8567 9.4990 3.6492 9.3051 9.7412 11.3835 5.5337 

 3 7.7570 10.8374 12.2293 6.6227 7.9484 11.1639 12.5614 6.9729 9.8329 13.0484 14.4459 8.8574 

 4 10.7351 12.0480 12.3863 6.8873 10.847

2 

12.2305 12.7013 7.0861 12.7317 14.1150 14.5859 8.9707 

FG-O 1 5.0582 6.1629 8.0787 2.5693 5.4409 6.8777 8.3874 2.8263 7.3254 8.7622 10.2720 4.7108 

 2 5.5127 7.0041 8.5289 3.0922 6.4688 7.3280 8.9672 3.3381 8.3533 9.2125 10.8517 5.2226 

 3 7.3147 10.2736 11.5755 5.7636 7.5062 10.5738 11.8752 6.5186 9.3907 12.4583 13.7597 8.4031 

 4 10.3192 11.2386 11.6932 6.4301 10.431

3 

11.4290 12.0389 6.5910 12.3158 13.3135 13.9234 8.4755 

FG-X 1 6.6510 8.5124 9.3649 3.5670 7.0337 8.8259 9.6638 3.7951 8.9183 10.7104 11.5484 5.6797 

 2 8.4059 8.7388 10.0101 4.0383 8.5974 9.2418 10.3254 4.1997 10.4819 11.1263 12.2099 6.0842 

 3 9.0915 11.9734 13.3743 7.6816 10.047

5 

12.4017 13.7951 7.7593 11.9320 14.2862 15.6797 9.6438 

 4 11.2055 13.5375 13.6601 7.7935 11.317

5 

13.6929 13.8146 7.8680 13.2021 15.5774 15.6991 9.7525 
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Table 7 

Buckling load parameters 2 3( / )m

cr crN N b E h  of CNTRC square plate resting on elastic foundations with various boundary 

conditions under uniaxial compression load 
1 2( 1, 1).   

 

  
1 2( , )K K  

  (0,0)
  

(200,0)
  

(200,20)
  

 Mode Boundary Conditions
 

Boundary Conditions Boundary Conditions 

  SSSS SCSC CCCC SFSF SSSS SCSC CCCC SFSF SSSS SCSC CCCC SFSF 

UD 1 25.3244 25.3275 25.3277 13.9873 25.3315 25.3345 25.3347 15.8967 27.2271 27.2300 27.2302 17.7815 

 2 25.3324 25.3352 25.3355 21.0259 25.3390 25.3416 25.3419 21.5032 27.2337 27.2362 27.2363 23.3878 

 3 25.3374 25.3416 25.3417 23.1867 25.3458 25.3499 25.3500 23.3989 27.2436 27.2476 27.2476 25.2835 

 4 25.3445 25.3491 25.3493 24.0453 25.3528 25.3552 25.3555 24.1640 27.2470 27.2493 27.2497 26.0486 

FG-V 1 23.1774 23.1815 23.1817 11.1350 23.1853 23.1891 23.1892 13.0445 25.0820 25.0853 25.0854 14.9294 

 2 23.1849 23.1903 23.1908 18.2292 23.1941 23.1987 23.1992 18.7065 25.0921 25.0956 25.0960 20.5912 

 3 23.1888 23.1945 23.1945 20.6670 23.1983 23.2025 23.2025 20.8792 25.0957 25.0997 25.0997 22.7638 

 4 23.1888 23.1954 23.1959 21.6738 23.1992 23.2054 23.2057 21.7925 25.1004 25.1063 25.1064 23.6771 

FG-O 1 22.0546 22.1886 22.1886 9.2697 22.1826 22.1991 22.1992 11.1794 24.0928 24.0984 24.0985 13.0645 

 2 22.0588 22.1912 22.1912 16.4532 22.1897 22.2033 22.2033 16.9306 24.0988 24.1062 24.1065 18.8153 

 3 22.1322 22.1964 22.1972 19.2096 22.1925 22.2079 22.2087 19.4218 24.1026 24.1103 24.1106 21.3064 

 4 22.1584 22.1970 22.1982 20.3968 22.1974 22.2085 22.2097 20.5155 24.1031 24.1107 24.1114 22.4001 

FG-X 1 25.6024 25.6048 25.6049 16.5077 25.6089 25.6112 25.6113 18.4170 27.5035 27.5057 27.5057 20.3016 

 2 25.6045 25.6065 25.6066 22.4541 25.6104 25.6123 25.6124 22.9314 27.5040 27.5058 27.5059 24.8160 

 3 25.6139 25.6162 25.6167 24.0592 25.6203 25.6226 25.6231 24.2714 27.5149 27.5168 27.5169 26.1559 

 4 25.6152 25.6172 25.6173 24.6719 25.6211 25.6230 25.6231 24.7907 27.5152 27.5175 27.5181 26.6752 

              

The variation of buckling load parameters for simply supported CNTRC plates resting on different types of 

elastic foundations under uniaxial compression 
1 2( 1, 0)    , biaxial compression 

1 2( 1, 1)      and  

biaxial compression and tension 
1 2( 1, 1)     versus CNT volume fraction are illustrated in Figs. 2. Three 

cases of foundations, i.e. no elastic foundation, Winkler and Pasternak elastic foundations are considered. The effect 

of UD and FG-X CNT distributions are investigated. The width-to-thickness and aspect ratios of the plates are taken 

to be / 10b h   and / 10a b  , respectively. It can be seen that the buckling load parameters increase with increase 

in CNT volume fraction and its influence decreases for higher incremental increase in 
*

CNTV . This phenomenon is 

more pronounced for biaxial compression and tension load case.  

The variation of buckling load parameters of simply supported CNTRC plates resting on elastic foundations 

under uniaxial or biaxial in-plane loads versus plate width-to-thickness ratio are depicted in Figs. 3. It should be 

mentioned that in this case study the width of the plate, b, is set to be 20 in Eqs. (63), so that unique elastic 

foundation stiffinesses are applied for all b/h cases. 

As expected, by increasing the plate width-to-thickness ratio the buckling load parameters are decreased for all 

in-plane load conditions. 

The dependency of buckling load parameters to aspect ratio ( / )a b  of the simply supported CNTRC plates on 

elastic foundations is delineated in Figs. 4 for two types of CNT distributions. Three in-plane load cases are 

considered. The width-to-thickness ratio and CNT volume fraction of the plates are considered to be / 10b h   and 
* 0.12CNTV  , respectively.  

Fig. 4(a) which corresponds to uniaxial compressive load shows that the buckling load parameters of the plates 

oscillate and tend to reach constant values as plate aspect ratio is increased. Moreover, the effect of increasing plate 

aspect ratio reduces when the CNTRC plates rest on a Winkler or Pasternak elastic foundation. This behavior is 

identical for both the uniform and FG-X CNT configurations. 

The buckling load parameters of biaxially compressed simply supported CNTRC plate decrease while plate 

aspect ratio is raised as shown in Fig. 4(b). Furthermore, the influence of plate aspect ratio on buckling load 

parameters of the plate is alleviated as the plate aspect ratio increase irrespective of their elastic foundation type. 

The behavior of buckling load parameters is different when the compressive load on two opposite edges replaced by 

tension load (see Fig. 4(c)). It can be observed that the buckling load parameters of CNTRC plates increase 

gradually with increase in plate aspect ratio. 
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Fig.2 

Effect of CNT volume fraction on the buckling load parameters of CNTRC square plates with all edges simply supported 

resting on different elastic foundations subjected to: a) uniaxial compression
1 2( 1, 0)    , b) biaxial 

compression
1 2( 1, 1)     and c) biaxial compression and tension

1 2( 1, 1)    . 
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Fig.3 

Variation of the buckling load parameters versus width-to-thickness ratios for simply supported CNTRC square plates resting 

on different elastic foundations subjected to: a) uniaxial compression 1 2( 1, 0)    , b) biaxial 

compression 1 2( 1, 1)     and c) biaxial compression and tension 1 2( 1, 1)    . 
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Fig 4 

Variation of the buckling load parameters versus aspect ratios of simply supported CNTRC square plates resting on different 

elastic foundations subjected to: a) uniaxial compression
1 2( 1, 0)    , b) biaxial compression

1 2( 1, 1)     and c) biaxial 

compression and tension
1 2( 1, 1)    . 

 

The effects of temperature change on the buckling load parameters of the CNTRC square plate resting on elastic 

foundations for three types of in-plane loads are investigated in Tables 8-10. The width-to-thickness ratio and CNT 

volume fraction of the plate are set to be / 20b h   and 
* 0.12CNTV  , respectively. It should be mentioned that in 

this case study the elastic modulus of the matrix, 
mE  used in Eqs. (63) is evaluated in 300KT  , so that unique 

elastic foundation stiffinesses are applied for all temperatures. 

It is concluded that the temperature change has a significant influence on the buckling load parameters of the 

plate on an elastic foundation; i.e. as the temperature is raised the buckling load parameters are decreased. This is 

expectable because of the dependency of material properties of CNTs and the matrix on the temperature in which 

temperature rise attenuates the elastic moduli of both CNTs and the matrix. The dependency of the buckling load 

parameters of the plate on elastic foundation parameters is reconfirmed in Table 8-10. 
 

Table 8 

Buckling load parameters 2 3( / )m

cr crN N b E h  of CNTRC square plate resting on elastic foundations in various temperatures 

under uniaxial compression load 
1 2( 1, 0).   

 
 

1 2( , )K K  

 (0,0)
 

(200,0)
 

(200,20)
  

 Temperature (K)
 

Temperature (K)
 

Temperature (K)
  300 500 700 1000 300 500 700 1000 300 500 700 1000 

UD 26.1057 23.0876 19.0510 4.2124 28.0179 24.9998 20.9632 4.8606 31.7869 28.7687 24.7321 6.7492 

 43.5887 35.6359 26.7181 4.6785 45.5088 37.5560 28.6380 4.8607 54.9617 47.0082 36.4850 6.7497 

 56.9767 46.5687 33.6533 4.7784 57.4547 47.0467 34.1314 4.8612 59.8083 49.4003 38.0871 6.7507 

 62.6708 50.5238 35.9689 4.8140 63.1508 51.0038 36.4489 4.8612 66.9196 54.7726 40.2174 6.7513 
FG-V 19.7152 17.4657 14.6037 3.6418 21.6273 19.3779 16.5158 4.4063 25.3963 23.1468 20.2847 6.2952 

 37.6975 30.3810 22.4989 4.1835 39.6175 32.3010 24.4188 4.4064 48.5081 40.7186 30.8812 6.2956 

 45.6765 37.8870 28.0496 4.3050 46.1545 38.3650 28.5276 4.4069 49.0703 41.7530 33.8677 6.2965 

 51.7224 42.0819 30.4921 4.3489 52.2024 42.5619 30.9721 4.4072 55.9712 46.3307 34.7407 6.2969 
FG-O 15.8222 14.0845 11.9394 3.3200 17.7343 15.9966 13.8515 4.2198 21.5033 19.7656 17.6204 6.1092 
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 32.7486 26.2618 19.4047 3.9479 34.6687 28.1818 21.3247 4.2201 41.3140 35.2598 27.4418 6.1094 

 38.4824 32.4282 24.6102 4.0155 38.9604 32.9062 25.0882 4.2208 44.1216 37.6341 30.7745 6.1104 

 44.3617 36.5138 26.9873 4.0951 44.8417 36.9938 27.4673 4.2209 48.6106 40.7626 31.2359 6.1105 
FG-X 34.2035 29.7376 23.7141 4.4681 36.1156 31.6498 25.6262 4.9141 39.8846 35.4187 29.3951 6.8026 

 52.5930 42.9095 31.7468 4.7938 54.5130 44.8295 33.6665 4.9145 63.9654 54.2807 40.1374 6.8035 

 66.9073 53.3885 37.3057 4.8606 67.3853 53.8665 37.7838 4.9151 69.7389 56.2201 43.1096 6.8047 

 72.6406 57.3839 39.6654 4.8842 73.1206 57.8639 40.1454 4.9153 76.8894 61.6326 43.9136 6.8055 

 

Table 9 

Buckling load parameters 2 3( / )m

cr crN N b E h  of CNTRC square plate resting on elastic foundations in various temperatures 

under uniaxial compression load 
1 2( 1, 1).    

 
 

1 2( , )K K  

 (0,0)
  

(200,0)
  

(200,20)
  

 Temperature (K)
 

Temperature (K)
 

Temperature (K)
  300 500 700 1000 300 500 700 1000 300 500 700 1000 

UD 8.6877 7.1025 5.3250 0.7738 9.0704 7.4853 5.6656 0.9652 10.9549 9.3698 7.5501 2.8497 

 10.6264 8.0934 5.4742 0.8651 10.8178 8.2848 5.7078 0.9771 12.7023 10.1693 7.5923 2.8616 

 13.0525 11.1902 7.2205 0.9839 14.0085 11.3022 7.3325 1.1674 15.8930 13.1868 9.2170 3.0519 

 15.1181 11.5433 9.5247 1.0936 15.2301 12.4993 9.8799 1.3661 17.1146 14.3839 11.7644 3.2506 

FG-

V 

7.5136 6.0553 4.4842 0.7211 7.8964 6.4380 4.8670 0.9126 9.7809 8.3226 6.7515 2.7971 

 9.8573 7.6564 5.1061 0.8377 10.3519 7.8478 5.2976 0.9498 12.2364 9.7323 7.1821 2.8343 

 10.1605 8.7326 7.0595 0.8725 10.8135 9.6887 7.1716 1.1530 12.6980 11.5732 9.0561 3.0375 

 14.9784 11.0272 7.3015 1.0792 15.0905 11.1393 8.2576 1.2551 16.9750 13.0238 10.1421 3.1396 

FG-

O 

6.5273 5.2343 3.8676 0.6694 6.9101 5.6171 4.2503 0.8608 8.7946 7.5016 6.1348 2.7453 

 7.9110 6.9899 4.6421 0.7861 8.8670 7.1815 4.8336 0.8981 10.7515 9.0660 6.7181 2.7826 

 9.3103 7.0422 5.9695 0.8003 9.5018 7.9982 6.6947 1.0952 11.3863 9.8827 8.5792 2.9798 

 14.0225 10.3054 6.5826 1.0215 14.1345 10.4175 6.9255 1.1829 16.0190 12.3020 8.8100 3.0675 
FG-

X 

10.4822 8.5521 6.1322 0.8215 10.8650 8.9348 6.3236 1.0129 12.7495 10.8194 8.2082 2.8974 

 11.8833 9.0745 6.3272 0.9169 12.0747 9.2660 6.7099 1.0290 13.9592 11.1505 8.5944 2.9135 

 16.3393 12.1147 7.8228 1.0438 16.4514 12.2267 7.9348 1.2278 18.3359 14.1112 9.8194 3.1124 

 17.1009 14.8678 10.4448 1.1541 18.0570 15.8237 10.5186 1.4261 19.9415 17.7083 12.4031 3.3106 

 

Table 10 

Buckling load parameters 2 3( / )m

cr crN N b E h  of CNTRC square plate resting on elastic foundations in various temperatures 

under uniaxial compression load 
1 2( 1, 1).   

 
 

1 2( , )K K  

 (0,0)
  

(200,0)
  

(200,20)
  

 Temperature (K)
 

Temperature (K)
 

Temperature (K)
  300 500 700 1000 300 500 700 1000 300 500 700 1000 

UD 75.8529 61.9943 44.4724 4.8658 76.4890 62.6299 44.7100 4.8709 79.6216 65.7613 47.0552 6.7633 

 84.3171 65.6575 44.7770 4.8666 84.5558 65.8961 45.0596 4.8723 86.9052 68.2453 47.1883 6.7657 

 89.9926 68.3662 44.9349 4.8679 90.1192 68.4928 45.3731 4.8742 92.2480 70.6216 47.4390 6.7689 

 93.5428 70.0818 45.3211 4.8687 93.6225 70.1614 45.4010 4.8757 95.6590 72.1980 47.5707 6.7716 
FG-

V 

60.8102 50.4389 37.3393 4.4109 61.4465 51.0750 37.9741 4.4160 64.5794 54.2075 41.1016 6.3085 

 71.1395 56.0622 38.6115 4.4113 71.3781 56.3009 38.8499 4.4171 73.7276 58.6503 41.1989 6.3105 

 78.1396 59.8438 39.7478 4.4124 78.2662 59.9704 39.8744 4.4188 80.3950 62.0992 42.0032 6.3134 

 82.6092 62.2107 40.4922 4.4129 82.6889 62.2904 40.5719 4.4199 84.7254 64.3269 42.6085 6.3158 

FG-

O 

51.2332 43.1724 32.7628 4.2246 51.8695 43.8086 33.3986 4.2298 55.0025 46.9415 36.5301 6.1223 

 62.7055 50.1307 35.2010 4.2247 62.9442 50.3693 35.4396 4.2306 65.2938 52.7188 37.7889 6.1241 

 70.7981 54.8238 36.9200 4.2257 70.9247 54.9504 37.0465 4.2320 73.0535 57.0792 39.1753 6.1266 

 76.1343 57.8086 37.9997 4.2260 76.2141 57.8883 38.0794 4.2329 78.2506 59.9248 40.1159 6.1287 
FG-

X 

89.0677 71.0532 46.5600 4.9194 89.7030 71.3420 46.5733 4.9244 92.8337 73.6897 48.4773 6.8168 

 92.8961 71.1039 46.5618 4.9204 93.1346 71.6800 46.5747 4.9261 95.4838 74.3462 48.4803 6.8195 

 96.0189 72.0930 46.5701 4.9219 96.1454 72.2199 46.5843 4.9283 98.2742 74.7647 48.4896 6.8230 

 98.0327 72.8479 46.5714 4.9231 98.1124 72.9277 46.5860 4.9301 100.1489 74.9646 48.4909 6.8260 
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7    CONCLUSIONS 

In the present study, buckling analysis of CNTRC plates resting on two-parameter elastic foundations has been 

investigated based on FSDT using the EFG method. The effective material properties of the plate were estimated 

based on a micromechanical model and the extended rule of mixture. The effects of various types of CNT 

distributions and volume fractions, plate width-to thickness and aspect ratio, elastic foundation parameters, 

temperature changes and boundary conditions have been studied. Based on present study the following results have 

been obtained.The results of EFG method conform the findings of previous works. 

 Elastic foundation parameters have considerably decreased the values of the buckling load parameters of 

the plate. 

 Increasing the width-to-thickness ratio of the plate decreases the buckling load parameter regardless of 

elastic foundation parameters. 

 The variations of CNT volume fractions and distributions have noticeable effect on buckling behavior of 

CNTRC plates on elastic foundations. 

 The more CNT is used in the plate; the higher buckling load parameters are achieved for all in-plane load 

conditions. 

 The maximum and minimum values of buckling load parameters correspond to FG-X and FG-O CNT 

arrangements, respectively. 

 The effect of plate aspect ratio is diminished for sufficiently large aspect ratios (a/ b 3)  .  

 The buckling load parameters decrease as the temperature rises. 
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