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 ABSTRACT 

 In this investigation, a suitable algorithm for the detection of cracks 

in the pressure vessels is presented. The equations of motion for the 

vessel are obtained and transferred into the wavelet space in a 

simplified form resulted from time and position approximations. The 

locations of cracks are randomly distributed in different regions of 

the structure to cover the whole geometry of the pressure vessel. 

Furthermore, the pressure vessel is installed vertically with a fixed 

end at the bottom of each of its four leg supports. Then, the results 

are transferred to the wavelet space using Daubechies wavelet 

families. From the comparison of the displacement results associated 

with the intact and damaged vessels, it can be clearly seen that the 

crack location can be accurately detected noting the alteration in the 

wavelet output diagrams .The results of the crack detection show that 

with the proper selection of the wavelet type, the wavelet based finite 

element method is a suitable and nondestructive method as well as a 

powerful numerical tool for the detection of cracks and other 

discontinuities in the pressure vessels. The results of this 

investigation can be used in the marine and aerospace industries as 

well as power stations. 

                                     © 2020 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 TRUCTURAL health and identifications of defects associated with steel structures are important problems in 

the industry. Crack growth is a crucial factor that can result in the structure failure and, therefore, should be 

considered as a destructive factor regarding the structural integrity. Various methods are presented in the literature in 

order to address the practical issue of Damage detection in the structures that is of crucial importance in the industry. 

Gudmaunsom [1] used turbulence method for the identification of changes in the natural frequencies of the 
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structures due to cracks showing that Damage can lead to changes in the mechanical properties of the structure. 

According to the mechanical principles of the structural theory, the static and dynamic response of a structure is 

related to its stiffness. Any sort of changes in the stiffness of the structure will be accompanied by changes in the 

static and dynamic response. By investigating the response of structures, one can determine the characteristics of 

defects [2]. Dynamic systems are dependent on vibration mode shapes that are obtained by physical properties and 

space distributions. Prediction of response of a structure to vibrations or external loadings, have many applications. 

This prediction is done based on an exact mathematical model that can be obtained by modal analysis. Modal 

analysis as a nondestructive and useful test gives valuable information about the degree of safety of structures and 

economic decisions related to them [3]. One of the first studies about crack detection using wavelet method have 

been done by Li et al [4]. Another study about determining specification of damage have been done Samii and Lotfi 

[5] in which they present a method based on wavelet finite element. Douka et al [6] investigated diagnosis of the 

location and depth of crack in cantilever beams by using wavelet transform. Bagheri et al [7,8] presented a method 

by using 2D discrete wavelet transform for detecting damage in plates. Rizos et al [9] offered a way from 

measurement range in tow point of a cantilever beam that vibrates in one of the natural modes. In addition, an exact 

comparison between the two methods –natural based and mode shape based– for detecting damage in beam 

structures are released by Kim and Melhem [10]. One of the common points in all researches is that the methods are 

more sensitive to changes in mode shapes rather than in natural frequencies. Ovanesova and Suarez [11] studied a 

beam subjected to static and dynamic loads using different discrete and continuous wavelet transform. The proposed 

method is based on the assumption that the structural damage cause disorder in the structural response. Although 

this disorder may not be recognizable in the direct study of structure response but by establishing the continuous 

wavelet transform coefficients or partial signal of discrete wavelet transform, lack of uniformity of the signal can be 

identified. The results show that the location of crack can be identified with high accuracy. Khatam and Golafshani 

[12] showed that it is impossible to detect the damage in intact and damaged beam using Fourier spectrum and it 

requires a tool that locate the propellant of small changing in signal frequency content. Cawely and Adams [13] used 

an experimental method from changing in natural frequencies for locating crack and finding its depth. Gokdag and 

Kompaz [14] successfully detected damage in beams by compound discrete and continuous wavelet transformation. 

In this method, mode shapes of damaged structures have been considered as a combination of mode shapes of intact 

structures and factors such as error due to measurement and local damage. Rucka [15] investigated the effect of 

mode orders on ability of damage detecting in structures. For the detection of damage, he used continuous wavelet 

transform of normalized mode shapes. For this purpose, he studied the numerical and experimental analysis of eight 

modes of a cantilever beam. At the end, he found out that the higher the order of mode shapes, the higher the chance 

of achieving a reliable result which overall indicates higher mode sensitivity. As an extension of wavelet based 

crack detection concept to the laminated structures, Tao et al [16] studied the dynamic responses of cracked fiber 

metal laminated (FML) beams under the action of a moving load using the modal expansion theory and Newmark 

method. They employed continuous wavelet transform (CWT) for the crack detection in the Euler-Bernoli FML 

beam and showed that various parameters such as crack depth and crack location as well as ply angle of the fiber 

layer have significant effect on the free and forced vibration of the FML beam.  In a more recent experimental 

investigation Mardasi et al [17] developed an optimized wavelet analysis performed on a deflected aluminum 

cantilever beam. They introduced optimized scale factors into the Gabor wavelet transformation scheme and 

employed the windowing functions in order to address the issue of wavelet edge effect that arises around the 

boundaries of measured data. They showed the aforementioned spatial wavelet analysis is highly sensitive even to 

the small cracks with a size less than 10% of the beam height. 

In this paper, the cylindrical pressure vessel and cracks with proper definition of mesh regions are modeled in the 

Abaqus software. Then, the results are transferred into Matlab software for further wavelet analysis. The overall 

procedure presented in this investigation can be reconstructed in the same manner for other specific problems with 

regard to the detection of any type of structural damage specially cracks in the structures including cylindrical shell 

parts such as pressure vessels. 

2    CYLINDRICAL COORDINATE SYSTEM 

Considering the geometry of the vessel, cylindrical coordinate system with three coordinates z, θ, and r is employed 

and the governing differential equations are derived based on the symmetrical displacement assumption with respect 

to the circumferential direction. As a result, only the axial and radial displacements are included in these equations, 

which can be denoted, by w and u, respectively. 
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Therefore, one can show that the equation of motion corresponding to the radial direction for the isotropic 

cylindrical vessel can be written as: 

 
2

2

0 2
( 2 )µ

t
 

 
   


 

 

(1) 

 

On the other hand, in the simple form as: 
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where 2

0  is an operator acting on the variable  which will be defined shortly, ,µ  are Lame constants,   is 

density, t  is time, and 
dc  is a constant which can be calculated as: 
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In addition, the second equation of motion with respect to the circumferential direction can be expressed as: 
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Alternatively, in the general form as: 
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where 
sc is simply expressed as: 
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which represent operators acting on ,  denoting the generalized radial and circumferential strain components 

[15], respectively, with defining expressions as: 
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with simple mathematical manipulation of Eqs (8) and (9), and using the operators defined in Eq. (7), one can show 

that the displacement components can be expressed in terms of generalized strain components as: 
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In addition, stress-displacement relations can be expressed as: 
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where 
r  and 

z  are the radial and axial components of stress. 

3    WAVELET-BASED DAUBECHIES 

In this section, the wavelet-based finite element (WBFE) method as the main approach for the crack detection 

procedure is employed using Daubechies wavelet family as mother wavelet function. Mother wavelets that are the 

basis of wavelets are of the form
, ( )j k t . As it is a pivotal requirement for all functions prior to the qualification as 

basis for a particular space, they are orthogonal and span the 2L  space corresponding to the set of values chosen 

from | R . 

Each wavelet has two defining components that are scaling and shifting characteristics with specific notations as 

( )t  and ( )t  related to the scale and mother functions, respectively. Their implicit form of function can be 

presented as: 
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where the coefficient ka  is regarded as the wavelet filter coefficient which is specific to each wavelet and its 

particular scale value. 

3.1 Time estimation 

The first step in the WBFE formulation is the simplification of equations of motion, namely Eqs. (2) and (5). In this 

regard, the generalized strains ,  and partial differential operators 2 ( 0,1)n n  are introduced to the wavelet 

domain based on the discretization of time domain with respect to the orthogonal wavelet basis.  

Dividing the function ( ), ,r z t to n points within [0, ]ft  time and noting that 0,1,2,..., 1n    are arbitrary 

sampling points, one can write 

 

( )t t    (16) 

 

where ( )t  is time between two sampling points. 

In addition, ( ), ,r z t  can be approximated using the wavelet function ( )t  in an arbitrary scale such that 
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In which k belongs to the set of real numbers, namely | Z . 

For convenience, from now on 
k will be used instead of ( , )k r z with the same meaning. Therefore, 

introducing Eq. (17) into Eq. (2), gives 
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It should be noted that the scale operator ( )k    is appeared in both sides of the Eq. (18). Making use of the 

orthogonality of wavelet functions and knowing the fact that Eq. (18) can be treated separately as n partial 

differential equations (PDEs), one can show that 
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where 0,1,2,..., 1j n  , N is the order number of Daubechies wavelet, and 2

j k  is the connection coefficient of 

second degree which can be calculated from 
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For this compact wavelet type, 1

j k and 2

j k  in the range of 2k j N    to 2k j N    are always 

nonzero [18]. Examining Eq. (19), one can simply verify that it is a possibility for the coefficient of j  in some 

cases to be out of time period range[0, ]ft , namely when 0j   or 1j n  . These coefficients have to be checked 

and analyzed using finite element method within finite domain properly [19]. In the present work, an extrapolation 

wavelet-based method is used in order to address the issue of boundary points. 

Eq. (19) can be further simplified as follows: 
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where 1[ ]  is the first order connection coefficient matrix and it can be calculated based on wavelet-based 

extrapolation. Using the eigenvalue analysis, the aforementioned set of PDEs can be separated as follows: 
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where   is diagonal matrix containing eigenvalues and   is the eigenvector matrix of 1[ ] . It can be shown that 

eigenvectors have the form ji  where 1i   . 

Accordingly, PDEs related to the Eq.  (22) can be presented separately as: 
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where ˆ j can be calculated as: 
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1ˆ
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Performing the similar procedure described in this section on Eq. (5) results in the following final modified form 

of PDEs 
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where as mentioned earlier in this section 0,1,2,..., 1j n  . 

In addition, final modified form of Eqs. (10-13) can be rewritten as follows: 
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where the superscript ^  indicates the modified form of variables in Eqs. (26-30). 

3.2 Spatial estimation 

Using the same procedure mentioned in subsection 3.1, transformed variable ˆ j  can be further discretized in the 

spatial domain [0, ]zL  to n points, where zL  is the length in the z direction. 

In this subsection sampling points denoted by 0,1,2,..., 1m    are related to the spatial variable such that 
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where z  is the interval between two sampling points. 

Similar to the Eq. (17) in the previous subsection, ˆ ( , )j r z  can be introduced into the wavelet space as follows: 
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In which l, as shifting parameter, belongs to the set of real numbers, namely | Z . 

Applying the wavelet transformation presented in Eq. (32), one can rewrite Eq. (24) as follows: 
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Invoking the orthogonality condition of wavelet functions, one can rewrite Eq. (33) in terms of the connection 

coefficients knowing 0,1,2,..., 1l m  as follows: 
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where N is the order number of Daubechies wavelet. 

In this equation some coefficients in the vicinity of the boundary, namely 0i   or   1i m  , which are not in 

the range [0, ]zL  can be analyzed using extrapolation technique as mentioned in the previous subsection. It should 

be noted that for the fixed-free boundary condition presenting the formulations using the matrix notation is a suitable 

approach. In addition, incorporating it in the numerical wavelet-based finite element method is a straightforward 

way of presenting the concepts. 

Now after determining the unknown coefficients that are out of time and spatial domains, due to the boundary 

condition, internal coefficients can be rewritten as follows: 
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where 1[ ]  is the first order coefficient of connection matrix and can be expressed as: 
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where Y is a constant.  

Denoting eigenvalues by 
ii  where 1i   , Eq. (35) can be further simplified as: 
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where the superscript ~  indicates the second modification (spatial modification) of variables. 

Performing the similar procedure of spatial modification presented in this section on Eq. (26) results in the final 

form  
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Similarly, introducing spatial transformations into Eqs. (27-30), one can rewrite them as follows: 
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3.3 Wavelet calculation 

The obtained equations in the previous subsection have coefficients similar to the governing equations of the beams 

and plates. These coefficients are functions of radius r. 

In order to solve Eqs. (37-42) for any desired transformed variable, one can assume that the solution of 
iju and 

ij to be of the form 
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where k is the wavelet number in the direction of r. 

Substituting Eqs (43) and (44) in Eqs (37) and (38), one can show that the resulting equations can be expressed 

as: 
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where the above equations can be solved to obtain wavelet-based number k  for any specific range. 

 These equations are solved using polynomial eigenvalue method similar to the Chakraborty and Gopalakrishnan 

[20]. Eigenvalue equations can be expressed in the form 
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3 2 1 0 0k k k   A A A A  (47) 

 

where 1 2 3 4, , ,A A A A  are the 2 2 matrices obtained from the WBFE which are the exact fractions of Nyquist 

frequencies ( nyqf ). This fraction which is denoted by Np , is dependent on the Daubechies wavelet order number 

N.  

4    RESULTS AND DISCUSSION 

In this section, in order to perform the numerical analysis, a pressure vessel model with fixed ends at the bottom of 

the supporting legs is created in the Abaqus software. Dimensions, Geometrical features, and mechanical properties 

as well as pressure forces are the same for all cases of the analysis. The material properties required for the analysis 

are those of steel with the Young's modulus of 6 22.1 10 ( / )kg cm  and Poisson's ratio of 0.29. In addition, with 

respect to the linear elastic assumption for displacement response of the pressure vessel, the internal pressure has a 

value of 5 (bar). The length of the vessel where the cracks are located is 1000 (mm) with the internal radius 

350(mm) and the external one 500(mm). Furthermore, the cracks have the length of 1(mm) and the depth of 20(mm), 

which after the mesh generation can be shown as depicted in Fig. 1. 

Based on the results from the pressure vessel model, there are different displacement components in each 

direction of the coordinate system. The total magnitude of these components in the case of intact vessel is depicted 

in Fig. 1 that also includes the geometry of the vessel without mesh using Abaqus software. 
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Fig.1 

From the top left to the bottom: Geometry of the pressure 

vessel, displacement results in the intact pressure vessel, 

and mesh generation results in the vicinity of the crack. 

 

The next step is introducing cracks in the length direction of the vessel, and then evaluating the displacement 

field across different paths including elements and their intersections on the outer curvilinear edges of the pressure 

vessel. This time the results for the two components of displacement across the vessel with a crack are shown in Fig. 

2 that can be used together with the same data obtained from the case without crack for further numerical analysis as 

mentioned earlier in the previous section.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.2 

The results of evaluations of displacement components in 

the length (top picture) and thickness (bottom picture) 

directions in the vessel with a crack. 

 

Finally, the displacement data is gathered using different paths and transferred to Matlab software for the 

wavelet analysis. 

Fig. 3 shows the results for wavelet analysis based on continuous scale range from 1 to 64 for the vessel without 

crack. For this purpose a wavelet function of Daubechies 4 is used which is a built-in wavelet function of Matlab 

software as well. As expected, no crack is detected in the small-scale numbers that are highly sensitive to any 

changes in the mechanical response of the structure. However, with increasing the scale numbers the discontinuity 

resulting from the sudden changes related to the very ends of the results has more dominating effect near the end 

locations where data is not available beyond those boundaries.  
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Fig.3 

Wavelet analysis of the results for the intact vessel 

including a continuous wide range of scales from 1 to 64. 

 

In order to further, illustrate the arguments made in the previous paragraph, The discrete results for small scale 

numbers for the wavelet analysis of intact vessel by Daubechies 4 is depicted in Fig. 4 which, again, confirms that 

no alteration is detected in the results regarding to the crack presence. 

 

 

 

 

 

 

 

 

 

 

 
Fig.4 

Daubechies wavelet analysis of intact pressure vessel. 

 

The following Figure (Fig. 5) in which the maximum points of compression coefficients are evaluated shows the 

locations where the maximum similarity occur between the rough curves of the wavelet function and the mechanical 

response curve. The importance of these results lies within the comparison between the intact and damaged cases. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.5 

The maximum points of compressions in the intact vessel. 

 

Incorporating the results for the model with a crack at 200 (mm) and performing the same procedure as explained 

for the model without crack, the resulting numerical data can be depicted as shown in Figs. 6-7. 
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Fig.6 

Wavelet analysis of the results for the vessel with a crack 

at 200 (mm) including a continuous wide range of scales 

from 1 to 64. 

  

  
Fig.7 

Wavelet analysis results for the vessel with a crack at 200 (mm) which can be compared to the results of Figs. 4-5 obtained for 

the intact vessel (The left picture corresponds to small scale wavelet analysis while the right one depicts the Maxima lines for 

a wide range of scales from 1 to 64 related to the maximum points of compressions). 

 

Using these results Figs. 6-7 and comparing them with the intact case, it is clear that the crack and its location is 

predicted accurately by wavelet analysis. As mentioned earlier in this section, it is suitable to use lower scales since 

they give more accurate results in terms of prediction of the crack location; however, as it can be seen from Figs. 3-

6, the analysis results can be directly presented for any scale number. Now in order to present the results for higher 

scale numbers, scale number 30 is chosen and its results are shown in Fig. 8. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.8 

Curve with the scale number 30 from wavelet analysis of 

the pressure vessel with a crack at 200 (mm). 
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As the results suggest, at the higher scales the results can be useful for the determination of the approximate 

range of the crack location and cannot be used to verify the exact location. All of the aforementioned process can be 

repeated for a crack located at 400 (mm) which gives the following results Fig. 9 and 10. 

 

 

 

 

 

 

 

 

 

 

 
Fig.9 

Continuous wavelet transform of the results for the vessel 

with a crack at 400 (mm) including a continuous range of 

scales. 

  

  
Fig.10 

Wavelet analysis results for the vessel with a crack at 400 (mm) which can be compared to the results of Figs. 4-5-7. 

 

It can be seen that the crack at 400 (mm) is properly detected in the above Figs. 9-10. As the results show, the 

crack in the length direction of the vessel can be detected very effectively using wavelet-based finite element 

method. By comparing the intact vessel results to those of the vessel with crack, one can easily locate the crack by 

noting the alterations in the behavior of numerical charts that is a suitable and more importantly a nondestructive 

method for detecting cracks. Moreover, the same results can be obtained for other directions in the vessel as it can 

be seen in the following Figure from the analysis data of the vessel with crack located at r=470 (mm), Fig. 11. 

 

 

 

 

 

 

 

 

 

 

 
Fig.11 

Daubechies wavelet analysis of the pressure vessel with 

crack located at r=470 (mm). 
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The same procedure can be performed using Haar wavelet type in which the results indicate no alteration in the 

location of the cracks. It is clear that there are no difference between analysis of the vessel in the presence or 

absence of the crack in the case of employing Haar wavelet. Therefore, Haar wavelet is unable to give any 

information regarding the presence of the crack or its location. In addition, in order to further illustrate the 

capabilities of powerful algorithm for crack detection presented in this work, the cracks located in the 

circumferential direction of the vessel were analyzed. The results of continuous wavelet analysis, maximum points 

of compressions, and small-scale analysis are shown in Figs. 12-14, respectively. The crack is successfully located 

and the presented algorithm properly magnified the small perturbation in the deflection curve caused by a crack at 

245
0
 with respect to the origin of circumferential coordinate.  

 

 

 

 

 

 

 

 

 

 

 
Fig.12 

Continuous wavelet transform of the results for the vessel 

with a crack at 2450 including a continuous range of scales. 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.13 

The maximum points of compressions for the vessel with a 

crack at 2450. 

  

 

 

 

 

 

 

 

 

 

 

Fig.14 

Daubechies wavelet small-scale analysis of the vessel the 

vessel with a crack at 2450. 

5    CONCLUSION 

Crack location can be located by comparison between the intact and damaged vessels noting that the behavior of the 

analysis diagram alters in the crack location. Thus, wavelet-based finite element method, which is presented as an 
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integrated algorithm in this work, is a powerful tool and a numerical approach for the crack detection. It should be 

noted that this method is defined as a nondestructive way for detecting the cracks and other types of discontinuities 

in the structures. As the results suggest, a powerful wavelet type for this purpose is the Daubechies wavelet family. 

As it is mentioned in the paper, using the scale and transfer properties in the proper wavelet functions, any type of 

damage and discontinuity can be located in the structures. Another important investigation in this study is the 

comparison of the results based on the types of wavelet functions used in the analysis. For this purpose, two wavelet 

functions including Daubechies wavelet family and the Haar wavelet were used. The results showed that the latter 

proved to be not useful for the detection of crack in this study indicating that the selection of the wavelet function is 

of crucial importance in order to achieve the accurate results. 

REFERENCES 

[1] Gudmaunson P., 1982, Engine frequency changes of structures due to cracks, notches or other geometrical 

changes, Journal of Mechanics and Physics of Solids 30: 339-353. 
[2] Banks H.T., Inman D.J., Leo D.J., Wang Y., 1996, An experimentally validated damage detection theory in 

smart structures, Journal of Sound and Vibration 191: 859-880. 
[3] Ku C.J., Cermak J.E., Chou L.S., 2007, Random decrement based method for modal parameter 

identification of a dynamic system using acceleration responses, Journal of Wind Engineering and 

Industrial Aerodynamics 95: 389-410. 
[4] Li B., Chen X.F., Ma J.X., He Z.J., 2004, Detection of crack location and size in structures using Wavelet finite 

element methods, Journal of Sound and Vibration 285: 767-782. 

[5] Samii A., Lotfi V., 2007, Comparison of coupled and decoupled modal approaches seismic analysis of 

concretegravity damsin timedomain, Finite Elements in Analysis and Design 43: 1003-1012. 
[6] Douka E., Loutridis S., Trochidis A., 2003,  Crack identificationin beams using Wavelet analysis, International Journal 

of Solids and Structures 40: 3557-3569. 

[7] Bagheri A., Ghodrati Amiri G., Khorasani M., 2010, Structural damage identification of plates based on 

modal data using 2D discrete Wavelet transform, Journal of Structural Engineering and Mechanics 40: 13-

28. 
[8] Bagheri A., Ghodrati Amiri G., Seyed Razzaghi S.A., 2009, Vibration-based damage identification of plate 

structures via curvelet transform, Journal of Sound and Vibration 327: 593-603. 
[9] Rizos P.F., Aspragathos N., Dimaroginas A.D., 1990, Identification of crack location and magnitude in 

Cantilever beam from the vibration modes, Journal of Sound and Vibration 138: 381-388. 
[10] Melhem H., Kim H., 2003, Damage detection in concrete by Fourier and Wavelet analyses, Journal of 

Engineering Mechanics 129: 571-577. 
[11] Ovanesova A.V., Suarez L.E., 2004, Applications of Wavelet transforms to damage detection in frame structures, 

Journal of Engineering Structure 26: 39-49. 

[12] Khatam H., Golafshani A.A., 2004, Damage detection in beam using Wavelet transform, M.Sc. 
Dissertation, Sharif University of Technology. 

[13] Cawely p., Adams R.D., 1979, Defect location in structures by a vibration technique, American Society of 

Mechanical Engineering Technical Conference, Louis. 
[14] Gokdag H., Kopmaz O., 2009, A new damage detection approach for beam-type structures based on the 

combination of continuous and discrete Wavelet transforms, Journal of Sound and Vibration 324: 1158-

1180. 
[15] Rucka M., 2011, Damage detection in beams using Wavelet transform on higher vibration modes, Journal of 

Theoretical and Applied Mechanics 49: 399-417. 

[16] Tao C., Fu Y., Dai T., 2017, Dynamic analysis for cracked fiber-metal laminated beams carrying moving loads and its 

application for wavelet based crack detection, Composite Structures 1(159): 463-470. 

[17] Mardasi A.G., Wu N., Wu C., 2018, Experimental study on the crack detection with optimized spatial 

wavelet analysis and windowing, Mechanical Systems and Signal Processing 1(104): 619-630. 
[18] Williams J.R., Amaratunga K., 1997, A discrete wavelet transform without edge effects using wavelet extrapolation, 

Journal of Analysis Fourier and Applications 3(4): 435-449. 

[19] Beylkin G., 1992, On the representation of operators in bases of compactly supported wavelets, SIAM 

Journal on Numerical Analysis 29(6): 1716-1740. 

[20] Chakraborty A., Gopalakrishnan S., 2005, A spectrally formulated plate element for wave propagation analysis in 

anisotropic material, Computer Methods Applied Mechanics and Engineering 194: 42-44.  


