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 ABSTRACT 

 Dynamic behavior of a circular shaft with geometrical nonlinearity and 

constant spin, subjected to periodic axial load is investigated. The case of 

parametric combination resonance is studied. Extension of shaft center line is 

the source of nonlinearity. The shaft has gyroscopic effect and rotary inertia 

but shear deformation is neglected. The equations of motion are derived by 

extended Hamilton principle and discretized by Galerkin method. The 

multiple scales method is applied to the complex form of equation of motion 

and the system under parametric combination resonance is analyzed. The 

attention is paid to analyze the effect of various system parameters on the 

shape of resonance curves and amplitude of system response. Furthermore, 

the role of external damping on combination resonance of linear and 

nonlinear systems is discussed. It will be shown that the external damping 

has different role in linear and nonlinear shaft models. To validate the 

perturbation results, numerical simulation is used.   

                                                © 2018 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 OTATING shafts are the most important structures used to transmit power and motion. Thus predicting 

accurate dynamic behavior of the rotors is essential. Parametric vibration which is due to dependence of system 

parameters to time is one of the excitation sources that in linear cases can destabilize the system. There are so many 

reports on parametrically excited linear rotor systems. Chen and Ku [1] studied a Timoshenko model of a rotating 

shaft in which axial force was exerted at the end of the shaft. They used finite element method to construct the 

model and applied Bolotin's method to find stability regions. Lee et al [2] investigated a Timoshenko rotating shaft 

with time dependent spin rate. They showed that governing equation of motion is not in standard form of Mathieu – 

Hill equation. The boundaries of instability were presented with respect to different parameters. Sheu and Chen [3] 

proposed a cantilever shaft with concentrated mass. The shear deformation of shaft was included in their work. They 

used Bolotin's method to fine instable regions of the shaft dynamics. The difference between Bolotin's and Floquet's 

methods to find stability boundaries of a rotor with gyroscopic effect was studied by Pei [4]. Bartylla [5] in his paper 

focused on the effect of periodic axial force on non – symmetric rotor and showed that periodic axial force can 

stabilize the motion. Mailybaev and Seyranian [6] studied a finite degrees of freedom linear rotor with presence of 

internal and external damping. The rotor had small axial asymmetry. They presented instability region of that 

system. In another paper, Mailybaev and Korspeter [7] studied the effect of asymmetry in both bearings and rotor on 
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the stability boundaries of the shaft vibration. The Laval rotor model was considered and internal and external 

damping were included to derive equation of motion. It is well known that nonlinearity can stabilize the unstable 

motion and thus true dynamical behavior of a rotor can be obtained by nonlinear analysis. Bolotin [8] investigated 

principal parametric resonances in rotors with nonlinear effects. Nonlinear vibrations of unsymmetrical rotor system 

with concentrated mass model have been studied vastly by Yamamoto and coworkers [9–14]. They reported 

different kinds of nonlinear resonances. Ishida et al [15] investigated forced oscillation of an asymmetrical rotor 

with nonlinear spring characteristics. They discussed theoretically and experimentally the effects of this type of 

nonlinearity on unstable motion of the rotor. Furthermore, Ishida et al [16] studied a continuous horizontal 

asymmetrical shaft was is under gravity influence and had nonlinear spring characteristics. They considered isolated 

and internal resonances that occur in this system. Shahgholi and Khadem [17] analyzed a continuous unbalanced 

shaft which has asymmetry in stiffness and rotary inertia. They studied primary resonance of this system and 

showed that in this case, only forward mode is excited. They presented the effect of various parameters on the shape 

of resonance curves. Shahgholi et al [18] investigated nonlinear vibration of a rotating shaft with multi rigid disks. 

They used multiple scales method. Arani et al [19] analyzed two-dimensional electro-mechanical analysis of a 

composite rotating shaft. The shaft was excited by non-axisymmetric internal pressure and external voltage.  

The above survey shows that the secondary resonance in balanced nonlinear continuous rotating shafts under 

periodic axial force has not been studied. In this paper, the nonlinear dynamic behavior of a slender shaft with 

circular cross section subjected to periodic axial force is investigated. In the present model, rotary inertia and 

gyroscopic effect are considered but shear deformation is neglected and the shaft is assumed to be simply supported. 

The nonlinearity is due to extension of the rotor center line. Free and forced vibration of a circular shaft with this 

type of nonlinearity have been analyzed before. [20 – 21] Here, the source of excitation is parametric excitation due 

to periodic axial force and the type of resonance is combination resonance. Equations of motion are derived by 

extended Hamilton principle and they are discretized by Galerkin method. By the use of multiple scales method, the 

complex form of equation of motion is analyzed and reduced to four first order differential equations. With the aid 

of mathematical operations, these four equations are simplified to one equation which is frequency response 

equation. The effect of various parameters on the shape of resonance curves is investigated.  Specifically, the effect 

of external damping on combination resonance of linear and nonlinear systems is considered. Numerical method is 

applied to equations of motion to validate the perturbation result and it is shown that the results of two methods are 

in good agreement.   

 
  

 

 

 

 

 

 

 

 

 

 

Fig.1 

Schematic view of undeformed and deformed shaft with 

inertial and local coordinate. 

 

2    EQUATIONS OF MOTION  

Fig. 1 depicts schematic view of undeformed and deformed rotating shaft. X–Y–Z frame is an inertial frame and x–y–

z attached to the principal axes of the shaft is local coordinate. The equations of motion are described with respect to 

inertial coordinate system using extended Hamilton principle. u(x,t), v(x,t) and w(x,t) are displacement of a particle 

in deflected shaft at arbitrary location along X, Y and Z coordinate, respectively.  

In derivation of equations, following assumptions are employed: 

1) The shaft is balanced and slender. 
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2) Rotary inertia and gyroscopic effects are included. 

3) Shear deformation and effect of gravity are neglected. 

4) The rotating shaft is simply supported. 

5) The effect of stretching nonlinearity due to extension of the shaft centerline is considered. 

6) External damping is considered. 

7) The periodic axial load is exerted at the end of rotating shaft. 

As mentioned before, extended Hamilton principle is used to derive equations of motion: 

 

 
2 2

1 1

0
t t

nc
t t

T U dt W dt              (1) 

 

where T and U indicate kinetic and potential energies, respectively and 
ncW is due to non-conservative forces. The 

kinetic and potential (strain) energies are as follows [20]: 

 

    2 2 2 2 2 2

1 1 2 2 3
0

1

2

l

T A u v w I I                  (2) 

 

 2 2 2 2

11 11 1 22 2 22 3
0

1

2

l

U A e D D D               (3) 

 

where 

 

 2 2 2 2

1 2
,

A A A

I y z dA I y dA z dA                 (4) 

 

and 

 

 2 2 2 2

11 11 22
,   ,  ,

A A A A

A EdA D G y z dA D Ey dA Ez dA                 (5) 

 

( 1 3)
i

i    is angular velocity of the deformed frame, E and G are elasticity and shear modulus respectively 

and  1 3
i

i   is curvature.  e is strain along the centerline axis which is obtained as follows: 

 

   2 2 2 2 21
1 1

2
e u v w u v w                      (6) 

 

The boundary conditions are [20]: 

 

(0, ) 0, ( , )

(0, ) (0, ) 0, ( , ) ( , ) 0

u t u l t

v t w t v l t w l t

 

    
         (7) 

 

where 
Fl

AE
   and F is axial load which has static and dynamic parts as indicated below: 

 

cosF f P t           (8) 

 

From the above equations and with regard to details presented in references [20] and [22], the equations of 

motion in dimensionless form with presence of external damping are obtained: 

 

cosF f P t           (8) 
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 ( ) 2 2
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e
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0

2 0
l

iv

e
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         (10) 

 

where dimensionless parameters are: 
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
    
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
           

 

      (11) 

 

Here, 
0

r
 
is the radius of gyration of the cross section of the shaft. For simplicity in Eqs. (9) and (10), the over 

bars have been dropped. To analyze the above equations, Galerkin method is applied to Eqs. (9) and (10). The 

solution of Eqs. (9) and (10) are assumed in the form: 

 

( ) ( ),    ( ) ( )n n m mv v x w w x            (12) 

 

where ( )
n

v   and ( )
m

w   are unknown functions of time   and mode shape is  2 sin
n

n x  . Substituting 

(12) into (9) and (10), using Galerkin method for the first mode, the following equation in complex form is obtained: 
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 

       (13) 

 

where 

 

,     Z v iw Z v iw           (14) 

3    METHOD OF MULTIPLE SCALES   

In this section, multiple scales method [23] is applied to determine a first–order uniform expansion for the solutions 

of (13). Here, Z and Z are expanded in the form: 

 

     

     

3

1 0 2 3 0 2

3

1 0 2 3 0 2

, , ,

, ,

Z t Z T T Z T T

Z t Z T T Z T T

 

 

 

 
       (15) 

 

where 0T t and 
2

2T t are fast and slow time scales, respectively and   is a small dimensionless parameter. In 

this method, P and external damping are so scaled that their influence are balanced with nonlinearities. Therefore, 

one may write: 

 
2 2,     e eP P            (16) 

 

Time derivatives in terms of  0T  and  2T  are obtained using chain rule: 
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2

2 2 2

0 2 0 0 22
,    2

d d
D D D D D

dt dt
            (17) 

 

where , ( 0,2)
n

n

D n
T


 


. By substituting Eqs. (15)– (17) Into Eq. (13) and replacing t by
0T , and equating 

the coefficients of the same power of , the following equations are obtained: 
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       (18) 
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       (19) 

 

The solution of (18) can be expressed in terms of the linear free vibration modes as: 

 

     
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       (20) 

 

where 1  and 2 are forward and backward linear natural frequencies, respectively. They are computed as: 
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Coefficients 1A and 2A  are obtained in the next stage. Substituting (20) into (19) yields: 
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      (22) 



 M.S. Qaderi et al.                        254 

© 2018 IAU, Arak Branch 

where NST stands for non-secular terms.  

 

 

4    COMBINATION RESONANCE  

Now, combination resonance of forward and backward modes is considered. By introducing the detuning parameters 

  for describing the nearness of   to 
1 2   it can be written [24]: 

 
2

1 2              (23) 

 

Substituting (23) into (22) and separating secular terms, the modulation equations are obtained: 
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
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2 2 2

2 2
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2 0 

i T
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
 

              (25) 

 

where prime (´) indicates the derivative with respect to 
2

T  and   , 1, 2
k k

k    and   are defined in Appendix A. 

We introduce the polar transformation as follows [23]: 

 
 2

2 2
( ) ( ) ,    1,2k

k k

i T
A T a T e k


         (26) 

 

Putting (26) into (24) and (25), separating real and imaginary parts, the following equations are obtained: 

 

 
1 1 2 1 1 2 2 2 2 2 1 2 2

( ) ( ) ( ) sin ( ) ( )a T a T a T T T T                (27) 

 

 4 3 2
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( ) ( ) ( ) 2 ( ) ( ) ( )cos ( ) ( )a T T a T a T a T a T T T T                     (28) 

 

 
2 2 2 2 2 2 1 2 2 2 1 2 2

( ) ( ) ( )sin ( ) ( )a T a T a T T T T                 (29) 

 

 4 3 2

2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 2
( ) ( ) ( ) 2 ( ) ( ) ( )cos ( ) ( )a T T a T a T a T a T T T T                     (30) 

 

Following transformation is used to transform above non autonomous system to autonomous one [24]: 

 

2 2 2 1 2 2

2 2 2 1 2

( ) ( ) ( )

( ) ( ) ( )

T T T T

T T T

   

   

  

    
       (31) 

 

Multiplying (30) by 
1 1 2

( )a T and (28) by
2 2 2

( )a T , subtracting the results, using (31) the following equation is 

obtained: 

 

 
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  
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        

        

  

      

       (32) 

 

This is a modulation equation governs the behavior of slow time scale of the motion. For steady state response of 

the rotor, a and   are zero. Hence (27), (29) and (32) can be written in terms of  as follows: 

 

1 1 2
sina a          (33) 
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2 2 1
sina a   

 
      (34) 

 

 4 3 3 3 3 2 2
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Multiplying (33) by 
2a  and (34) by

1a , and dividing the results, the following relation between 
1a  and 

2a  is 

obtained: 

 

1

2 1

2

 ,    a a


 


         (36) 

 

Eq. (36) shows the relation between forward and backward amplitudes. In the next section, it will be shown 

that    is nearly one. Now, multiplying (33) by 
2 2 2

( )a T  and (34) by
1 1 2

( )a T , and adding the results, the following 

equation is achieved: 

 

   2 2

1 2 2 1 1 2 1 1 2 2
sina a a a               (37) 

 

     It can be shown that
2 1

   . From this fact and by using (36), we can write (37) and (35) as: 

 

sin          (38) 

 
2

1
cosa            (39) 

 

where 

 

   

2

2

1 22 2

3
,  ,  ,  

1 1

  
  

 


       

    
       (40) 

 

Squaring (38) and (39), adding the results, the frequency response equation is found as: 

 

0.5
2 2 2

1

1
1a




 


  
 

          (41) 

 

Eqs. (41) and (36) explicitly compute forward and backward amplitudes of the motion in terms of system 

parameters in the case of combination resonance. 

4    NUMERICAL EXAMPLES  

In this section, numerical examples are considered to examine the behavior of system. All the parameters which are 

used in this section are non-dimensional parameters. In all cases
2

10.25,   0.000625I   , 0.0003,   0.0565f    
except where other values are mentioned. 

Fig. 2 shows the frequency response curves for forward and backward amplitudes, i.e. 
1a  and

2a . One can obtain 

from (36) that    is almost one so the amounts of both amplitudes are nearly equal. Stationary points of Eq. (41) 

may be stable or unstable. One can use Jacobian matrix of (38) and (39) to show the stability of these points [24]. In 

Fig. 2 solid lines and dotted lines are used to indicate stable and unstable branches. It is obvious from Fig. 2 that 

jump phenomenon is possible. The numerical integration of discretized equations of motion has been used to 

validate the result of analytical solution. It is seen from Fig. 2 that both solutions are in good agreement. This graph 
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also shows hardening type because the curves are bent toward the side of increasing exciting frequency. For further 

discussion about details of Fig. 2 one can refer to [24]. 
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Fig.2 

Frequency response curves of 
1a  and 

2a for 0.01e   

and
1 20.056.P a a  .  

 

Fig. 3(a) shows time history of the system when the response reaches to steady state. The Fourier transform of 

this graph has been indicated in Fig. 3(b). The graph shows amplitudes of forward and backward frequencies. It is 

obvious that both forward and backward amplitudes are equal and this is in agreement with previous result from 

(36). 
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(b) 

Fig.3 

a) Time history and b) Fourier transformation for 0.01e  , 0.056P   and 0.02.    

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 

The various regions in parameter space for 0.01, 0.056.e P    

 

Here, the effect of damping on the system response is discussed. To do this, one can rewrite (41) as [24]:  
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where ,        and    . It is obvious that right hand side of (42) should be positive and as a result the 

following relations are obtained: 

 

 
0.5

2 2 21
  

 

  


 

       (43) 

 

Fig. 4 shows that the  -plane (parametric plane) is divided into three regions by the curves governed by (43). It 

can be seen that below the line    , the response always decays and it shows the effect of damping in the 

system. Some authors [24, 25] showed that external damping may have a destabilizing effect on combination 

resonances in linear systems. 
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Fig.5 

Stability regions of linear system for 0.056P   when a) 0e  , b) 0.03e  , c) 0.053e  . 

 

The possibility of this effect is examined here by neglecting nonlinear terms in (24) and (25) and we put the 

following equation in them: 

 
  22

1 2 1 2 2 2 2 2
( ) ( ) ,   ( ) ( )

i Ti T
A T a T e A T a T e

   
         (44) 

 

with regard to reference [24], and noting that
1 2

      , one can obtain stability boundaries of linear system 

as follows: 

 

  

   

2 1 2

0.5
22

2 1 1 2
1

  


   


  
 

    

       (45) 
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In absence of damping, Eq. (45) reduces to
 

1 2
  


 

 


. So when damping is present in system and since 

in general case
1 2
  , the external damping is destabilizing if: 

 

    2 22 2

2 1 1 2
1   



            (46) 

 

This relation is the same with the result in reference [24]. 

 

 
 

 

 

 

 

 

 

 

 

 

 

Fig.6 

Variation of line slope corresponding to instability boundaries 

with respect to damping. 

Fig. 5 shows stability boundaries of the linear system in three cases. In case (a), there is no damping in system. 

Case (b) indicates destabilizing effect of external damping when condition (46) is satisfied and in case (c), the 

stabilizing effect of damping has been shown. The change of line slope with respect to 
1 2

   has been indicated in 

Fig. 6. In this figure, the slope of line is 71.22 for zero damping. A horizontal line is drawn to indicate the separation 

of stable region from unstable region according to variation of damping. In other words, below the horizontal line is 

the region where the line slope of the linear system with damping is less than a same system with no damping and as 

a result, damping has destabilizing effect. When the amount of horizontal line reaches to 1.038 (i.e. 
1 2

1.038   ), 

damping stabilizes the system. 
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Fig.7 

Effect of damping in parametric space for 0.056P  . 
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Fig.8 

Frequency response curves of 
1a  and 

2a for different 

e when 0.056P  . 

 

According to Fig. 6, the variation of line slope with respect to damping is linear when
1 2

0.8   . From this 

point, the variation of line slope becomes very rapid and with a small variation in
1 2

  , a big variation in slope of 

the line occurs. Now, we turn our attention to nonlinear case. From (43) and Fig. 4, it is obvious that external 

damping in nonlinear system can increase region 1 and reduce region 2 as indicated in Figs. 7 and 8. So, one can say 

that unusual effect of external damping on combination resonances of linear system is not valid in nonlinear system 

with same conditions. In other words, considering the nonlinearity is necessary in computation of unstable region. 

The external damping has great influence on nonlinear system by reducing region 2. If damping exceeds some 

specific value, then the response of system always decays.  

In Fig. 8, the graph has been plotted for three values of damping. By increasing damping coefficient, the distance 

between stable and unstable branches reduces until two branches completely disappear.  
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Fig.9 

Stability regions of linear system for different periodic axial 

load when 0.05e  . 

  

 
 

 

 

 

 

 

 

 

 

 

 

Fig.10 

Effect of periodic axial load in parametric space for 0.05e  .  

Now, the influence of axial load on the behavior of response is considered in both linear and nonlinear cases. 

Fig. 9 shows stability boundaries of linear system. With increasing dynamic part of axial load, the region of 

instability grows. It is clear from (45) that increasing of P decreases the slope of graph and hence the instable zone 

increases.  
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Although, in the nonlinear system, the same result is obtained but, nonlinearity limits the amplitude of vibration 

and as a result, region 2 in Fig. 10 does not indicate unstable response. With increasing P, the graph of Fig. 10 

becomes wider. 

 

 

 

 

 

 

 

 

 

 

Fig.11 

Frequency response curves of 
1a  and 

2a for different P when 

0.01.e   

 

 

Fig. 11 shows frequency response curves for different amount of dynamic axial load. For a constant frequency, 

with increasing P, the response grows. It is also seen from Fig. 11 that the distance between stable and unstable 

branches changes with variation of P. 
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Fig.12 

Variation of amplitude 
1a  and 

2a with respect to   for 

0.01, 0.056.e P     

 

 

It should be noted that to avoid confusion, the solutions with zero amplitude have not been shown in Figs. 8 and 

(11). Figs. 12 and 13 show the amplitude of response with respect to spin and rotary inertia for three different 

frequencies. In both cases, the amplitude of vibration almost does not vary with variation of   and 
2

I . In fact, 

variation in spin or rotary inertia just changes the amount of natural frequencies and has not any influence on 

amplitude. One can test that in linear case, the width of unstable region does not change with increasing or 

decreasing of spin or rotary inertia.   
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Fig.13 

Variation of amplitude 1a  and 2a with respect to 2I  for 

0.01, 0.056.e P    
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5    CONCLUSIONS 

In this paper, the dynamic behavior of a balanced nonlinear rotating shaft under a periodic axial load with presence 

of external damping was investigated. Rotary inertia and gyroscopic effects were included but shear deformation 

was neglected. To analyze the system, multiple scales method was used to derive a set of four first–order nonlinear 

ordinary differential equations describing the modulation of amplitudes and phases of forward and backward 

whirling motion. These equations were simplified to one algebraic nonlinear equation by some mathematical 

operations. The stability of system was ascertained by determining the sign of eigenvalues of the corresponding 

Jacobian matrix. The type of excitation was combination resonance due to periodic axial load. The effect of various 

parameters on system response was discussed and the influence of external damping on linear and nonlinear system 

was clarified. 

The most important results of the paper can be expressed as: 

 Trivial and nontrivial solutions coexist. 

 External damping on combination resonances of linear system may have destabilizing effect but in 

nonlinear system, it always reduces the amplitude and from a specific amount of damping coefficient, the 

response decays to zero for all frequencies. 

 By increasing periodic axial load, the distance between stable and unstable branches getting wider. 

 Variation in spin and rotary inertia does not mainly change the amplitude.   

 The results of numerical simulation and the perturbation solutions are in good agreement. 

APPENDIX A 
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