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 ABSTRACT 

 In this paper, the reflection and refraction of longitudinal wave from a plane surface 
separating a micropolar viscoelastic solid half space and a fluid saturated incompressible 
half space is studied. A longitudinal wave (P-wave) impinges obliquely at the interface. 
Amplitude ratios for various reflected and transmitted waves have been obtained. Then 
these amplitude ratios have been computed numerically for a specific model and results 
thus obtained are shown graphically with angle of incidence of incident wave. It is found 
that these amplitude ratios depend on angle of incidence of the incident wave as well as 
on the properties of media. A particular case when longitudinal wave reflects at free 
surface of micropolar viscoelastic solid has been deduced and discussed. From the 
present investigation, a special case when fluid saturated porous half space reduces to 
empty porous solid has also been deduced and discussed with the help of graphs.                 

  © 2014 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 OST of natural and man-made materials, including engineering, geological and biological media, possess a 
microstructure. The ordinary classical theory of elasticity fails to describe the microstructure of the material. 

To overcome this problem, Suhubi and Eringen [28] , Eringen and Suhubi [12] developed a theory in which they 
considered the microstructure of the material and they showed that the motion in a granular structure material is 
characterized not by a displacement vector but also by a rotation vector. Eringen [11] developed the linear theory of 
micropolar viscoelasticity. Many researchers like Kumar et al. [19], Singh [26], Singh [27], discussed the problems 
of waves and vibrations in micropolar viscoelastic solids. 

Based on the work of Fillunger model [13], Bowen [2] and de Boer and Ehlers [5-6] developed an interesting 
theory for porous medium having all constituents to be incompressible. There are sufficient reasons for considering 
the fluid saturated porous constituents as incompressible. For example, consider the composition of soil in which the 
solid constituents as well as liquid constituents which are generally water or oils are incompressible. Therefore, the 
assumption of incompressible constituents meet the properties appearing in many branches of engineering and 
avoids the introduction of many complicated material parameters as considered in the Biot theory. Based on this 
theory, many researchers like de Boer and Liu [8-9], de Boer and Liu [10], Liu [22], Yan et al. [31], Kumar and 
Hundal [18], de Boer and Didwania [4], Tajuddin and Hussaini [29], Kumar et al. [20] studied some problems of 
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wave propagation in fluid saturated porous media. Based on this theory, many researchers like de Boer and Liu [8-
9], de Boer and Liu [10], Liu [22], Yan et al. [31], Kumar and Hundal [18], de Boer and Didwania [4], Tajuddin and 
Hussaini [29], Kumar et al. [20] studied some problems of wave propagation in fluid saturated porous media.  

Using the theory of de Boer and Ehlers [5] for fluid saturated porous medium and Eringen [11] for micropolar 
viscoelastic solid, the reflection and transmission phenomenon of longitudinal wave at an interface between 
micropolar viscoelastic solid half space and fluid saturated porous half space is studied. The reflection coefficient of 
reflected waves at the free surface has also been obtained. A special case when fluid saturated porous half space 
reduces to empty porous solid has been deduced and discussed. Amplitudes ratios for various reflected and 
transmitted waves are computed for a particular model and depicted graphically and discussed accordingly.  

2    BASIC EQUATIONS AND CONSTITUTIVE RELATIONS   
2.1 For medium M1 (Micropolar viscoelastic solid)	

Following Eringen [11], the constitutive and field equations of a micropolar viscoelastic solid in the absence of body 
forces and body couples, are as:  

          , , , ,kl r r kl k l l k l k klr rt u u u k u , (1) 

     , , ,kl r r kl k l l km , (2) 

                   2 2 2 2 2
1 3 2 3 3c c u c c u c u , (3) 

                     2 2 2 2 2
4 5 4 0 02c c c u , (4) 

 
where 
 

   
 

   

           
     

        

                      
                                                     

2 2 2 2 2 2 * * * *
1 2 3 4 5 0

* * * * * * * *

2
, , , , , , , ,

, , , , .

k k
c c c c c

j j j t t

k k k i k
t t t t x z

 

 
 

(5) 

 

            * * * * * * * * * * *, , , , , , , , , ,k k  and 
*  are material constants,   is the density and j the rotational 

inertia. u and   are displacement and microrotation vectors respectively. Superposed dots on right hand side of Eqs. 

(3) and (4) represent the second order partial derivative with respect to time.  
Taking   1 3,0,u u u  and    20, ,0  and introducing potentials   , ,x z t  and   , ,x z t  which are related to 

displacement components as: 
 

      
   
   1 3, .u u
x z z x

 
 

(6) 

 
with the help of displacement components given by (6) in (3) and (4), we get 

 


    
  

2
2

22 2
1 3

1
0,

tc c
 

 
(7) 

 
 

     
  

2
2

222 2
2 3

1
0,p

tc c
 

 
(8) 
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 
 
      

 

2
2 2

22 2
4

1
2 0,q q

c t
 

 
(9) 

 
where 
 


 

 


, .
k

p q
k

 
 

(10) 

 
Assuming the time variation as: 

 

                 2 2, , , exp , , , , exp , , , , exp .x z t x z i t x z t x z i t x z t x z i t            (11) 

  
Using (11) in (7) to (9), we obtain 

 

     2 2 2
1/ 0,V  (12) 

         4 2 2 4
2, 0,B C  (13) 

 
where 
 

 
    

  
     

   
2 2 2 22 2 2 2

4 42 3 2 3

2 1 1 1 1 2
, ,

q p q
B C

c cc c c c
 

 
(14) 

 
and 
 

 2 2 2
1 1 3 .V c c  (15) 

 
In an unbounded medium, the solution of (12) corresponds to modified longitudinal displacement wave (LD 

wave) propagating with velocity 1V .Writing the solution of (13) as: 

 
   1 2 ,  (16) 

 
where  1  and  2  satisfy 

 

    2 2
1 1 0,  (17) 

    2 2
2 2 0,  (18) 

 
and 
 

      2 2 2 2 2 2
1 1 2 2,  (19) 

               
2 2 2 2

1 2

1 1
4 , 4 .

2 2
B B C B B C  

 
(20) 

 
From (8) we obtain    2 1 2E F ,where 
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  
   

    
     

2 2
2 2

1 22 2 2 2
2 3 2 3, .

c c c c
E F

p p
 

 
(21) 

 
Thus there are two waves propagating with velocities 1

1  and 1
2 , each consisting of transverse displacement 

  and transverse microrotation 2 . Following Parfitt and Eringen [23], these waves are modified coupled 

transverse displacement wave and transverse microrotational waves (CD I and CD II waves) respectively. 

2.2 For medium M2 (Fluid saturated incompressible porous medium) 

Following de Boer and Ehlers [6] , the governing equations in a fluid-saturated incompressible porous medium are  
 

 div 0,s F
s F   x x  (22) 

 div grad 0,S S
Sp     S F

E ET b x P  (23) 

 div grad 0,F F
Fp     F F

E ET b x P  (24) 

 
where i

x  and  ,i i S Fx  denote the velocities and accelerations, respectively of solid (S) and fluid (F) phases of 

the porous aggregate and p is the effective pore pressure of the incompressible pore fluid. S  and F are the 

densities of the solid and fluid phases respectively and  b is the body force per unit volume. S
ET  and F

ET are the 

effective stress in the solid and fluid phases respectively, F
EP is the effective quantity of momentum supply and S  

and F  are the volume fractions satisfying 

 
1.S F    (25) 

 
If Su  and Fu are the displacement vectors for solid and fluid phases, then 

 
, , , .S S S S F F F F          x u x u x u x u  (26) 

 
The constitutive equations for linear isotropic, elastic incompressible porous medium are given by de Boer, 

Ehlers and Liu [7] as: 
 

 2 S S
S SE   S

ET E I I , (27) 

0F
ET , (28) 

 v F S   F
EP S u u , (29) 

 
where S  and S  are the macroscopic Lame’s parameters of the porous solid and SE  is the linearized Langrangian 

strain tensor defined as: 
 

 grad grad1

2
T

S S S E u u . 
 

(30) 

 
 In the case of isotropic permeability, the tensor vS describing the coupled interaction between the solid and fluid 

is given by de Boer and Ehlers [6] as: 
 



Reflection and Transmission of Longitudinal Wave at Micropolar Viscoelastic Solid/Fluid …                   244 

© 2014 IAU, Arak Branch 

 2
F FR

v FK

 
S I , 

 
(31) 

  
where FR  is the specific weight of the fluid and FK  is the Darcy’s permeability coefficient of the porous medium. 

Making the use of (26) in Eqs. (22)-(24), and with the help of (27)-(30), we obtain 
 

 div 0S F
S F   u u , (32) 

     grad div div grad grad 0S S S S S
S S S v F Sp S             u u b u u u  (33) 

   grad 0F F
F v F Sp S        b u u u . (34) 

 
For the two dimensional problem, we assume the displacement vector  ,i i F Su  as: 

 

 , 0,i i
i u wu where i = F, S. (35) 

  
Eqs .(32)-(34) with the help of Eq. (35) in the absence of body forces take the form 

 
2 2 2 2

0,
S S F F

S Fu w u w

x t z t x t z t
 

      
                

 
 

(36) 

2

2
0,

F F S
F F

v

p u u u
S

x t tt
 

    
        

 
 

(37) 

2

2
0,

F F S
F F

v

p w w w
S

z t tt
 

    
        

 
 

(38) 

 
2

2
2

0,
S S F S

S S S S S S
v

p u u u
u S

x x t tt

    
     

             
 

 
(39) 

 
2

2
2

0,
S S F S

S S S S S S
v

p w w w
w S

z z t tt

    
     

             
  

 
(40) 

 
where 
 

   
,

S S

S
u w

x z


 
 

 
   

 
(41) 

and 
 

2 2
2

2 2
.

x z

 
  

 
   

 
(42) 

 
Also, S

zzt  and S
zxt  the normal and tangential stresses in the solid phase are as under 

 

2 ,
S S S

S S S
zz

u w w
t

x z z
 

   
      

   
 

(43) 

.
S S

S S
zx

u w
t

z x


  
    

   
 

(44) 
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The displacement components ju and jw  are related to the dimensional potential j  and j  as : 

 

, , ,  .
j j j j

j ju w j S F
x z z x

      
    

   
   

 
(45) 

 
Using Eq. (45) in Eqs . (36)-(40), we obtain the following equations determining , , ,S F S F     and p as: 

 

  
2

2
2 2 2
1

1
0,

2

S S
S v

S S F

S

tC t

 
  

 
   

 
   

 
(46) 

,
S

F S

F

 


     
 

(47) 

 
2

2
2

0,
S F S

S S S
vS

t tt

    
   

        
   

 
(48) 

2

2
0,

F F S
F

vS
t tt

  
   

      
    

 
(49) 

 

 
22

2
0,

S S
F S F

vp S
tt

     
  


    

 
(50) 

 
where 
 

   
   

2

1 2 2

2
.

F S S

F S S F
C

  

   





    

 
(51) 

   
Assuming the solution of the system of Eqs. (46)-(50) in the form 

  

     1 1 1 1 1, , , , , , , , exp ,S F S F S F S Fp p i t             (52) 

 
where   is the complex circular frequency. 

Making the use of (52) in Eqs. (46)-(50), we obtain 
 

  
2

2
12 2

1

0,
2

Sv

S S F

i S

C

 
  

 
       

    

 
(53) 

2 2
1 1 ,S S S F

v vi S i S                 (54) 

2
1 1 0,F F S

v vi S i S               (55) 

 2 2
1 1 1 0,F S F S S

vp i S             (56) 

1 1 .
S

F S

F

 


      
 

(57) 

  
Eq. (53) corresponds to longitudinal wave propagating with velocity 1V , given by 
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2
1

1

1
,V

G
     

 
(58) 

  
where 
 

  1 2 2
1

1
.

2

v

S S F

iS
G

c    

 
     

    

 
 

(59) 

 
From Eqs. (54) and (55), we obtain 

 
2

2
12

2

0.S

V

 
 
   
 

    
 

(60) 

  
Eq. (60) corresponds to transverse wave propagating with velocity 2V , given by 2

2 21 /V G  

where 
 

 
2

2 2
.

S
v v

S S S S
v

iS S
G

i S


      

     
   

    
 

(61) 

3    FORMULATION OF THE PROBLEM      

Consider a two dimensional problem by taking the z-axis pointing into the lower half-space and the plane interface 
0z   separating the uniform micropolar viscoelastic solid half space medium M1 (z > 0) and fluid saturated porous 

half space medium M2 (z < 0). Consider a longitudinal wave propagating through the medium M1, incident at the 
plane 0z   and making an angle 0  with normal to the surface. Corresponding to incident longitudinal wave, we 

get three reflected waves in the medium M1 and two transmitted waves in medium M2 as shown in Fig. 1. 

 

 
 
 
 
 
 
 
 

Fig. 1  
Geometry of the problem. 

In medium M1 

     0 0 0 0 1 1 0 1 1 1exp sin cos exp sin cos ,B ik x z i t B ik x z i t                (62) 

     2 1 2 2 2 3 2 3 3 3exp sin cos exp sin cos ,B i x z i t B i x z i t                  (63) 

     2 2 1 2 2 2 3 2 3 3 3exp sin cos exp sin cos ,EB i x z i t FB i x z i t                  (64) 
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In medium M2 

      1 2 1 1 1 1 1, , 1, , exp sin cos ,S F p m m A ik x z i t         
    

(65) 

      3 2 2 2 2 2, 1, exp sin cos ,S F m A ik x z i t         
    

(66) 

 
where 
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(67) 

 
and 0 1 2 3, , ,B B B B  are amplitudes of incident P-wave, reflected P-wave, reflected CDI and reflected CDII waves 

respectively, A1 and A2 are amplitudes of transverse P-wave and SV-wave, respectively and all these unknowns are 
to be determined from boundary conditions. 

4    BOUNDARY CONDITIONS    

The appropriate boundary conditions are the continuity of displacement, micro rotation and stresses at the interface 
separating media M1 and M2. Mathematically, these boundary conditions at 0z  can be written as: 
 

1 3, , 0, , .S S S S
zz zz zx zx zyt t p t t m u u u w          (68) 

 
In order to satisfy the boundary conditions, the extension of the Snell’s law will be  
 

0 31 2 1 2
1 1

0 1 1 21 2

sin sinsin sin sin sin
.

V V V V

    
           

 
(69) 

For longitudinal wave, 
 

0 1 0 1, .V V        (70) 

  
Also 
 

1 1
0 1 1 1 2 2 1 1 2 2 .k V k V k V              (71) 

 
Making the use of potentials given by Eqs. (62)-(66) in Eqs. (1)-(2) and (6) and (43)-(45) and (65) and then 

using the boundary conditions given by Eq.(68) and using (69)-(71), we get a system of five non homogeneous 
which can be written as: 
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where 
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(73) 
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i.e. Z1 to Z5 be the amplitude ratios of reflected modified longitudinal displacement wave, reflected CD I wave at an 
angle 2  reflected CD II wave at an angle 3  refracted P-wave and refracted SV-wave, respectively and aij in non-

dimensional form are as: 
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(74) 

5    PARTICULAR CASES    
  Case1 

If pore is absent or gas is filled in the pores then F  is very small as compared to S and can be neglected, so the 

relation (53) reduces to  
 

0

2
.

S S

S
C

 



  
 

(75) 

  
Then fluid saturated incompressible porous medium reduces to empty porous solid. 

  Case2 

When upper half space is not present in the given formulation. Considering a micropolar viscoelastic solid with free 
boundary surface, i.e. upper half space is not present in the given formulation. A plane wave (P-wave) propagating 
through the micropolar viscoelastic solid making an angle 0 with z-axis at the free surface 0z  . Corresponding to 

each incident wave we get three reflected waves. Boundary conditions for this case reduces to 
 

, , 0S S
zz zz zx zx zyt t p t t m     (76) 

 
And hence we obtain a system of three non-homogeneous equations which can be written as: 
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(77) 

 
where 11 12 13 21 22 23 31 32, , , , , , ,a a a a a a a a  and 33a  are given by Eq. (74) 
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6    NUMERICAL RESULTS AND DISCUSSION    

The theoretical results obtained above indicate that the amplitude ratios  1,2,3,4,5iZ i   depend on the angle of 

incidence of incident wave and material properties of half spaces. In order to study in more detail the behaviour of 
various amplitude ratios, we have computed them numerically for a particular model for which the values of various 
physical parameters are as under. In medium M1, the physical parameters for micropolar viscoelastic elastic solid are 
taken from Gauthier [14] as:  
 

* 11 2 * 11 2

* 11 2 3

* 11
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(78) 

   
where the quality factors  1,2,3,4iQ i   are taken arbitrarily as: 

 
 1 2 3 45, 10, 15, 13Q Q Q Q      

  
In medium M2, the physical constants for fluid saturated incompressible porous medium are taken from de Boer, 

Ehlers and Liu [7] as: 
 

3 3 2
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(79) 

 
A computer programme in MATLAB has been developed to calculate the modulus of amplitude ratios of various 

reflected and transmitted waves for the particular model and to depict graphically. In Figs (2)-(6) solid lines show 
the variations of amplitude ratios when medium-I is micropolar viscoelastic solid (MVES) and medium-II is 
incompressible fluid saturated porous medium (FS) whereas dashed lines show the variations of amplitude ratios 
when medium-II becomes incompressible empty porous solid (EPS). Figs. (2)-(6) indicate the effect of pores fluid.  

In Figs. 7-11 solid lines show the variations of amplitude ratios when medium-I is micropolar viscoelastic solid 
(MVES) and medium-II is incompressible fluid saturated porous medium (FS) whereas dashed lines show the 
variations of amplitude ratios when medium-I becomes micropolar elastic solid( MES). In this case the modulus of 
amplitude ratios changes slightly due to effect of viscosity. Figs. (12)-(14) show the variation of the modulus of the 
amplitude ratios of various reflected waves at free surface of micropolar viscoelastic solid (MVES).In these figures 
solid lines show the variations of amplitude ratios when medium is micropolar viscoelastic solid (MVES) whereas 
dashed lines show the variations of amplitude ratios when the medium becomes micropolar elastic solid( MES) . 
These figures show that the effect of viscosity is significant in the range 52 74     approx. 

 
 

 

 
 
 
 
 
 
 
 
 
 

 
Fig. 2  
Variation of the amplitude ratio 1Z  with angle of 

incidence of the incident longitudinal wave. 
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Fig. 3  
Variation of the amplitude ratio 2Z  with angle of 

incidence of the incident longitudinal wave. 

  

 
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 4 
Variation of the amplitude ratio 3Z  with angle of 

incidence of the incident longitudinal wave. 

  

 
 

 
 
 
 
 
 
 
 
 
 
Fig. 5 
Variation of the amplitude ratio 4Z  with angle of 

incidence of the incident longitudinal wave. 

  

 

 
 
 
 
 
 
 
 
 
 
Fig. 6 
Variation of the amplitude ratio 5Z  with angle of 

incidence of the incident longitudinal wave. 
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Fig. 7 
Variation of the amplitude ratio 1Z  with angle of 

incidence of the incident longitudinal wave. 

   

 

 
 
 
 
 
 
 
 
 
 
Fig. 8 
Variation of the amplitude ratio 2Z  with angle of 

incidence of the incident longitudinal wave. 

  

 

 
 
 
 
 
 
 
 
 
 
Fig. 9 
Variation of the amplitude ratio 3Z  with angle of 

incidence of the incident longitudinal wave. 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
Fig. 10 
Variation of the amplitude ratio 4Z  with angle of 

incidence of the incident longitudinal wave. 
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Fig. 11 
Variation of the amplitude ratio 5Z  with angle of 

incidence of the incident longitudinal wave. 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
Fig. 12 
Variation of the amplitude ratio 1Z  with angle of 

incidence of the incident longitudinal wave (free 
surface). 

 
 

 

 

 
 
 
 
 
 
 
 
 
Fig. 13 
Variation of the amplitude ratio 2Z  with angle of 

incidence of the incident longitudinal wave (free 
surface). 

 
 

 

 

 
 
 
 
 
 
 
 
Fig. 14 
Variation of the amplitude ratio 3Z  with angle of 

incidence of the incident longitudinal wave (free 
surface). 
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7    CONCLUSIONS 

In conclusion, a mathematical study of reflection and refraction coefficients at an interface separating micropolar 
viscoelastic solid half space and fluid saturated incompressible porous half space is made when longitudinal wave is 
incident. It is observed that 

(i). The amplitudes ratios of various reflected and refracted waves depend on the angle of   incidence of the 
incident wave and material properties of half spaces. 

(ii). The effect of fluid filled in the pores of incompressible fluid saturated porous medium is significant on the 
amplitudes ratios. 

(iii). If we neglect the viscous effect of micropolar viscoelastic solid then the variations in the amplitude ratios of 
various reflected and refracted waves have been affected but not significantly. 

(iv). There is significant difference in the values of modulus of amplitudes ratios for reflected waves in both the 
cases (i) when upper half space is present (ii) when upper half space is not present. 

(v). Appreciable effect of viscosity has been observed on the amplitudes ratios for the reflected   waves in case 
of free surface boundary.  

The model presented in this paper is one of the more realistic forms of the earth models. It may be of some use in 
engineering, seismology and geophysics etc.  
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