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 ABSTRACT 

 This paper presents a simple method based on strain energy density criterion to study the crack 
initiation angle by finite element method under biaxial loading condition. The crack surface 
relative displacement method is used to eliminate the calculation of the stress intensity factors 
which are normally required. The analysis is performed using higher order four node quadrilateral 
element. The results by finite element method are compared with DET (determinant of stress 
tensor criterion) and strain energy density criteria. Finite element results are in well agreement 
with the experimental and analytical results. 

2010 IAU, Arak Branch. All rights reserved.  
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displacement. 

1    INTRODUCTION 

 N the past few years, several research papers have been published on the finite element methods dealing with self 
similar crack growth under uniaxial loading condition. The problem of non-self similar crack growth was first 

discussed in details by Erdogan and Sih [1]. Since then, several theories have been developed to study the fracture 
behaviour under mixed mode loading conditions. These theories include, the maximum tangential stress (MTS) 
criterion [1], minimum strain energy (SED) theory [2], T-criterion [3], maximum energy release rate theory [4], 
determinant of stress tensor criterion (DET criterion) [5], etc. The use of finite element method (FEM) for the 
solution of elastic crack problem has been the interest of many researchers in the recent years. The use of FEM for 
simulating crack propagation requires an analysis in two steps. The first step is the determination of state of stress & 
deformations in a loaded structure with an inclined crack. The second is to determine the trajectory of the crack 
extension under combined loading. Under mixed mode (mode I and mode II) conditions, Shih [6] has presented a 
full field finite element computation method for crack tip stress and strain fields for power-law hardening materials 
and perfectly plastic materials. The results of Shih’s full field finite element computations indicate the direction of 
initial crack extension and critical load in terms of elastic stress intensity factors for mixed mode problems under 
very small scale yielding and plane strain condition. Obta [7], Saka et al. [8] and Dong and Pan [9, 10] have also 
studied the mixed mode crack tip stress fields for perfectly plastic materials. 

Many investigators [11, 12] have demonstrated regarding the accuracy and sensitivity of solution to mesh 
configuration and type of element used in the analysis. It is demonstrated that minimum element size, node spacing 
in the near tip region and slenderness ratio of individual element are some of the important parameters, which affects 
the accuracy of the result. The result of Guydish and Fleming [12] shows that an optimum size of about 0.005 times 
the crack length (a) near the crack tips predicts the results within an error of 1% with analytical value. The direction 
of initial crack extension in compact tension specimen made of D16AT Aluminium alloy has been determined by 
______ 
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Maiti and Mahanty [13, 14] by using four node quadrilateral element having element size 2.8% of the initial crack 
length. Ju [15] has performed the finite element analysis coupled with least-squares method to find the stress 
intensity factors of a notch formed from several elastic anisotropic materials. Réthoré et al. [16] have proposed a 
hybrid analytical and extended finite element method to study the mixed-mode crack propagation in a double edge 
notched concrete sample. Benrahou et al [17] have used finite element method to estimate the plastic zone under 
mixed mode (I and II) loading. The important aspect of mixed mode crack problem is the prediction of the angle of 
initial crack extension. Ghorbanpoor and Zhang [18] have studied the mixed mode crack growth using the boundary 
element method. They have predicted the crack growth direction by the maximum principal stress theory. However, 
crack surface relative displacement (CSRD) method has been used to eliminate the calculation of the stress intensity 
factors. The investigation of Wang and Chow [19] shows the effect of proportional & non-proportional loading on 
the mixed mode fracture behavior. Sun and Xu [20] have reported some numerical and experimental results on 
mixed mode crack extension for angled crack problem. They have concluded that crack mouth opening angle 
(CMOA) remains constant throughout the range of crack extension, but not the crack tip opening angle (CTOA). 
The direction of initial crack extensions predicted by Maiti and Mahanty [14], based on an elastic finite element 
analysis and maximum tangential principal stress criterion shows quite close results to the experimental. Lee et al 
[21] have determined the angle of crack growth by the crack tip force criterion. They have shown that crack growth 
is always perpendicular to the resultant crack tip force. They have developed an elastic-finite element program to 
determine the angle iteratively. Most of these studies on the prediction of initial crack extension angles by FEM are 
for uni-axial loading conditions. Most of the publications, experimental or theoretical investigations dealing with the 
mixed mode problems are restricted to uniaxial loading conditions only but in practical situation most of the 
structure or components are subjected to biaxial loading also. A very few experimental investigations for biaxial 
loading are available in literature (Seibi and Zamrik [22], Ling and Woo [23], Shlyannikov et al. [24]). 

The study under biaxial loading condition is limited whereas it is experimentally shown by Kibler and Roberts 
[25] that initial crack extension angle depends on this biaxial factor.  Hilton [26] reported the biaxial effect on strain 
intensity factor for mode I case. Lee and Liebowitz [27] performed a nonlinear finite element analysis on finite 
center-cracked specimen subjected to biaxial mode I loading and found that there is a significant biaxial effect on 
the energy rate (global), J integral, stress and strain intensity factor. The importance of retaining the second, and 
constant stress term of the series expression for local stress is demonstrated both experimentally and numerically by 
many investigators [28]. It is shown that the standard singular expressions for the stress and displacement field in the 
vicinity of the crack tip needs to be corrected. It is well demonstrated that crack growth depends upon the initial 
extension of crack. The crack initiation angle depends upon several factors, such as loading configuration, material 
properties, etc. Keeping view of the importance of the crack initiation angle under mixed mode loading, the problem 
has been studied using finite element method. 

In this paper, a thin plate with central inclined crack was analyzed by finite element method and crack initiation 
angles under different biaxial loading conditions were determined. The FEM results are compared with the 
theoretically obtained results. Available DET and SED criteria are modified taking higher order stress solution 
terms. The single, two and three terms of the series stress solution are included in these criteria and comparisons 
have been made. 

2    CRITERION FOR PREDICTION OF CRACK INITIATION ANGLE 

There are several criteria available in the literature to predict the crack initiation angle under mixed mode loading. 
The maximum tangential stress (MTS) criterion and Strain Energy Density (SED) Criterion are mostly used by 
many researchers [29-32]. MTS criterion states that the direction of crack initiation coincides with the direction of 
maximum tangential stress along a constant radius around the crack tip. This criterion is the simplest amongst the 
others and is based on the assumption that material behaves ideally brittle. The SED criterion proposed by Sih states 
that the direction of the crack initiation coincides with the direction of minimum strain energy density along a 
constant radius around the crack tip. The application of the S-factor to fracture prediction is based on two 
hypotheses. 

i. Crack initiation occurs when the strain energy density factor reaches a critical value. 
ii. The initial crack growth takes place in the direction along which the strain energy density factor possesses a 

stationary value. 
SED criterion is the only criterion which shows the dependence of crack initiation angle on material properties. 

The stress intensity factor K, is equivalent to the strain energy density factor (functions) S, when the crack problem 
is linear/elastic. In LEFM (or under the SSY assumption), it is obvious that the SED criterion would predict 
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precisely the same critical stress as what is obtained using either K or G. So, SED criterion begins to differ when one 
goes outside the province of the simplest LEFM case or incase of larger plastic zone around the crack tip. For mixed 
mode (mode I and II) loading, the SED criterion can be expressed mathematically as 
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The factor S depends on   through coefficient aij and therefore gives the description of the local energy density 

on any radial plane intersecting the crack tip. Expressions for aij are available in literature [2]. Differentiating Eq. (2) 
with respect to   and setting the result to zero the crack initiation angle 0 , for given loading and boundary 

condition can be obtained from 
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where (..)' denotes the differentiation with respect to  .  After differentiating the coefficients and substituting in Eq. 
(3 ), it becomes, 
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where  1 3 4= -  for plane strain case and   2 (3 ) / (1 )= - +  for plane stress case. Dividing Eq. (4 ) by KI KII, 
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Because of the stress singularity at the crack tip, obtaining an accurate stress intensity factor from the stress field 

involves very tedious and time consuming computation. Advances in numerical techniques, such as finite element 
method, allows relatively rapid determination of the displacement field in the region close to the crack tip with good 
accuracy. Several investigators have made efforts to derive displacement correlation techniques using FEM results 
for the crack problems [33, 34]. Displacement analysis such as crack surface relative displacement (CSRD) method, 
has proved reliable and easy to use. Consider two points, A and B, on the opposite crack surfaces which are at the 
same distance from the crack tip, Fig 1. The resulting CSRD for mixed mode I and II problems can be obtained by 
simple superposition of the results from the two separate single modes, as shown in Fig. 1. 
 

2 2 2CSRD =COD +CSD  (6)
 

 
   

 

Fig. 1 
The crack surface relative displacement (CSRD) for 
mixed mode I and II fracture problem (COD- Crack 
Opening Distance, CSD- Crack Sliding Distance). 
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where COD is the relative crack opening distance and CSD is the relative crack sliding distance. The crack surface 
relative displacement may be related to the stress intensity factors by two approaches, the conic section simulation 
and displacement method. The conic section method assumes that a crack surface relative displacement can be 
described by an elliptic function. Using the expression given by Sneddon [35], COD, CSD and CSRD may be 
related to the stress intensity factors KI and KII, for mode I and mode II, as follows: 
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where a is the crack length, E is the material constant (modulus of elasticity) and x represents the position at which 
the crack surface relative displacement is computed. The displacement method directly uses the displacement field 
at the front of the crack tip, as expressed by the Westergaard equation. The expression for CSRD is similar to that 
obtained from the conic section method, or 
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where r is the distance from the crack tip. In the numerical analysis, the CSRD values can be obtained from the 
computed displacement results at the nodal points on the crack surfaces. From the Eqs. (7) to (12), we get, 
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Now substituting Eq. (13) in Eq. (5), we get 
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Solving the Eq. (14) we can find out the direction of the initial crack extension angle 0 , thus we may avoid the 

difficulties in determining the stress intensity factors by utilizing the surface relative displacement values, which can 
be easily obtained from FEM analysis to evaluate the crack growth direction. 

3    RESULTS AND DISCUSSION 

3.1 Experimental 

Tests were conducted on 100 kN servo hydraulic universal testing machine (ADMET, USA Make) in static load on 
aluminum and mild steel sheet. The mechanical slits were cut at the centre of the rectangular plate of thickness 0.9 
mm at the required angle of inclination to the loading axis by drilling a hole of diameter 1.5 mm and then cutting the 
crack by a band saw. The cracks at the ends of the slits were created by cutting the ends of the slits further with razor 
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blades by about 0.5 mm each size to make the total crack length of 20 mm. These portions of the crack can be 
considered as natural crack. The detailed of the specimen geometry is shown in Fig. 2. The specimen was fixed in 
the 100 kN servo hydraulic universal testing machine (USA made) in static mode and load was applied 
monotonically at 0.01 mm/sec crosshead speed. The crack initiation and stable crack growth during the static 
loading were monitored by traveling microscope (model RTM-500) and CCD camera (Model Sony Cyber Shot 8 
M.P. DH-7) attached to another computer. The loading was continued till the specimen fractured. The crack 
initiation angle was then measured from the fractured specimen and the crack growth direction 0  is presented. 

3.2 Material and specimen geometry for finite element analysis 

A rectangular plate of 200 mm × 150 mm × 4 mm with an inclined crack is considered for 2-Dimensional finite 
element analysis Fig. 3. The material properties of C15 steel used in this study were taken as E200 GPa and 
 0.3, where E and   represents the modulus of elasticity and Poisson’s ratio, respectively. 
  
 

 

Fig. 2 
Specimen geometry for determination of the crack initiation angle and 
details of the crack geometry. All dimensions are in mm and not to the 
scale. 

   
   

 

Fig. 3 
Specimen geometry for finite element analysis. Dimensions are in mm 
and not to the scale. 
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3.3 Modeling of the crack region 

The most important region in a fracture problem is the region around a crack tip and edge of the crack. In this 
investigation, the edge as well as the crack tip is modeled in a 2-D model. In linear elastic problem it has been 

shown that the displacement near the crack tip or crack front vary as 1 / r , where r is the distance from the crack 

tip. The stresses and strains are singular at the crack tip, vary as 1 / r . Hence, element around the crack tip and 

faces of the crack should be quadratic, with mid side nodes placed at the quarter points. In the present analysis 
PLANE82, four node quadrilateral elements have been used in Fig. 4. The singularity effects near the crack tip are 
solved by introducing 4 node Iso-parametric quadratic structural higher order element at the crack tip region and 
collapsing them into triangular elements at the crack tip. The discretized specimen is shown in Fig. 5. The FEM 
model contained very fine mesh in the vicinity of the crack. Table 1 shows the details of the element, degree of 
freedom etc., for the determination of crack ignition angles for various initial crack angles. 

 

 
Fig. 4 
Four node quadrilateral element, q: element displacements. 

  
  

 
Fig. 5 
Discretization and distribution of stresses for   450. 

  
 
 
Table 1  
Details of discretization of the specimen 
Specimen configuration  Degree of 

freedom 
Mesh generation Purpose 

  (D.O.F)/node    
  600, r/a=.001, different biaxial 
factors 

2 560 node, 372 element, and 1149 
D.O.F 

Crack initiation angle and stress 
analysis 

  450, r/a=.001, different biaxial 
factors 

2 544 node, 524 element and 711 
D.O.F 

Crack initiation angle and stress 
analysis 

  300, r/a=.001, different biaxial 
factors 

2 562 node, 467 element and 1046 
D.O.F 

Crack initiation angle and stress 
analysis 

  150, r/a=.001, different biaxial 
factors 

2 546 node, 360 element and 1142 
D.O.F 

Crack initiation angle and stress 
analysis 
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The crack length, 2a20 mm is taken in the present investigation. The commercial package ANSYS has been 
used for analysis of the problem. The finite element solutions are compared with theoretical and experimental 
results. To compare the FEM results with theoretical results obtained from the strain energy density criterion (SED 
Criterion) and criterion based. On determinant of stress tensor (DET Criterion) have been used. These equations are 
modified by taking two and three terms of the stress solution. The derivations of these criteria are taken from the 
reference [36]. The plots of initial crack initiation angles 0 ,  average from both crack ends and for various crack 

inclination angle , are shown in Figs. 6-10. Fig. 6 compares the FEM results with experimental results for uniaxial 
loading condition. Experimental results of aluminum and mild steel are taken from reference [36-40]. The numerical 
results from FEM show good agreement with the experimental results. Fig. 7 shows the effect of biaxial factor on 
the initial crack extension angle for initial crack angle 600. 
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Fig. 6 
Comparison of crack initiation angle predicted by Finite Element 
Method (FEM) with experimental results. 

  

  

  

Fig. 7 
Comparison of crack initiation angle predicted by Finite element 
method (FEM) with other theoretical predictions under different 
biaxial load for crack angle,    600. 

  

  

  

Fig. 8 
Comparison of crack initiation angle predicted by finite element 
method (FEM) with other theoretical predictions under different 
biaxial load for crack angle,    450. 
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3.4 Crack initiation angle 

It is found that the variation between analytical (FEM) and theoretical results (obtained from two (DET (2) and 
SED (2) and three terms (DET (3) and SED (3) solution) are negligible for all biaxial factors considered in this 
investigation. Here, SED (2) indicates that the SED criterion is modified taking two terms of the series stress 
solution, whereas SED (3) is the strain energy density criterion modified taking three terms of the stress solution. 
Abbreviations for DET are also used in the similar manner. Fig. 8 compares the FEM results with theoretical results 
for initial crack position,  450. It is seen that there is slight discrepancy between FEM and theoretical results for 
biaxial factor, k<0 and this discrepancy tends to narrow for k>0. It is also seen that all results are same under equal-
equal biaxial loads The discrepancy under compressive loads may be due to non-inclusion of closing and frictional 
effects that exits due to the closing mechanism that takes place under compressive load. Under compressive load, the 
crack does not open up but it slides. Hence, this mechanism should be incorporated in the criteria for accurate 
prediction of crack initiation angle under such conditions. In the present investigation, SED and DET criteria are not 
modified to account such effect. It is also seen that the difference increases as the magnitude of compressive load 
increases.  

Figs. 9 and 10 show the variation of crack initiation angle with different biaxial load factors for crack angles < 
450. In these figures, it is seen that the differences between FEM and theoretical results under compressive biaxial 
load are significant. These results show that the stress component normal to the crack tip acting on an element plays 
important role in the crack opening and sliding mechanism. Hence, to correlate this phenomenon with the crack 
growth direction, the variation of stress normal to the crack tip yy  with  ,  where   is the polar coordinate, is 

shown in Fig. 11. Fig. 11 shows that for k-2, yy  is negative for 0 090 90- £ £ , whereas for k-1, it is negative for 

0 060 0- < < , in which the crack initiation direction lies. Similar results are seen for other crack angles, 045  . 
Hence, it can be concluded that the closing mechanism or crack sliding mechanism takes place for crack angle, 
  450 and k<0. Hence, the criteria for the prediction of crack initiation angle should be modified by incorporating 
suitable sliding and closing factor. This requires further investigation to find out these factors. 

From these figures, it is also seen that self-similar crack growth occurs for a particular value of biaxiality factor. 
These critical values of biaxiality factors for initial crack angle,  150, 300, 450, and 600 are 0.375, 0.625, 1.0 and 
0.75, respectively. 

 
 

 

Fig. 9 
Comparison of crack initiation angle predicted by finite element 
method (FEM) with other theoretical predictions under different 
biaxial load for crack angle,    300. 

  
  

 

Fig. 10 
Comparison of crack initiation angle predicted by Finite element 
method (FEM) with other theoretical predictions under different 
biaxial load for crack angle,    150. 
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Fig. 11 
Variation of yy  (r/a=0.1,   450). 

4    CONCLUSIONS 

1. Finite element method supplemented with the crack closure relative displacement method used in SED 
criterion can be used effectively to determine the crack initiation angle under mixed mode loading condition. 
The accuracy of the FEM method is satisfactory when it is compared with other theoretical results from two 
terms or three terms DET and SED solutions. It is satisfactory with the experimental results under uni-axial 
mixed mode condition also. 

2. Self-similar crack growth occurs for a particular value of biaxiality factor 0.375, 0.625, 1.0 and 0.75 for 150, 
300, 450 and 600, respectively.  

3. For tensile –compressive loading and crack angle    450, crack closure or crack sliding mechanism occurs. 
Hence, criterion for the prediction of crack initiation angle for above loading conditions should be modified by 
incorporating suitable crack closing or friction factor. 

REFERENCES 

[1] Erdogan F., Sih G.C., 1963, On the crack extension in plates under plane loading and transverse shear, Journal of Basic 
Engineering 85: 19-27. 

[2] Sih G.C., 1974, Strain energy density factor applied to mixed mode crack problems, International Journal of Fracture 
11: 305-321. 

[3] Theocaris P.S., Andrianopoulos N.P., 1982, The T-Criterion applied to ductile fracture, International Journal of 
Fracture 20: R125-130. 

[4] Hussain M.A., Pu S.L., Underwood J.H., 1974, Strain energy release rate for a crack under combined mode I and mode 
II, Fracture Analysis, ASTM STP 560: 2-28. 

[5] Papadopoulos G.A., 1988, Crack initiation under biaxial loading, Engineering Fracture Mechanics 29: 585-598. 
[6] Shih C.F., 1974, Small scale yielding analysis of mixed mode plane strain crack problem, Fracture Analysis, ASTM, 

STP 560: 187-210. 
[7] Obta M., 1984, On stress field near a stationery crack tip, Mechanics of Materials 3: 35-243. 
[8] Saka M., Abe H., Tanaka S.,1986, Numerical analysis of blunting of crack tip in a ductile material under small scale 

yielding and mixed mode loading, Computational Mechanics 1: 11-19. 
[9] Dong P., Pan J., 1990, Plane strain mixed mode near tip fields in elastic perfectly plastic solids under small scale 

yielding condition, International Journal of Fracture 45: 243-262. 
[10] Dong P., Pan J., 1990, Plane stress mixed mode near tip fields in elastic perfectly solids, Engineering Fracture 

Mechanics 37: 43-57. 
[11] Sedmak A., 1984, Finite element evaluation of fracture mechanics parameter using rapid mesh refinement, Advance in 

Fracture Research, 1095-1106. 
[12] Guydish Jacob J., Fleming J.F., 1978, Optimization of the finite element mesh for the solution of fracture problems, 

Engineering Fracture Mechanics 10:31-42. 
[13] Mahanty D.K., Maiti S.K., 1990, Experimental and finite element studies on mode I and mixed mode (I and II) stable 

crack growth-I, Engineering Fracture Mechanics 37: 1237-1250. 
[14] Mahanty D.K., Maiti S.K.,1990, Experimental and finite element studies on mode I and mixed mode (I and II) stable 

crack growth-II, Engineering Fracture Mechanics 37: 1251-1275. 
[15] Ju S.H., 2010, Finite element calculation of stress intensity factors for interface notches, Computer Methods in Applied 

Mechanics and Engineering 199 (33-36): 2273-2280. 
[16] Réthoré J., Roux S., Hild F., 2010, Mixed-mode crack propagation using a Hybrid Analytical and extended Finite 

Element Method, Comptes Rendus Mécanique 338(3): 121-126. 



266                   P.C. Gope et al. 
 

© 2010 IAU, Arak Branch 

[17] Benrahou K.H., Benguediab M., Belhouari M., Nait-Abdelaziz M., Imad A., 2007, Estimation of the plastic zone by 
finite element method under mixed mode (I and II) loading, Computational Materials Science 38(4): 595-601.  

[18] Ghorbanpoor A., Zhang J., 1990, Boundary element analysis of crack growth for mixed mode center slant crack 
problems, Engineering Fracture Mechanics 36(5): 661-668. 

[19] Wang J., Chow C.L., 1989, Mixed mode ductile fracture studies with non proportional loading based on continuum 
damage mechanics, Journal of Engineering material and Technology III, 204-209. 

[20] Sun Y.J., Xu L.M., 1985, Further studies on crack tip plasticity under mixed mode loading, in: Proceedings of 1985 
Spring Conference, Experimental Mechanics Publication, Las Vegas, 20-25. 

[21] Lee K.Y., Lee J.D., Liebowitz H., 1997, Finite element analysis of slow crack growth process in mixed mode fracture, 
Engineering Fracture Mechanics 56: 551-577. 

[22] Seibi A.C., Zamrik S.Y., 2003, Prediction of crack initiation direction for surface flaws under biaxial loading, Journal 
of Pressure Vessel and Technology 125: 65-75. 

[23] Ling L. H., Woo C.W., 1984, On angle crack initiation under biaxial loading, Journal of Strain Analysis 19(1): 51-59. 
[24] Shlyannikov V.N., Kislovaa S.Y., Tumanova A.V., 2010, Inclined semi-elliptical crack for predicting crack growth 

direction based on apparent stress intensity factors, Theoretical and Applied Fracture Mechanics 53(3): 185-193. 
[25] Kibler J.J., Roberts R.., 1970, The effect of biaxial stresses on fatigue and fracture, Journal of Engineering for Industry 

92: 727-734. 
[26] Hilton P.D., 1973, Plastic intensity factors for cracked plates subjected to biaxial loading, International Journal of 

Fracture 9: 149-156. 
[27] Liebowitz H., Lee J.D., Eftis J., 1978, Biaxial load effects in Fracture mechanics, Engineering Fracture Mechanics 10: 

315-335. 
[28] Hafeele P. M., Lee J.D., 1995, The constant stress term, Engineering Fracture Mechanics 50: 869-882. 
[29] Yan X.., 2006, Multiple crack fatigue growth modeling by displacement discontinuity method with crack-tip elements, 

Applied Mathematical Modeling 30: 489-508. 
[30] Kamaya M.., 2003, A crack growth evaluation method for interacting multiple cracks. JSME International Journal, 

Series A 46(1): 15-23. 
[31] Masayuki Kamaya, 2008, Growth evaluation of multiple interacting surface cracks. Part I: Experiments and simulation 

of coalesced crack, Engineering Fracture Mechanics 75:1336-1349. 
[32] Masayuki Kamaya, 2008, Growth evaluation of multiple interacting surface cracks. Part II: Growth evaluation of 

parallel cracks, Engineering Fracture Mechanics 75: 1350-1366. 
[33] Chow C.L., Lau K.J., 1976, Finite element analysis of cracked bodies to determine stress intensity factors, Journal of 

Strain Analysis 11, 18-25. 
[34] Woo C.W., Kuruppu M.D., 1982, Use of finite element method for determining stress intensity factors with a conic-

section simulation model of crack surface, 20: 163-178. 
[35] Sneddon I.N., Lowengrub M., 1970, Crack Problems in Classical Theory of Elasticity, John Wiley, New York. 
[36] Gope P.C., 2002, Investigation into the crack propagation under static and fatigue loading, PhD Thesis, Ranchi 

University, Ranchi. 
[37] Bahuguna S., Kothari A., Awasthi P., 2001, Study on Mixed Mode Crack Propagation under Uniaxial Tensile Loading, 

B. Tech Project report, Govind Ballabh Pant University of Agriculture and Technology. 
[38] Golos K., Wasiluk B., 2000, Role of plastic zone in crack growth direction under mixed mode loading, International 

Journal of Fatigue 102(4): 341-353. 
[39] Seibi A.C., Zamrik S.Y., 1997, Prediction of crack initiation direction for surface flaws under biaxial loading, in: 5th 

International Conference on Biaxial/Multiaxial Fatigue and Fracture Cracow ‘97 Poland 2, 611-622. 
[40] Ewing P.D., Williams J.G., 1974, The fracture of spherical shells under pressure and circular tubes with angled cracks 

in torsion, International Journal of Fracture 10 (4): 537-544. 


