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 ABSTRACT 

 In this article, the influence of various vacancy defects on the Young’s modulus of carbon 
nanotube (CNT) - reinforcement polymer composite in the axial direction is investigated via a 
structural model in ANSYS software. Their high strength can be affected by the presence of 
defects in the nanotubes used as reinforcements in practical nanocomposites. Molecular structural 
mechanics (MSM)/finite element (FE) Multiscale modeling of carbon nanotube/polymer 
composites with linear elastic polymer matrix is used to study the effect of CNT vacancy defects 
on the mechanical properties. The nanotube is modeled at the atomistic scale using MSM, where 
as the interface we assumed to be bonded by Vander Waals interactions based on the Lennar-
Jonze potential at the interface and polymer matrix. A nonlinear spring is used for modeling of 
interactions. It is studied for zigzag and armchair Nanotubes with various aspect ratios 
(Length/Diameter). Finally, results of the present structural model show good agreement between 
our model and the experimental work.                                                                                          © 

2010 IAU, Arak Branch. All rights reserved. 

 Keywords: Polymer matrix; Carbon nanotubes; Nonlinear spring; Multiscale modeling; Defect; 
Inter-phase; Finite element model. 

1    INTRODUCTION 

 HE discovery of carbon nanotubes by Iijima (1991) opened up a new window in nano science [1]. Due to 
particular mechanical and electrical features of carbon nanotubes, this kind of nanostructure has come under 

close scrutiny by many researchers in recent decades. A very high Young’s modulus and tensile strength combined 
with low density give these materials excellent mechanical properties [2-4]. Because of the need for specially 
prepared laboratories and particular conditions for experiments, experimental works in this context are very 
expensive. In addition to the experimental side, non empirical modeling and simulation of these nanotubes has also 
been a focus. The common computational methods for modeling and simulation of nanotubes include the ab initio 
method, the molecular dynamic (MD) method [5-7], and the tight binding method [8-10], which is a combination of 
the ab initio and MD methods. It is accepted that, in general, the ab initio method is more accurate than other 
methods [11].recently; CNTs have been produced in large-scale quantities with the development of different 
advanced production technologies at reasonable prices. Therefore researchers are now planning to use CNTs in 
polymer composites to increase simultaneously the strength and toughness of the composites.  

As mentioned previously, several experimental investigations and numerical studies have been done to achieve 
the mechanical properties of CNTs and CNT-polymer composites. There are, however, some discrepancies between 
atomistic modeling and experimental results. Among the various factors that cause such a large difference, it seems 
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that the existence of defects in the structure of CNTs is the most effective one. We refer to defects in the board sense 
of the word to reflect deviation of the material from the regular atomic scale structure. Thus, in the case of CNTs, a 
defect is defined as a distortion of the perfect nanotube. The possible CNT defects can be classified into four main 
groups: incomplete bonding defects (vacancies), topological defects (introduction of ring sizes other than hexagons). 

The majority of studies, CNTs have been treated as defect-free materials. However, experimental observations 
have revealed that vacancy defects are commonly present in the nanotube. Among the various types of defects in 
CNTs, vacancies have received much more attention than others. Vacancies result from missing carbon atoms in the 
walls, which can happen when CNTs are subjected to irradiation. Recently, a brief overview of the defects in CNTs 
has been given. Little work has been done to investigate the role of vacancy defects in CNTs on the mechanical 
properties of these nanostructures. In addition to experimental studies, a few simulation studies have been done to 
investigate the role of CNT vacancy defects. Although continuum methods work well for perfect materials, they 
cannot be directly applied to nanotubes with defects as these methods assume the material to be perfect. However, a 
combination of these methods and atomistic simulations can be used for evaluating elastic properties of defective 
CNTs. For example, by employing MD simulations and continuum theory. The objective of this work is to examine 
the effect of CNT vacancy defects on the Young’s modulus of SWCNT-reinforcement polymer composites using a 
molecular structural mechanics/finite element Multiscale modeling approach. In this method, the nanotube is 
modeled at atomistic scale by the MSM method. The polymer matrix is at the macroscopic scale by the continuum 
FE method. The Nanotube and polymer matrix are assumed to be bonded by van der Waals interactions at the 
interface and nonlinear spring is used for simulating the Vander Waals interactions. This model is used to study the 
vacancies defects effects on SWCNT-polymer composite. 

2    MODELING 

Here, we use structural molecular mechanics to model the carbon nanotubes [12]. The element used for the covalent 
bonds is a uniaxial element with tension, compression, torsion, and bending capabilities and has six degrees of 
freedom at each node; three translations in x, y, z directions and three rotations about x, y, z axes. This element is 
defined by the cross sectional area, the moment of inertia, and the material properties. Based on the energy 
equivalence between local potential energies in the computational chemistry and elemental strain energies in the 
structural mechanics, the elastic constants for the equivalent beam are determined. The force field constants of the 
covalent bonds are used as follows: 
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where the force field constants rK , k and k represent stretching, bending, and torsional stiffness of the covalent 

bonds [13]. Also, E and G denote module of elasticity and shear of the element, respectively. Moreover, A is the 
cross sectional area, I the moment of inertia, J the polar moment at Eq. (1). and L the length of the beam. The length 
of the element is assumed to be equal to the covalent distance of the carbon atoms ( 0.1421 nm).c cL a   Specific 

parameters of the element with a circular cross section could be obtained from the Eq. (1) .as follow [12]: 
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where d is the cross-sectional diameter of the element. In the references of molecular mechanics, the units of the 
force constants rK  and k  are kcalmol-1rad-2, respectively. For the convenience of computation, we exchange them 

into nN nm-1 and nN nm rad-2, respectively. These are well-known force field constants for modeling the carbon- 
carbon covalent bonds in CNTs and have been demonstrated successfully for modeling the static, dynamic, and 
thermal properties of carbon nanotubes and their composites. These values are listed as follow [12]: 
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As mentioned earlier, CNTs carbon atoms are bonded together with covalent bonds forming a hexagonal lattice. 

These bonds have a characteristic bond length C-C and bond angle in the 3D space. The displacement of individual 
atoms under an external force is constrained by the bonds. Therefore, the total deformation of the nanotube is the 
result of the interactions between the bonds. By considering the bonds as connecting load-carrying elements, and the 
atoms as joints of the connecting elements, CNTs may be simulated as space-frame structures. By treating CNTs as 
space-frame structures, their mechanical behavior can be analyzed using classical structural mechanics methods. In 
this work, a 3D FE model able to assess the mechanical properties of SWCNTs is proposed [12]. The 3D FE model 
is developed using the ANSYS commercial FE code. For the modeling of the bonds, the 3D elastic BEAM4 ANSYS 
element is used. The specific element is a uniaxial element with tension, compression, torsion and bending 
capabilities. It has six degrees of freedom at each node: translations in the nodal x, y, and z directions and rotations 
about the nodal x, y, and z-axes. The element is defined by two or three nodes as well as its cross-sectional area, two 
moments of inertia, two dimensions and the material properties. Prediction of material properties of nanotube, The 
Young’s modulus of a material is the ratio of normal stress to normal strain as obtained from a uniaxial tension test. 
Following this definition, the Young’s modulus of SWCNTs is been calculated using the following equation. 

 

cnt
cnt

FL
E

A L



 (4)

 

 
where F is the total applied force, Acnt, the cross-sectional area, L the initial length and ΔL the elongation. Acnt is 
equal to πDt where D is the mean diameter of the tube. It is shown in Fig.1. The nodes of the bottom end of the 
SWCNT have been fully constrain (zero displacement and rotation conditions), while the nodes of the upper end, are 
subjected to tensile forces. From the results it is clear that the wall thickness of CNTs significantly affect the 
calculation of Young’s modulus of SWCNTs. The larger the wall thickness, the smaller the Young’s modulus 
calculated. In the current work, energy equivalence between molecular and structural mechanics provides a wall 
thickness of 0.34 nm. The present Young’s modulus of nanotube is in good agreement with the many previous 
theoretical predictions and experimental results [14-18]. Note that the currently existing theoretical and experimental 
values of the Young’s modulus is quite scattered. The Young’s modulus of nanotube ranges from 1 to1.05 TPa, from 
the different references. The Young’s modulus of zigzag nanotube is greater than armchair nanotube modulus. The 
MSM model for prediction of the carbon nanotube can be adopted into a finite element model for prediction of the 
mechanical properties of nanotube reinforced composites. Continuum-based FE formulation is implemented to 
analyze the interphase layer and outer polymer matrix. Here, an isoparametric cubic element is used for modeling 
the matrix. The element is defined by eight nodes having three degrees of freedom per node: three x, y, and z 
directions. The polymer matrixes selected in this study are poly ethylene amorphous, crystalline poly ethylene. The 
Young’s modulus of this isotropic amorphous polymer is assumed to be 3 GPa and Poisson’s ratio is chosen as 0.3. 
The nanotube and matrix are assumed to be bonded by van der Waals interactions based on the Lennars-Jones (LJ) 
potential at the interface [19]. For modeling these forces, nonlinear spring elements are implemented in this work. 
The spring element used here is defined by two nodes and a spring constant.  
 

 
 

 

 
 
 
Fig. 1 
Schematic of SWCNT Cross-section area . 
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To construct these elements, the distances between the nodes on CNT wall and the nodes on the inner surface of 
the polymer matrix are computed because of the matrix is continuum and each nodes on CNT connected to three 
node at inner wall of matrix we assumed that stiffness of equal spring is 3K. A spring element is inserted between 
every two nodes with their distance smaller than the cut off radius of LJ potential. It is a uniaxial tension - 
compression element with thee degrees of freedom at each node: three translations in the x, y, and z directions. No 
bending or torsion is considered in this element. The spring stiffness of this element is determined by the second 
derivative of the LJ potential [20], as follows: 
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where r is the inter atomic distance and ε and σ are the LJ parameter. For carbon-carbon van der Waals interactions, 
these parameters are as follows: 
 

6 2r   (7)
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For obtaining the Young’s modulus of polymer nanocomposite we considered two models one of them the long 

CNT through the polymer matrix and another is a short CNT with cap inside the polymer matrix. The thickness of 
the interphase layer is assumed to be 0.4293 nm, based on previous molecular mechanics works. The cross section 
of the unit cell is dependent on the CNT volume fraction in the representative volume element (RVE). The CNT 
volume fraction (Vf) is an important variable in determining the composite mechanical properties and can be defined 
[12]: 
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where hvdw is the equilibrium van der Waals separation distance between the CNT and the matrix and Acell is the 
cross-sectional area of the unit cell. It can be expressed as: 
 

2 2( )cell m cntA R R   (10)
 

 
The Vander Waals separation distance depends on the nature of the CNT-polymer interfacial interactions and is 

assumed to 0.4293 nm. To study the effect of volume fractions and diameter and length of nano tube on the Young’s 
modulus of the polymer nanocomposite, after constructing the RVE, we impose load in the RVE, and the 
macroscopic behavior of the RVE can be evaluated using the FE method. We applied the armchair and zigzag 
nanotubes through the polymer matrix. It is to be noted that the RVE used here is a continue RVE. After 
constructing the model, the macroscopic behavior of the RVE can be using the FE method. To study the effect of 
vacancy defects on the stability of the nanocomposite, after constructing the RVE, we impose the vacancy defects 
[21, 22]. This is done by removing the proper nodes and elements from the model in accordance with removed 
atoms and bonds that might. 

3     RESULTS AND DISCUSSION 

Using the MSM approach and nonlinear finite element method, computational modeling of a continuous 
CNT/polymer composite has been carried out in this work. This Multiscale modeling approach is implemented to 
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study the mechanical properties of the polymer matrix nanocomposite under axial tensile loading. When considering 
the tube as a solid shell body, from the classical elastic, we assumed the deformation of nanocomposite is Iso strain; 
the results are compared with Rule of mixture. The rule of mixture can be expressed as: 
 

(1 )Z f f m fE E V E V    (11)
 

 
where Ef and Em are in order to nanotube modulus and matrix modulus and Vf is volume fraction. Iso strain 
assumption led to: 
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where Fm is the load that exert on cross-section area of matrix and Fcnt is the load of nanotube, Em is the Young's 
modulus of polymer matrix. By applying the elastic relation of displacement Fig. 2, we will have: 
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where Ec is the Young’s modulus of nanocomposite in the longitudinal direction, ΔL is elongation in z direction; 
Ftotal is the total load that exerted on nanocomposite that expresses by following Equation: 
 

total cnt mF F F   (14)
 

 
The Aeq is the nanocomposite cross section area .it can be expressed as: 
 

2 2( )eq m cnt cntA R R D t     (15)
 

 

The Poisson’s ratio in zx plane is obtained 

 

/zx

R L
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For short nanotube inside the polymer matrix, after applying tension force Fig. 3, the displacement in z direction 

determined by traditional Finite element method, δ is the displacement and we will obtain the Young's modulus of 
composite part as follow: 
 
 

 
a) 

 
b) 

 
Fig. 2 
Finite element macroscopic model for CNT/polymer composite. CNT through the RVE a) Isometric view b) left view. 
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Fig. 3 
Computational model for CNT/polymer composite.CNT inside the 
RVE 

   

 
 
 
Fig. 4 
For the case of the nanotube embedded inside the RVE. 
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where Lm is the polymer matrix and p is tension force Ln is the composite part length, An and A are defined as: 
 

2 2 2( ),n m cnt mA R R A R     (18)
 

 
For the case of the nanotube embedded inside the RVE in Fig. 4 with the assumption of perfect bonding between 

the nanotube and matrix, [23] gave out the expression of the effective Young’s modulus as follows: 
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After determining the properties of nanotube and nonlinear spring interaction between the nanotube and polymer 

matrix, the material properties of the nanotube reinforced composites can be predicted. Our numerical simulation is 
concentrated on the two case of polymer matrix reinforced with unidirectional short nanotubes inside the matrix and 
long nanotube through polymer matrix. This may be the ultimate goal for reinforcement. In this case, the RVE of 
our FEM model is shown in Fig. 2 for the polymer matrix, its Poisson ratio νm is chosen as 0.3. The Young’s 
modulus of polymer Em is quite scattered, depending on the various structures. Here, we take it as o.5 GPa in our 
Computation. In this study, we consider single, double, and triple vacancies in the nanotube structure as shown in 
Fig. 5. The models are under the tension loads and by using the above equation, the results is depicted in the Figs. 6-
8. It is shown that Young’s modulus in short length decrease under these defects but, at long length the effects of 
defect is negligible. The effect of third defect on the Young’s modulus is most than others. 

Next, an RVE for a short CNT in a matrix, as shown in Figs. 6 and 7 is studied. All dimensions for RVE are the 
same as in the previous, with the two hemispherical end caps. The material constants used for the CNT and matrix 
are the same as in the first example. Coupled DOF (degree of freedom) constraint is imposed for the surface under 
the axial load. Comparison of Young's modulus between defective zigzag and armchair CNTs indicates that the 
armchair CNT is more sensitive to vacancy defects. In addition, the mode shapes of defective nanotubes with a 
single vacancy and two opposite vacancies at the middle of the nanotubes are illustrated in Figs. 8.The mode shapes 
of the defective armchair CNT are not similar to those of the defective zigzag CNT. The main reason for this is the 
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different orientation of the vacancy defects .Another reason for this difference is due to orientation of the C-C bonds 
for zigzag CNTs that are in the load direction. Therefore, distribution of load on the carbon atoms for zigzag and 
armchair CNTs is uniform in the circumferential and axial direction, respectively [24]. 

 
 

 

a)  

 

b)  

 
c) 

 

 
Fig. 5 
Atomic networks of different single- wall CNTs with a) single b) double, and c) triple vacancies. 
 

 

 
 
Fig. 6 
Variations Young's modulus RVE for different types defects  respect 
to aspect ratio and compare with  zigzag (10,0) perfect model 
nanocomposite , (long CNT inside matrix, Vf =0.048and Em=0.5 
GPa). 
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Fig. 7 
Variations Young’s modulus RVE for different types defects  respect 
to aspect ratio and compare with  armchair(10,10), perfect model 
nanocomposite, (long CNT inside matrix, Vf =0.048and Em=0.5GPa). 
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Fig. 8 
Variations Young’s modulus RVE for different types defects  respect 
to aspect ratio and compare with  armchair(5,5) perfect model 
nanocomposite, (short CNT inside matrix, Vf =0.048and 
Em=0.5GPa). 

4    CONCLUSIONS 

In this article, a new MSM/FE Multiscale model of CNT-polymer composites under tension load was implemented to 
study the role of CNT vacancy defects on the stability of these nanocomposites. Using this model, we investigated the 
effects of these defects on Young’s modulus. The results revealed that Young’s modulus in short length decrease 
under these defects but, at long length the effects of defect is negligible. The effect of third defect on the Young’s 
modulus is most than others. The present structural model can be used for prediction of the buckling behavior of 
CNT/polymer nanocomposite due to good agreement with the MD simulation. 
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