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ABSTRACT
This article presents an exact solution for an axisymmetric functionally graded piezoelectric (FGP)
rotating disk with constant thickness subjected to an electric field and thermal gradient. All
mechanical, thermal and piezoelectric properties except for Poisson’s ratio are taken in the form of
power functions in radial direction. After solving the heat transfer equation, first a symmetric
distribution of temperature is produced. The gradient of displacement in axial direction is then
obtained by assuming stress equation in axial direction to be zero. The electric potential gradient is
attained by charge and electric displacement equations. Substituting these terms in the equations
for the dimensionless stresses in the radial and circumferential directions yield these stresses and
using them in the mechanical equilibrium equation a nonhomogeneous second order differential
equation is produced that by solving it, the dimensionless displacement in radial direction can be
achieved. The study results for a FGP rotating hollow disk are presented graphically in the form of
distributions for displacement, stresses and electrical potential.
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1 INTRODUCTION

ITH advances of functionally graded piezoelectric material (FGPM) in industrial applications such as

producing sensors and actuators, these materials have attracted much attention in recent years. Functionally
graded materials (FGMs) are made of two material phases that has an intentional graded transition from one
material at one surface to another material at the opposite surface; ceramics and metals are examples of these
groups of materials. This transition allows the creations of multiple properties without implementing any mechanical
interface. When a piezoelectric material is exposed to a stress field, electricity is produced due to polarization of
material; apart from this, mechanical and thermal properties of FGPM are fairly similar to FGM. Galic and Horgan
[1] presented a radially polarized piezoelectric cylinder under internal pressure. They presented an analytical
solution to the axisymmetric problem of an infinitely long, radially polarized, radially orthotropic piezoelectric
hollow circular cylinder. Chen et al. [2] studied the problem of a piezoceramic hollow sphere based on 3D equations
of piezoelasticity. They investigated the effects of electroelastic field in a FGPM hollow sphere under mechanical
and electric loading. Ding et al. [3] analyzed the dynamic responses of a functionally graded (FG) pyroelectric
hollow sphere for spherically symmetric problems by solving a Volttera integral equation of the second kind using
an interpolation polynomial to approximate the unknown function. They extended this problem for cylinder with
plane strain assumption [4]. The exact solution for thermal-electro-elastic transient response in piezoelectric hollow
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structures was derived by Dai and Wang [5]. They showed that the response histories and distributions of stresses,
electric displacement and electric potential interact with each other in a case of the transversely isotropic
piezoelectric hollow sphere. Chen et al. [6] analyzed a FGPM hollow cylinder. They assumed that only the
piezoelectric coefficient was varied quadratically in the radial direction while the other material parameters are
assumed to be constant. The thermoelastic analysis of a FG rotating disk was presented by Hosseini Kordkheili and
Naghdabadi [7], who investigated the influences of property gradation, centrifugal body loading and thermal loading
on stresses and deformation. Bayat et al. [8] also studied the thermo elastic analysis of a FG rotating disk with small
and large deflections. Later, they [9] investigated thermo elastic analysis for axisymmetric rotating disk made of
FGM with variable thickness. Thermoelastic solution of a FG variable thickness rotating disk with bending based on
the first-order shear deformation theory was also presented by Bayat et al. [10]. Oota and Tanigawa [11] studied the
transient piezothermoelastic problem of a FG thermo-piezoelectric hollow sphere due to a uniform heat supply using
the Laplace transformation method. Saadatfar and Razavi [12] investigated piezoelectric hollow cylinder with
thermal gradient and used an analytical solution to the axisymmetric problem of a radially polarized, radially
orthotropic piezoelectric hollow cylinder with thermal gradient. A 3D elasticity solution for FG rotating disks was
also investigated by Asghari and Ghafoori [13] and suggested that although for the thin disks problems the 2D
elasticity solution provided appropriate results, for the thick disks, a 3D elasticity solution should be used.
Khoshgoftar et al. [14] studied thermoelastic analysis of a thick walled cylinder made of FGPM. They investigated
the thermopiezoelectric behavior of a thick walled cylinder with FGM under the temperature gradient and inner and
outer pressures. Hassani et al. [15] presented distributions of stress and strain components of rotating disks with non-
uniform thickness and material properties subjected to thermo-elastic loading under different boundary conditions.
Later they [16] investigated semi-exact solution for thermo-mechanical analysis of FG elastic-strain hardening
rotating disks. Since rotating-disk systems are widely used in many industrial applications such as: aircraft engines,
computer disk drivers, gas turbine engineering as fixed-free rotating disks and magnetic bearing systems as free-free
rotating disks, therefore, investigation of rotating disks can be useful in designing such applications.

However, investigation into 3D solution for FGPM hollow rotating disk, placed in an electric field with a
temperature gradient, has not been found in the literature. In this article, an analytical method is developed to
determine stresses, displacement and electric potential fields. Initially, the heat transfer equation in the cylindrical
coordinate system under inner and outer boundary conditions is solved in order to obtain the temperature
distribution. Then, by substituting the electric displacement and temperature distribution in the dimensionless radial
and circumferential stresses, theses stresses is obtained as a function of displacement. Finally, using equilibrium
equation, and stress components, a displacement equation is presented which its solution at the corresponding
boundary conditions yields the displacement, stresses components and electric potential.

2 TEMPERATURE DISTRIBUTION

Consider a FGPM rotating disk under electric, thermal and mechanical loadings Fig. 1. In this section, using the
assumed boundary conditions, a solution is presented to the symmetric, steady state, heat transfer equation in the
cylindrical coordinate system Eq. (1) as expressed by [2,14]:

kT ) =0, @<r<b M
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=

Fig. 1

T =300

¥ =1valt Configuration of a radially polarized FGPM rotating disk.
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where a and b are the inner and outer radii, respectively. Boundary conditions for Eq. (1) are defined according to
[14, 17] as below:

Z, T(a)+Z,T'(a) = f, (2a)
Z,T(b)+Z,T'(b) = f, (2b)

In Eq. (2), Z,(i=1,2;j=1,2) are the thermal constants which depend on the thermal conductivity and thermal

convection. f; and f, are constants obtained at the inner and outer radii, respectively. k(r) is assumed as a power
function of r in Eq. (3):

k(r) = k,r" 3)

In which x is a parameter indicating the nonhomogeneous extent of the material and &, is the nominal thermal
conduction coefficient. Substituting Eq. (3) into Eq. (1) and integrating twice yields [2]:

-Y,
T ==t Y, (u=0) @

By assuming the defined boundary conditions Eqgs. (2a), (2b), Y, and Y, constants in Eq. (4) are obtained as
follows:

Y — Z21fl — Zufz
1 _N -N
_ a _ b 5a
ZZI lea ) _Zn Ve _Zu Zzzb e _Zzl N] (52)
_ a® ~ bv
L1Z,a (v —Z, N —fi|Zxb . —Zy N
Y2 —-N —-N (Sb)
Z,|2,a " —z, 4=z, 2 b " — 7, 7 —
21 [ “12 11 N 11|42 21 N

3 The GOVERNING EQUATION

The governing equation of a nonhomogeneous rotating disk is presented using a cylindrical system. The disk rotates
about z axis with an angular velocity of @ . The axisymmetric aspect of the problem implies that shear stress

components, (,,,0,,,4,) are negligible and assumed to be zero; similarly, §/96 for all parameters are equal to
zero. Also, since there is no stress in z direction, o, and o, are taken to be zero. Based on these assumptions, the

constitutive relations could be expressed as follows [12, 18]:

O, =CynE, +C364 + 36, +eyd, —AT(r) (62)
Ogp = Ci3&,, +C1Egy TCp6, + 30, — AT (r) (6b)
O, =CyE, +Cp84 6, +eyé, — AT (r) (6¢)
D, =eyé¢, +e,8y +ey6, —659, —pT(r) (6d)

where [12, 13]:
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Oou u u
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— "33™1 13772 133> 72 7 *137M 11772 12773

A =cpe o0, + o0, p = ena, 6,0, + 6,0,

In the above equations, Cjs€s Qs Ex and p, are the elastic stiffnesses, piezoelectric constants, thermal

expansion coefficients, dielectric constant and pyroelectric constant, respectively. Also, o,

i

g, and D_ represent
stress, strain tensors and radial electric displacement, respectively. The equilibrium equation is as follows [7]:

do o _—0
oy T e’ =0 ®

The charge equation of electro-statics without free charge density can be expressed [14] as follows:

o(rD oD, D
WD) o Lu Dy ©)

div(D) =
WD) ror or r

Since the stress component in z direction is zero, using Eq. (6¢), displacement gradient in z direction is:

GZZZOH_Z:7;_7_;7__ T(r) (10)

0z ¢, Or ¢, r ¢, 0r ¢

Substituting Eq. (10) into Egs. (6a), (6b) and (6d) provides the radial and circumferential stresses as well as the
electric displacement terms as follow:

2
o, = C}}fcﬁ Ou, + 0137513512 L 6337513333 94 /11761313 T(r) (11a)
¢, ) or ¢, )r ¢, |Or [
2
o, =|e, — 2| | _Coll |, e |08 |, Cuh|p, (11b)
¢, )or ¢, )r L or ¢,
€,C; |Ou e,c, |u el 0¢ ey
D —|e, &% |9 1, S|l | % |99 |l |p
" [633 S ]6!’ [631 € ]r oo ¢, )or [pl Cu (r) (1)

In this work, the Poisson’s ratio is considered as a constant while other material parameters such as elastic
stiffnesses, piezoelectric constant, dielectric constant and thermal expansion coefficients are assumed to vary along
the radial coordinate as bellow [4]:

r

b
r “ r # r & r 2”
3 =y [;] s P= P [;] , P=p [Z] s A =4 [;]

where C,,E; ,A,;,Q,,,P, and p, are known constants. To present the result, the following non-dimensional terms
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are introduced:
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C; C.E C,E
Cu _FIZ E33 Z, = E31 1(3: =
A — 11 B — 11 B — 11 q):
T a G 2T G ’
I P Y R
33 33 (13)
[AI—C13A3 7(r) [AZ—C”A3 T(r) [PI—E31A3 7(r)
TI(Y): 11 , TZ(Y):#’ Tw(Y): 11
[ e [ al ca o+ B
X Za
’ 1 » C, 3 Cy,
in which:
Y= r
s (14)
Egs. (4), (8), (9) and (11) can therefore be rewritten in the following form:
.| du 9l ,
o =Yt ATHE, a_Y_Y}T(R)} (152)
du u dd
o, =" A'd_Y+A2 Y+B d—YY”Tz(R)] (15b)
du u do
D, =Y"|B~—+4B,————Y"T,(R
’ Y ( )] (15¢)
and
do, o,—o0, n b’ p,@ e — o
ar XY . G (16a)
33
11
dD,(Y) D,(Y)
o Ty (166)
-1
()= TIT” +1, (17)

where I, I, are constants and can be obtained from the boundary conditions in Eq. (2). Using Eq. (16b), the
following equation is obtained as

D.(1)=% (18)

where F is a constant. Substituting Eq. (18) into Eq. (15¢) yields

Ao du F

=B —+B, ——Y”T Y)—
Yy bay Y M YA (19)
Using Eqs. (19), (15a) and (15b) can be rewritten as:
. du u G
o, =Y \G d_Y+G2 Y—H (Y)] T“ (20a)
du u G
0, =Y"G,—=+G, 1 —H, (Y)}TS (20b)
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where
G, =1+B], G,=A +BB,, G,=A+B;,, G,=BF, G,=BF,
b’ o &* )
G, =—2Y _ HM) =BT+ =12) @1
33 _Cils

11

Substituting Egs. (20a) and (20b) into Eq. (16a), the following differential equation is obtained as a function of
nondimensional radial displacement:

d’u du
—+

GY* oy R R = RY* (22)

where

R =G,(u+1),R, = NG, —G,,

R J,—JI)I
Y/‘iz = YHH(Z:U‘]lIz —(,=JDL) -G Y _G6Y3 +Y[_‘1111 + = H = ] =
The solution to Eq. (22) can be written as
uV)=CY" +C,Y" + K Y+ K, + KXY *+ K, 1" (24)

where C; and C, are constants which are obtained from the boundary conditions, and

2
X (5] X U,
GI Gl Gl =S+ L 1
L,= > K, = >
: 2 R +R, (25)
_ —G, _ —G; K — 2ud 1, —(J,=J)DI,
> 6G,+3R +R,’ P Gu(u+1l)—uR +R,’ Y GuuA )+ R (DR,
where
B/|P — A3E33 Al o C13A3 B,|P A3E33 Az o C12A3
11 Cll 11 Cll
Ji = 2 + 2) J, = 2 + 2 (26)
CI'% CHE'%'& Cl? CI'% CHET& Cl'ﬁ
Co—— | Es— Cy—— Co—— || Es— 5 B A
Cll Cll Cll 11 Cll Cll
The electrostatic potential is obtained from Eq. (19)
O =MY" +M,Y" + MY +M Y +MY " +MY"" +q 27)

where ¢ is constant and:
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P — E31A3
B B I e
M, =C/|2+B,|, My=C,|=2+B,|,, My=K,(B,+B,)+-+ 1 ,
L L Y7 2 2
1 ?) C E3,
Cy3— Q3+
11 Css
28
Ey Mg 28)
B,) F e )R B
My =K, |B +—2>|., Ms=K;|B——2|+—, Mg=— - +K,|B +—2
3 ; 7 7 2 B2 H+1
13 31
(1), 1 Cy3 = || Q55 + 21
Cu Cs3
Then, Eqgs. (20a) and (20b) can be rewritten as:
o, = MYl T L M YR T M Y M YT M, YT MY M, (292)
0 = My YT MY T MY MY MY 4 Mg Y4+ M, (29b)
where
My = C\(G\L +Gy), My=Cy(G L, +Gy), My, =K\(G +Gy)—Jil,, My =K,(3G, +G),
Ji 1
My = K3(=uG, +Gy) =Gy, My =Ky (G(u+D)+G,), My, = %’ M,s = C (G, L, +G;),
(30)

Mo =C (G L, +G3), My; =K(G, +G3)—J,1,, Mz =K,03G,+G;), My =K;(—uG, +G;3)—Gs,

My, :7’ My, = K, (G (1 +1)+G3)

4 STEPS OF APPLIED METHODS

The following steps have been developed for obtaining results:

1- The temperature distribution of the disk is produced by solving the heat transfer equation.

2- The gradient of displacement in axial direction is obtained by assuming stress equation in axial direction to be
Zero.

3- The dimensionless electric potential gradient is attained by dimensionless charge and electric displacement
equations.

4- Dimensionless radial and circumferential stresses are gained in terms of dimensionless radial displacement by
substituting the results achieved in steps 2 and 3.

5- A nonhomogeneous second order differential equation is produced by substituting dimensionless stresses in the
mechanical equilibrium equation.

6- Dimensionless radial displacement is attained in terms of dimensionless radius of the disk by solving the
differential equation.

7- Dimensionless stresses in radial and circumferential directions and the electrostatic potential are obtained.

5 NUMERICAL RESULTS AND DISCUSSION

Table 1. presented the PZT4 material properties as FGPM material for analysis of the rotating disk [12, 18]. von-
Mises stress for cylindrical coordinate system is considered as

oy =0, +0,2—0.0, (31
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Table 1

Mechanical and electrical properties of PZT 4
Ci 139 (GPA) a 2x107 (K™ o -5.2 (c/m?) b 0.1 (m)
Ci 77.8 (GPA) a 2x107° (K™ Ess 15.1 (c/m?) 2 7500 (kg/m®)
Cis 74.3 (GPA) a 2x107 (K™ O 0.562x1078 (c/Vm) 2 100 (rad/sec)

Csy 115 (GPA)

Numerical results are presented diagrammatically (see Figs. 2-11) in terms of dimensionless stresses, electric
potential and displacement as a function of the rotating disks dimensionless radius from R=S to R=1. The boundary
conditions for PZT4 are considered as two cases:

casel (free-free): o.(R=S)=0, o,(R=1)=0, #(R=2S5)=0, dR=1=1 (32a)
case?2 (fixed-free): u(R=S)=0, o,(R=1)=0, #(R=S)=0, d(R=D=1 (32b)

In both cases, the temperatures at inner and outer radii are 7, = 0°C and 7, = 30°C, respectively. It should be
noted that values of the nonhomogeneous extent (x) considered in the diagrams presented here corresponds to 4
discrete numbers of -0.5, -0.25, 0.25 and 0.5; i.e. 2 positive and 2 negative values. Since g exists in the
denominators of the Egs. (28) and (17), whenever u takes the value of 0.0 or tends to a value very near it, there is

no real solution for the problem as parameters such as stresses and electric potential tend to infinity. The comments
made below regarding u, corresponds only to the values mentioned above. The distribution of o, versus

dimensionless radius of the disk for case 1 is presented in Fig. 2.Three major factors that increase the radial stress in
this article are: piezoelectric reaction, centrifugal force and thermal gradient. For free-free boundary conditions,
piezoelectric reaction and centrifugal force cause tension in the disk while thermal gradient cause compression in it.
As can be seen o, is compressive, so temperature gradient is the dominant factor in the value of radial stress in the

mentioned boundary conditions. Also the values of maximum dimensionless radial stress decrease with increasing
4 and they tend toward higher values of R with increasing .

Fig. 3 shows the distribution of o, for fixed-free boundary conditions, i.e. case 2. Radial stress is compressive

along the radius of the disk for fixed-free boundary conditions, too. It is observed from Fig. 3 that the values of
radial stresses are decreased along the radius of the disk. Also the value of o, increases as u is increased. Figs. 4

and 5 depict the distribution of o, for both cases of boundary conditions discussed above (free-free and fixed-free,
respectively). It is seen form Figs. 4 and 5 that o, is compressive for inner layers of the disk, while for outer layers,
o, is tensile. Also, the values of o, reduce with increasing  for both cases. Figs. 6 and 7 show the dimensionless
von-Mises stress (o, ) distribution versus the dimensionless radius of the disk for cases 1 and 2, respectively. It is
obvious form Figs. 6 and 7 that o, is decreased with increasing x. Fig. 6 demonstrates that the minimum of o,

takes place at the middle layers of the disk, while it is higher at inner and outer layers of the disk. Moreover, for case
2, as can be seen from Fig. 7, the maximum value of von-Mises stress takes place at outer layers of the rotating disk.

Fig. 2
Distribution of the dimensionless radial stress versus the
e - - - - - - i: 4=05 | dime.n.sionless radius of the disk for free-free boundary
Dimensionless Redius (R) conditions, T,, =0°C and T, =30°C.

© 2011 TAU, Arak Branch



Exact Solution for Electrothermoelastic Behaviors of a Radially Polarized FGPM Rotating Disk 252

1 I I I I I
%2 03 04 05 0.6 0.7
Diemsnionless Radius (R)

x10°

I
08

. . I
0.2 03 04 05 06 07
Dimensionless Radius (R)

—F—u=05

. 1 I I I I
% 2 0.3 0.4 05 0.6 0.7
Dimensionless Radius (R)

L
0.8

09 1

I I I I I
%.2 0.3 0.4 05 0.6 0.7
Dimensionless Radius (R)

© 2011 IAU, Arak Branch

Fig. 3

Distribution of the dimensionless radial stress versus the
dimensionless radius of the disk for fixed-free boundary
conditions, T,, =0°C and T, =30°C.

Fig. 4

Distribution of the dimensionless circumferential stress
versus the dimensionless radius of the disk for free-free
boundary conditions, T;, =0°C and T, =30°C.

Fig. 5

Distribution of the dimensionless circumferential stress
versus the dimensionless radius of the disk for fixed-free
boundary conditions, T,, =0°C and T, =30°C.

Fig. 6

Distribution of the dimensionless von Mises stress versus
the dimensionless radius of the disk for free-free boundary
conditions, T, =0°C and T, =30°C.



253

A. Ghorbanpour Arani et al.

4500

4000

3500

3000

2500

- 2000

1500

1000

500HF

750%.

3500

3000

2500

2000

= 1500

1000

I I
0.4 05 0.6 0.7 08 0.9 1
Dimensionless Radius (R)

I I I I I
0.4 05 0.6 0.7 08 0.9 1
Dimensionless Radius (R)

500/

50 I I I I I I I
%.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
Dimensionless Radius (R)
10°
3 £ T
—6—p=-05

I I
04 0.5 0.6 0.7 0.8 09 1
Dimensionless Radius (R)

Fig. 7

Distribution of the dimensionless von Mises stress versus
the dimensionless radius of the disk for fixed-free
boundary conditions, T,, =0°C and T, =30°C.

Fig. 8

Distribution of the electric potential versus the
dimensionless radius of the disk for free-free boundary
conditions, T,, =0°C and T, =30°C.

Fig. 9

Distribution of the electric potential versus the
dimensionless radius of the disk for fixed-free boundary
conditions, T,, =0°C and T, =30°C.

Fig. 10

Dimensionless radial displacement versus the
dimensionless radius of the disk for free-free boundary
conditions, T,, =0°C and T, =30°C.

The variations of the electric potential (¢(V)) along the dimensionless radius of the disk are presented in Figs. 8

and 9 for cases 1 and 2, respectively. For both cases, the maximum value of ¢ increases as y is increased. Also the

maximum value of ¢ in case 1 is higher than those for case 2. In addition, it is observed from Figs. 8 and 9 that in
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lower values of dimensionless radius, ¢ rises sharply up to R=0.48 and R=0.5 for cases 1 and 2 respectively, where
a maximum is observed, before ¢ decreases slightly.

Figs. 10 and 11 illustrate the dimensionless radial displacement versus the dimensionless radius of the disk for
cases 1 and 2, respectively. It is obvious form Figs. 10 and 11 that the dimensionless radial displacement is
increased with increasing R for both cases; also it decreases as u is increased. As can be seen form Fig. 10, the

values of dimensionless radial displacement are negative at the inner surfaces of the disk. Therefore, the effect of
thermal deformation is dominant rather than the deformation caused by rotation of the disk. In case 2, Figs 11 shows
that the dimensionless radial displacement becomes negative especially for positive values of z4.

Figs. 12 and 13 indicate the effect of the temperature at inner radius of the disk on the dimensionless radial stress
for free-free and fixed-free boundary conditions, respectively. As can be seen, the magnitude of dimensionless radial
stress is increased by increasing the temperature at inner radius of the disk. Also increasing the temperature at inner
radius of the disk has a similar effect on the dimensionless radial stress for both boundary conditions. In addition,
the variation of the radial stresses is decreased with increasing the radius of the disk for both cases of boundary
conditions. Figs. 14 and 15 show the effect of outer surface temperature on the dimensionless radial stress for both
boundary conditions, free-free and fixed-free, respectively. The inner surface temperature is constant for all
cases (T,, = 0°C) , four values are considered for outer surface temperature (7,, = 0,10,20,30°C) and g =—0.5. In

the case 7, =T, =0, the radial stress caused by temperature equals to zero, and only piezoelectric and centrifugal

ut

effects cause radial stress in the disk. It is seen for two boundary conditions, that the first curves of these
two figures are smaller than other curves, and the temperature is the dominant source of radial stress. Raising the
outer surface temperature causes increase of the radial stress on the disk in pressure form. Also, the maximum value
of dimensionless radial stress is greater in fixed-free boundary conditions.

x10"
3

—e—u=-05

[| —=—n=-025

— =025
—~—u=05

Fig. 11

Dimensionless radial displacement versus the

32 03 od o5 o6 o7 o8 o5 1 dimensionless radius of the disk for fixed-free boundary
PR e @ conditions, T, =0°C and T, =30°C.

.4
x10

Fig. 12
Distribution of the dimensionless radial stress versus the
——T,=30 dimensionless radius of the disk for free-free boundary
3 ; ‘. ; f ; ‘. [ s

2 o2 o4 Oélmenslonlgsz Radlus(Ro)7 o8 e ! Condltlon’ Tln = OOC and Tout = SOOC

Fig. 13
Distribution of the dimensionless radial stress versus the
1. : : - ‘ : : dimensionless radius of the disk for fixed-free boundary

0.6 0.7 08 0.9 1
Dimensionless Radius (R) condition, T,, =0°C and T,, =30°C.
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Fig. 14

Distribution of the dimensionless radial stress versus the
dimensionless radius of the disk for free-free boundary
condition, T,, =0°C and T, =30°C.

Fig. 15

Distribution of the dimensionless radial stress versus the
dimensionless radius of the disk for fixed-free boundary
condition, T;; =0°C and T, =30°C.

Fig. 16

Distribution of the dimensionless radial stress versus the
dimensionless radius of the disk for free-free boundary
condition, T, =0°C and T, =30°C.

Fig. 17

Distribution of the dimensionless radial stress versus the
dimensionless radius of the disk for fixed-free boundary
condition, T, =0°C and T, =30°C.

Fig. 18
Dimensionless mass of disk versus non-homogeneity
parameter of the rotating disk.
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Figs. 16 and 17 show the effect of piezoelectric properties on the dimensionless radial stress in the disk for free-
free and fixed-free boundary conditions, respectively. Two non-homogeneity parameters are
considered (¢ = —0.5,—0.25). The two first curve of each diagram are drawn for FGM disk (piezoelectric properties

are vanished) and other two curves of each diagram are drawn for FGPM disk (piezoelectric properties are
considered). As seen in Fig 16, the piezoelectric properties cause increase of pressure in the disk. In Fig 17, the
piezoelectric properties have different effect; the negative radial stress is decreased until radius 0.4 but increased a
bit after radius 0.4 for each non-homogeneity parameter. These effects show that imposed electric field on the
FGPM disk causes negative radial strain. The effect of in-homogeneity parameter on the dimensionless mass and
therefore, the weight of the rotating disk for PZT_4 is presented in Fig. 18. The following formulation is used to
calculate the dimensionless mass of the rotating disk:

b 27tp ) A m b a
m= dvy = (r)27rtdr = —2p** [1 — ()" } =m= = 1—(=)“*
j\;p f r 2 b 2mtp,  p+2\ b (33)

It is seen from Fig. 18 that the dimensionless mass and therefore the weight of the rotating disk decrease as g is

increased. Also it can be concluded from Eq. (33) that the value of dimensionless mass of the disk is independent
from the material properties.

6 CONCLUSIONS

In this article, an exact solution was presented for a nonhomogeneous FGPM disk rotating about its axis at constant
angular velocity, subjected to an electric field and thermal gradient in plane stress, using piezoelasticity theory. All
mechanical, thermal and piezoelectric properties except for Poisson’s ratio were taken in the form of continuous
functions of dimensionless radius of the disk and are simulated in the form of power functions in radial direction.

Following presentation of the temperature distribution in the disk and assuming stress in z direction to be zero, the
electric potential gradient was obtained by charge and electric displacement equations. Using the resulting stresses
in radial and circumferential directions and the equilibrium equation, the displacement in radial direction was
obtained. Dimensionless electro-thermo-mechanical stress distributions, displacement and electric potential curves
for different values of in-homogeneity material parameter g and inner and outer temperature and boundary

conditions were drawn and discussed in details for a popular industrial piezocermaic material such as PZT_4. The
following conclusions could be made from the dimensionless diagrams produced:
1. Distribution of stress, electric potential and electrical field can be controlled by selecting the FGPM
material with appropriate mechanical and thermal properties.
2. The radial stresses for both free-free and fixed-free boundary conditions are compressive, which shows that
stresses caused by thermal gradient are dominant.
3. Increasing the nonhomogeneous parameter ux considered for the discrete values studied here led to the

reduction of value of radial and circumferential stresses and the radial displacement for both free-free and
fixed-free boundary conditions.

4. Dimensionless von-Mises stresses decreased by increasing u for both free-free and fixed-free boundary
conditions.

5. The absolute values of all maximum ¢ ’s for free-free boundary conditions are higher than those for fixed-
free boundary conditions.

6. Increasing the temperature of the inner and outer layers of the disk cause increasing the value of radial
stresses for both free-free and fixed-free boundary conditions.

7. The values of dimensionless radial stresses of the disk increases considering the piezoelectric effect for
free-free boundary conditions and it almost decreases for fixed-free boundary conditions.

ACKNOWLEDGMENTS

The authors would like to thank the referees for their valuable comments. They authors are also grateful to
University of Kashan for supporting this work by Grant No. 65475/14.

© 2011 IAU, Arak Branch



257

A. Ghorbanpour Arani et al.

REFERENCES

(1]
[2]
[3]
(4]
[5]
[6]
[7]
[8]
(91

[10]

(1]

[12]
[13]

[14]
[15]
[16]
(7]

(18]

Galic D., Horgan C.O., 2002, Internally pressurized radially polarized piezoelectric cylinders, Journal of Elasticity 66:
257-272.

Chen W.Q., Lu Y., Ye J.R, Cai J.B., 2002, 3D electroelastic fields in a functionally graded piezoceramic hollow sphere
under mechanical and electric loading, Archive of Applied Mechanics 72: 39-51.

Ding H.J., Wang H.M.,Chen W.Q., 2003, Dynamic responses of a functionally graded pyroelectric hollow sphere for
spherically symmetric problems, International Journal of Mechanical Sciences 45: 1029-1051.

Ding H.J., Wang H.M., Chen W.Q., 2004, Analytical solution of a special non-homogeneous pyroelectric cylinder for
piezothermoelastic axisymmetric plane strain dynamic problems, Applied Mathematics and Computation 151: 423-441.
Dai H.L., Wang X., 2005, Thermo-electro-elastic transient responses in piezoelectric hollow structures, International
Journal of Solids and Structures 42: 1151-1171.

Chen Y., Shi Z.F., 2005, Analysis of a functionally graded piezothermoelastic hollow cylinder, J Zhejiang Univ SCI
6A: 956-961.

Hosseini Kordkheili S.A., Naghdabadi R., 2007, Thermoelastic analysis of a functionally graded rotating disk,
Composite Structures 79: 508-516.

Bayat M., Saleem M., Sahari B.B., Hamouda A.M.S., Mahdi E., 2007, Thermo elastic analysis of a functionally graded
rotating disk with small and large deflections, Thin-Wall Structures 45: 677-691.

Bayat M., Sahari B.B., Saleem M., Hmouda A.M.S., Reddy J.N., 2009, Thermo elastic analysis of functionally graded
rotating disks with temperature-dependent material properties: uniform and variable thickness, International Journal of
Mechanics and Mastererial Design 5: 263:279.

Bayat M., Sahari B.B., Saleem M., Hmouda A.M.S., Wong S.V., Thermoelastic solution of a functionally graded
variable thickness rotating disk with bending based on the first-order shear deformation theory, Thin-Wall Structures
47: 568-582.

Ootao Y., Tanigawa Y. 2007, Transient piezothermoelastic analysis for a functionally graded thermopiezoelectric
hollow sphere, Composite Structures 81: 540-549.

Saadatfar M., Razavi A.S., 2009, Piezoelectric hollow cylinder with thermal gradient, J Mech Sci Technol 23: 45-53.
Asghari A., Ghafoori E., 2010, A three-dimensional elasticity solution for functionally graded rotating disks,
Composite Structures 92: 1092-1099.

Khoshgoftar M.J., Ghorbanpour Arani A., Arefi M., 2009, Thermoelastic analysis of a thick walled cylinder made of
functionally graded piezoelectric material, Smart Materials and Structures 18: 115007.

Hassani A., Hojjati M.H., Farrahi G., Alashti R.A., 2011, Semi-exact elastic solution for thermo-mechanical analysis of
functionally graded rotating disks, Composite Structures 93: 3239-3251.

Hassani A., Hojjati M.H., Farrahi G., Alashti R.A., 2012, Semi-exact solution for thermo-mechanical analysis of
functionally graded elastic-strain hardening rotating disks, 17: 3747-3762.

Jabbari M., Sobhanpour S., Eslami M.R., 2002, Mechanical and thermal stresses in a functionally graded hollow
cylinder due to radially symmetric loads, International Journal of Pressure Vessels and Piping 79: 493-497.

Yang J., 2005, An introduction to the theory of piezoelectricity. Springer Science, Inc. Boston.

© 2011 TAU, Arak Branch



