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 ABSTRACT 

 This paper discusses static and dynamic response of nanoplate resting 

on an orthotropic visco-Pasternak foundation based on Eringen’s 

nonlocal theory. Graphene sheet modeled as nanoplate which is 

assumed to be orthotropic and viscoelastic. By considering the Mindlin 

plate theory and viscoelastic Kelvin-Voigt model, equations of motion 

are derived using Hamilton’s principle which are then solved 

analytically by means of Fourier series -Laplace transform method. The 

parametric study is thoroughly accomplished, concentrating on the 

influences of size effect, elastic foundation type, structural damping, 

orthotropy directions and damping coefficient of the foundation, 

modulus ratio, length to thickness ratio and aspect ratio. Results depict 

that the structural and foundation damping coefficients are effective 

parameters on the dynamic response, particularly for large damping 

coefficients, where response of nanoplate is damped rapidly.                   
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1    INTRODUCTION 

RAPHENE SHEETS (GSs) as nanoplates are one atom thick two-dimensional layers of sp
2
-bonded carbon 

densely packed to form a honeycomb crystal lattice. Especial properties of graphene sheets such as high 

strength, the low ratio of weight to area unit and extraordinary electrical properties, attracted many researchers to 

consider this topic as their major activities [1, 2]. It is studied the possibility of using graphene in magnetic sensor 

[3], nanocomposites [4], transistors [5], mass and gas sensors [6, 7], cellular photographing [8] and so on. There are 

different methods to analyze the nano structures known as molecular dynamics (MD) simulations, experimental 

study and continuum mechanics approach. Since performance and control of experiments and atomic modelling on 

the nano-scale level is difficult and expensive in computations, the continuum mechanics method is attended by 

many researchers in comparison with two other methods. Inasmuch as the classical continuum mechanics have no 
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ability in capturing the small scale effects, it cannot be regarded as a reliable theory to predict the mechanical 

behavior of nanomaterials. So far, several nonclassical continuum theories have been formulated to incorporate the 

small-scale size effects in micro/nano structures, such as strain gradient theory [9], couple stress theory [10, 11] and 

nonlocal elasticity theory [12]. Among these size-dependent theories, the Eringen nonlocal elasticity theory is 

widely used in the study of structures at small scale. Eringen theory by considering the small scale effects, explains 

that the stress in a reference point is affected by the strains in whole body domain or the interactive bonds between 

the carbon atoms are not neglected and have significant effects in nano scales. The literature shows that nonlocal 

theory is being increasingly utilized for reliable and quick analysis of nanostructures in recent years. In this regard, a 

number of research works have been performed based on this theory in order to study on mechanical behavior of 

graphene sheets. Pradhan and Murmu [13] studied buckling analysis of biaxially compressed single-layered 

graphene sheet (SLGS) using the differential quadrature method (DQM). They found that buckling load decreases 

with increasing the nonlocal parameter. Hosseini Hashemi and Tourki Samaei [14] investigated the buckling of 

rectangular graphene plates using the Mindlin and Eringen nonlocal elasticity theories. They concluded that both 

nonlocal parameter and shear deformation are less important in lower buckling modes, and they are strongly 

important at higher buckling modes. Shen [15] investigated bending, vibrations and post buckling of rectangular 

graphene plates resting on elastic foundation, using classical plate theory (CLPT) by considering the nonlinear 

strains field in thermal environment. Ansari and Rouhi [16] proposed an analytical solution to calculate the critical 

buckling load for a monolayer graphene sheet under uniform loading by employing Galerkin method. Mohammadi 

et al. [17] studied free transverse vibration analysis of circular and annular graphene sheets using nonlocal 

continuum mechanics for various types of boundary conditions. They found that nondimensional frequency 

increases with increasing the radius for all mode numbers. Zenkour and Sobhy [18] investigated the thermal 

buckling of SLGS embedded in an elastic Winklere-Pasternak matrix, using the sinusoidal shear deformation plate 

theory and compared the results with classical and first-order shear deformation theories. Ghorbanpour Arani et al. 

[19] investigated nonlinear vibration response of the coupled system of double-layered annular graphene sheets (CS-

DLAGSs) embedded in a visco-Pasternak medium via DQM. They revealed that the frequency reduction percent 

(FRP) of in phase-in phase-in phase (III) and out phase-out phase-out phase (OOO) vibration state are maximum and 

minimum, respectively. Kanaipour [20] studied static bending analysis of nanoplate embedded on elastic foundation. 

The governing equations for the nonlocal Mindlin and Kirchhoff plate models were derived and then were solved 

numerically using DQM. He observed that by increasing the elastic stiffness, the displacement ratio increases. 

Mohammadi et al. [21] presented nonlocal theory to study the free vibration of orthotropic SLGS resting on a 

Pasternak foundation under shear in-plane load based on CLPT and used the combined Galerkin-DQM to solve the 

obtained equations. They concluded that small scale effects are more significant for the nanoplate with shear in-

plane load compared to nanoplate without shear in-plane load. Golmakani and Rezatalab [22] presented the 

nonlinear bending analysis of rectangular orthotropic SLGS resting on Pasternak foundation based on nonlocal first 

order shear deformation theory (FSDT). Their results showed that when the elastic foundation exists, the linear to 

nonlinear deflection ratio decreases.  

A close scrutiny of previous researches shows that only few works have (have) been devoted to dynamic analysis 

of nanoplate. In this regard, Liu and Chen [23] analyzed dynamic response of the finite periodic SLGSs with 

different boundary conditions using the wave method. Most recently, Ghorbanpour Arani and Jalaei [24] 

investigated static bending and dynamic behavior of embedded isotropic elastic SLGS based on nonlocal third-order 

shear deformation theory (TSDT). The surrounding medium was simulated by isotropic visco-Pasternak model. 

They revealed that when the nonlocal parameter increases, the dynamic response increases. Also, their results 

indicated that the small scale effect on the deflection is more prominent as the nanoplate becomes thicker and the 

aspect ratios increases. None of the research works which are mentioned above have modeled nanoplates as 

viscoelastic structures whereas the nanoplates reveal viscoelastic structural damping as many materials. Recently, 

Pouresmaeeli et al. [25] performed vibration analysis of a simply supported viscoelastic orthotropic nanoplate 

resting on viscoelastic foundation. They showed that increasing the structural damping and foundation damping 

coefficients diminishes the frequency of orthotropic nanoplates. Karličić et al. [26] carried out the free vibration of a 

viscoelastic orthotropic multi-nanoplate system (MNPS) by including the effect of viscoelastic foundation, based on 

the Kirchhoff plate theory. Wang et al. [27] presented analytical solutions for nonlinear vibration of the double 

layered viscoelastic nanoplates based on CLPT. Their results indicated that the Van der Waals interaction has 

considerable effects on the natural frequency, while the effect of the structural damping coefficient on the 

nonlinearity frequency is not significant. Hosseini Hashemi et al. [28] investigated the free transverse vibration of a 

nonlocal viscoelastic double graphene sheets (NVDGS) coupled with visco-Pasternak layer based on CLPT using 

exact solution. They showed that natural frequency and stability of the system rise as the Winkler and Pasternak 

coefficients increase and layer damping effect decreases. 
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However, to the best of authors’ knowledge, no study has focused on static and dynamic bending of viscoelastic 

orthotropic SLGS resting on orthotropic visco-Pasternak foundation under sinusoidal and uniform loads so far. 

Considering viscoelastic characterization both GS and foundation are very significant for perfect analysis of NEMS. 

Hence, in this work an entirely analytical method to study the static and dynamic responses of SLGS with 

considering foundation effects is developed using the Fourier series-Laplace transform. Viscoelasticity of the 

structure material is modeled with parallel springs and dashpots as the Kelvin-Voigt model. The SLGS resting on 

the viscoelastic medium is simulated by orthotropic visco-Pasternak type as spring, shear and damping foundations 

with considering shear direction and orthotropy angle. Based on the Mindlin plate theory, equations of motion are 

derived employing Hamilton’s principle. Furthermore, the nonlocal elasticity theory is applied to capture the small 

scale effects. Using Laplace transform, the time dependency of the governing equations is eliminated and then an 

analytical strategy is employed to invert the results into the time domain. Finally, the influences of small scale 

effect, modulus ratio, elastic foundation type, structural damping, orthotropy directions and damping coefficient of 

the foundation, loading type, length to thickness ratio and aspect ratio on the static and dynamic behavior of SLGS 

are discussed. The obtained results would be helpful while designing NEMS devices using GSs. 

2    BASIC EQUATIONS 

A schematic configuration of the viscoelastic orthotropic SLGS with length a, width b and thickness h resting on an 

orthotropic visco-Pasternak foundation subjected to dynamic transverse uniform and sinusoidal loads has been 

illustrated in Fig. 1. The viscoelastic nanoplate is described based on the Kelvin-Voigt model consists of an infinite 

set of springs and dashpots in parallel. This model handles the characteristics of creep and recovery fairly well. As 

shown, due to the presence of arbitrarily orthotropic foundation, the global coordinates of the nanoplate (x, y, z) will 
not coincide with the local orthotropy coordinates (ξ, η) of the medium.  

 

 
(a) 

 

 
 

(b) 

Fig.1 

a)  Configuration of viscoelastic orthotropic SLGS resting on orthotropic visco-Pasternak foundation. b) Schematic of 

viscoelastic orthotropic SLGS under uniform and sinusoidal loads. 

2.1 Nonlocal continuum theory 

The conventional local theory is not size dependent theory. Thus, it is required to modify this theory to include small 

scale effects. For this purpose, nonlocal elasticity theory was suggested by Eringen [12].  Due to its efficiency and 

simplicity, it has been extensively applied. According to the nonlocal theory, the stress tensor at an arbitrary point in 

a body depends not only on the strain tensor at that point but also on the strain tensor at all other points of the body. 

This observation is in accordance with atomic theory of lattice dynamics and experimental observations on phonon 

dispersion. Using nonlocal elasticity theory, the constitutive equation for a linear homogenous nonlocal elastic body 

neglecting the body forces is given as: 

 

( ) ( , ) ( ) ,nl l

ij ij

V

x x x dV x x V         (1) 
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where 
nl

ij and l
ij  are, the nonlocal and local stress tensors, respectively; The term ( , )x x   is the nonlocal 

modulus, which incorporates nonlocal effects into the constitutive equation at the reference point  produced by the 

local strain at the source x  ; x x   represents the distance between x and x   in the Euclidean form, and 

0 /e a l  in which l is the external characteristic length (e.g., crack length, wavelength), a is an internal 

characteristic length of the material (e.g., length of C-C bond, lattice parameter, granular distance), and 0e  indicates 

constant appropriate to each material, and Consequently, 0e a  is a constant parameter which is obtained with the 

experimental observations or MD simulation results. It should be noted that when 0e a  is equal to zero, the nonlocal 

elasticity reduces to the local (classical) elastic model. The differential form of Eq. (1) can be written as: 

 

 21 :nl C      (2) 

 

In above equation, the parameter 2
0( )e a   denotes the small scale effect on the response of structures in 

nanosize and 2 2 2 2 2/ /x y       is the Laplacian operator in a Cartesian coordinate system. Also, C  is the 

fourth order stiffness tensor, ‘:’ represents the double dot product and   is the strain tensor.  

Using Eq. (2), the constitutive equation of the orthotropic nanoplate can be expressed as: 
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(3) 

 

The coefficients of ijC  are the plane stress-reduced stiffness of the orthotropic nanoplate defined as follow [29]: 
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(4) 

 

where 1E  and 2E are the Young’s moduli in directions x and y, respectively. 
12

G , 
13

G and 
23

G denote the shear 

moduli and 
12

 and 
21

 are the Poisson’s ratios. 

2.2 Strain displacement relationships 

In this study, to capture the thickness shear deformations and rotary effects, the Mindlin plate theory (FSDT) is 

utilized to formulate the governing equations. Based on this theory, the mid-surface displacements 0 0 0( , , )u v w , mid-

surface rotations  ,x y   and the displacement components of an arbitrary point ( , , )u v w are in association as [29]: 

 

     0, , , , , , , ,xu x y z t u x y t z x y t   

     0, , , , , , , ,yv x y z t v x y t z x y t   

   0, , , , , ,w x y z t w x y t  

 

 

(5) 

 

In which t  denotes the time variable.The linear in-plane and transverse shear strains are given by: 
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(7) 

 

Here, the comma in subscript represents the partial differentiation. 

3    ENERGY METHOD 

3.1 Strain energy 

The strain energy of the rectangular SLGS can be written as: 
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(8) 

 

In the above equation, sK is the shear correction factor of FSDT. As widely accepted, the approximate value of 

this quantity is 5 / 6sK   [29]. 

3.2 Kinetic energy 

The kinetic energy of the SLGS can be obtained as: 

 

     
2 2 2

0 02

b ah
K u v w dx dy


   

    
 

(9) 

 

where  is the density of the orthotropic graphene sheet and dot-superscript convention shows the differentiation 

with respect to the time. 

3.3 External works 

The graphene sheet is subjected to the external applied loads and resting on an orthotropic visco-Pasternak elastic 

foundation. Hence, the external works can be divided to the following two distinct forces: 

 Orthotropic visco-Pasternak medium 

 External applied loads 

3.3.1 Elastic medium 

Winkler foundation or one-parameter model is the simplest simulation of a foundation that considers just the normal 

stresses. Pasternak foundation or two-parameter model considers not only the normal stresses, but also the transverse 

shear deformation. Taking the advantage of Pasternak’s model, foundation can be defined generally as arbitrary 

orthotropy directions. Orthotropic visco-Pasternak foundation is simulated by adding damping to the orthotropic 
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Pasternak model. Since the damping coefficient has remarkable effect on the dynamic response of material, it should 

be considered in the dynamic analysis. Therefore, visco foundation can yield the accurate results with respect to 

non-visco ones. In this paper, the bottom surface of SLGS is continuously in contact with an orthotropic visco-

Pasternak foundation. The force induced by orthotropic visco-Pasternak foundation can be obtained as [30, 31]: 

 
2 2 2 2

1 , , , , , ,(cos 2cos sin sin ) (sin 2sin cos cos )w d g xx xy yy g xx xy yyF k w c w k w w w k w w w                 (10) 

 

In which wk , dc , gk   and gk  are spring, damper, ξ-shear and η-shear constants, respectively. The angle θ 

describes the local ξ direction of orthotropic foundation with respect to the global x-axis of the nanoplate.   

3.3.2 External applied loads 

The force due to external applied loads can be written as: 
 

2F p   (11) 

 

where p is the intensity of the distributed transverse load. 

Therefore, the work done due to elastic medium and external forces on the SLGS is 

 

1 2
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1
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2
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(12) 

4    EQUATIONS OF MOTION 

Applying Hamilton’s principle the variational form of motion equations can be expressed as follows: 
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Equating the coefficients of 
0 0 0, , , xu v w     and y to zero, the following equations of motion can be obtained: 
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, , 1 0 2: ,y xy x yy y yz yM M Q I v I      (14e) 

 

where 
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In which N  , M  and zQ are in-plane, moment and transverse shear stress resultants of nonlocal elasticity, 

respectively. 

The stress resultants are related to the strains as follows: 
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Here ,
ij ij

A D and ii
J which are the extensional, bending and shear stiffness of the graphene sheet defined as: 
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Kelvin-Voigt model is employed for considering viscoelastic behavior of the nanostructure.  According to this 

model, Young’s moduli iE and shear moduli ijG are as follows [25]: 
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In which g is the structural damping coefficient. Substituting Eqs. (15), (18) and (19) into the equations of 

motion (i.e., Eq. (14)), the governing equations of viscoelastic orthotropic SLGS in terms of displacements and 

rotations can be obtained as: 

 
2

1 0, 0, 2 0, 0, 3 0, 0, 4 0 5
( ) ( ) ( ) (1 )( ) 0 ,

xx xx yy yy xy xy x
A u gu A u gu A v gv A u A            

(20a) 

 
2

1 0, 0, 2 0, 0, 3 0, 0,y 4 0 5
( ) ( ) ( ) (1 )( ) 0 ,

xy xy xx xx yy y y
B u gu B v gv B v gv B v B            

(20b) 

 

1 0, 0, 2 0, 0, 3 , , 4 , ,

2 2

5 0 0 0, 0, 0,2

2 2

0, 0, 0, 0

( ) ( ) ( ) ( )

(cos 2cos sin sin )
(1 ) 0 ,

(sin 2sin cos cos ) ( , , )

xx xx yy yy x x x x y y y y

w g xx xy yy

g xx xy yy d

C w gw C w gw C g C g

C w k w k w w w

k w w w c w p x y t





   

   


   

      

   
   

    

 
 
 
 

 

 

 

(20c) 

 

1 0, 0, 2 , , 3 , , 4 5 , ,

2

6 0 7

( ) ( ) ( ) ( ) ( )

(1 )( ) 0,

x x x xx x xx x yy x yy x x y xy y xy

x

D w gw D g D g D g D g

D u D

       

 

        

    
 

 

(20d) 

 

1 0, 0, 2 , , 3 , , 4 , , 5

2

6 0 7

( ) ( ) ( ) ( ) ( )

(1 )( ) 0,

y y x xy x xy y xx y xx y yy y yy y y

y

E w gw E g E g E g E g

E v E

       

 

        

    
 

 

(20e) 

 

where the coefficients ,
i

A ,
i

B ,
i

C ,
i

D  and i
E are given in Appendix A. 

Considering that the rectangular graphene sheet has simply supported boundary conditions at all four edges, we 

can write following form [29]: 

 

0 0( ,0, ) 0, ( ,0, ) 0, ( , , ) 0, ( , , ) 0,x xu x t x t u x b t x b t      (21a) 

 

0 0(0, , ) 0, (0, , ) 0, ( , , ) 0, ( , , ) 0,y yv y t y t v a y t a y t      (21b) 

 

0 0 0 0( ,0, ) 0, ( , , ) 0, (0, , ) 0, ( , , ) 0,w x t w x b t w y t w a y t     (21c) 

 

(0, , ) 0, ( , , ) 0, ( ,0, ) 0, ( , , ) 0,xx xx yy yyN y t N a y t N x t N x b t     (21d) 

 

(0, , ) 0, ( , , ) 0, ( ,0, ) 0, ( , , ) 0,xx xx yy yyM y t M a y t M x t M x b t     (21e) 

5    SOLUTION PROCEDURE 

5.1 Space solution 

A closed-form Navier’s type solution is employed to solve governing equations. On the basis of Navier solution, the 

generalized displacements are expanded in a double Fourier series as product of undetermined coefficients and 

known trigonometric functions to satisfy boundary conditions, i.e., Eq. (21). Hence, the appropriate displacement 

components can be defined as: 

 

0

1 1

( , , ) ( ) cos( ) sin( ) ,
mn

m n

u x y t U t x y 

 

 

  

 

(22a) 
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     
0

1 1

, , ( ) sin cos ,
mn

m n

v x y t V t x y 

 

 

  
 

(22b) 

 

     
0

1 1

, , ( ) sin sin ,
mn

m n

w x y t W t x y 

 

 

  

 

(22c) 

 

     
1 1

, , ( ) cos sin ,
x mn

m n

x y t X t x y  

 

 

  

 

(22d) 

 

     
1 1

, , ( ) sin cos ,
y mn

m n

x y t Y t x y  

 

 

  

 

(22e) 

 

where , ,
m n

a b

 
    and m, n are the half wave numbers in the x and y directions, respectively. 

Furthermore, as mentioned, it is assumed that the nanoplate is subjected to transverse mechanical load which can 

be expressed as the following Fourier sin expansion: 

 

     
1 1

, , ( ) sin sin
mn

m n

p x y t p t x y 

 

 

  

 

(23) 

 

Here, the coefficients ( )
mn

p t  for two types of dynamic load distribution at the top surface of viscoelastic 

orthotropic SLGS are presented as: 

 

2

16 ( )
( ) , ( , 1,3,5,...)mn

P t
p t m n

mn
                  for uniform load 

( ) ( ) , ( 1)mnp t P t m n                              for sinusoidal load 

 

 

(24) 

 

where 0( ) ( )P t P H t , and
0

P  represents the intensity of distributed applied load. Also, ( )H t is the Heaviside step 

function defined as 
1, 0

( )
0 , 0

t
H t

t










. 

Substituting Eqs. (22) and (23) into the governing Eq.(20), the following system of equations is obtained in a 

matrix form as: 

 

          ,
mn mn mn mn mn mn mn

M C K F       (25) 

 

In which    
T

mn mn mn mn mn mn
U V W X Y   is the displacement vector. Furthermore, the  M ,  C and  K are the 

mass, damping and stiffness matrices, respectively, which are defined in Appendix B. 

5.2 Dynamic response solutions 

For the dynamic bending analysis, Eq. (25) must be solved by using the Laplace transformation. Performing the 

Laplace transform on Eq. (25) and considering zero initial conditions at the initial time (namely,     0mn mn     

at 0t  ), yields a new system of equations in which time dependency is eliminated as follows: 
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   2
,

mn mn mn mn mn
K sC s M F    
   

 

(26) 

 

Here, s is the Laplace transform parameter and the bar superscript indicates transformed quantities. 

5.3 Analytical Laplace inversion 

At the end of previous section, each of the five components of the displacement vector was obtained in the Laplace 

domain. In this section, an analytical Laplace inversion technique is employed to return the displacement vector 

from Laplace domain into the real time domain. 

A function 
( )ˆ( )
( )

A s
f s

B s
  can be used to find the unknown variables in Eq. (26) in the Laplace transformation 

domain. Both functions ( )A s  and ( )B s  are in the form of polynomials. Let’s suppose that the roots of the function 

( )B s  are known. Some of the roots are real roots which are denoted by ir and the others are complex and indicated 

by ic . Number of ir  and ic are shown as rn and cn , respectively. When all roots are simple, the inverse of the 

function
ˆ( )f s , that is ( )f t , is obtained as [32, 33]: 

 

1 1

( )( )
( ) .

( ) ( )

c r

ji

n n

r tjc ti

i ji j

A rA c
f t e e

B c B r
 

 
 

 
  
 
 Re  

 

(27) 

 

where  Re x denotes the real part of the complex number x and the prime specifies a derivative with respect to s. 

Following the mentioned approach, each component of the displacement vector is derived analytically. 

6    NUMERICAL RESULTS AND DISCUSSION 

In this study, static deflection and dynamic response of orthotropic SLGS is carried out. The effects of various 

parameters such as small scale parameter, material properties, structural damping, viscoelastic foundation, kind of 

the applied load, length to thickness ratio (a/h) and aspect ratio (a/b) are presented. Since the successful application 

of the nonlocal continuum mechanics requires to determine the magnitude of the small scale parameter 0e a , an 

appropriate choice of this parameter had to be made. In the most studies e0 is usually taken to be 0.39 proposed by 

Eringen [12]. Literatures show that the magnitudes of 0e extremely depend on various parameters, and its actual 

value is not known so far. Some researchers assumed a range of values 0 0.2e a nm for different analyses of GS 

[16, 30]. So in this research, the values of small scale parameter   are taken as zero up to 4 nm
2
. Geometrical and 

material properties of the isotropic and orthotropic SLGS are presented in Table1. 

 
Table 1 

Geometrical and material properties of the isotropic and orthotropic SLGS [34]. 

Elastic properties Isotropic graphene sheet Orthotropic graphene sheet 

E1 (GPa) 1060 1765 

E2 (GPa) 1060 1588 
ν12 0.25 0.30 
ν 21 0.25 0.27 

ρ (kg/m3) 2250 2300 

h (nm) 0.34 0.34 

6.1 Verification studies 

To show the accuracy and efficiency of the proposed method in static bending and dynamic response, some 

comparison studies are presented in Table 2., as well as in Fig. 2. 
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6.1.1 Static deflection of orthotropic plate 

As an example, the non-dimensional defection of orthotropic plates under uniformly distributed load without 

considering both the effects of elastic medium and nonlocal parameter are compared with those available in [35] 

based on two-variable plate theory (TVPT). The used material properties are taken as: 

1 2 r
E E E varied, 12 2 13 2

0.6 ,G E G E 
23 2

0.5,G E 
12

0.25  . A brief review of Table 2., shows that the present 

deflection is in good agreement with the results in literature. 

 
Table 2 

Comparison of non-dimensional deflection w  of orthotropic plate under uniform load. 

Er a/b                 a/h=10   a/h=100  

TVPT [35] Present  TVPT [35] Present 

10  0.5 1.8218 1.8311  1.5886 1.5775 

 1 1.5334 1.5489  1.3739 1.3736 

 2 0.5847 0.5967  0.5190 0.5190 

20 0.5 1.0313 1.0411  0.7983 0.7877 

 1 0.9445 0.9576  0.7851 0.7851 

 2 0.4775 0.4805  0.4118 0.4121 

6.1.2 Dynamic response of FGM plates 

To the best of authors’ knowledge no published literature is available for dynamic response of viscoelastic 

orthotropic SLGS resting on the orthotropic visco-Pasternak foundation. Since no reference to such a work is found 

to data in the literature, its verification is not possible. However, in an attempt to validate this study, a simplified 

analysis of this work is done without considering the size effect, elastic foundation and orthotropic and viscoelastic 

properties of the nanoplate. In Fig. 2, the present results are compared with the work of Reddy [36] who analyzed 

functionally graded material (FGM) plate under a uniformly distributed load based on the finite element method 

(FEM). For this purpose, the geometric properties are assumed to be: a=b=0.2 m, h=0.01 m and loading intensity is 

P0=106 N/m
2
. Also, the central deflection and time are normalized as 

2

0c mw w hE a P

  and 

2

m m
t t E a 

 , where 

m
E  and m

 are the corresponding properties of the metal. As observed, in this case, our outcomes agree excellent 

with the finite elements results. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Comparison between deflection time-history of the center 

of FG square plate under the uniform load. 

 

6.2 Parametric studies 

For convenience, the following non-dimensional parameters are used in presenting the numerical results: 
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2 24
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2
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g gc w

W G G

d
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k a k bw hE k a
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



   

   


 

 

 

(28) 

 

The values of the length to thickness ratio and aspect ratio are assumed to be 10 and 1, respectively, unless 

otherwise stated. Also, magnitude of the applied load is P0=10
6
 N/m

2
.  

6.2.1 Static analysis of orthotropic nanoplate 

At first, the effect of aspect ratio, length-to-thickness ratio and nonlocal parameter on the non-dimensional central 

deflections of orthotropic nanoplate without foundation under sinusoidally and uniformly distributed transverse 

loads is investigated in Table 3. Central deflection is normalized and is indicated by
3 4

2 0100 cw w h E a P

 . It is 

obvious that the nonlocal parameter µ is a significant parameter in the analysis of nanomaterials and should not be 

neglected in the nanostructure. As can be seen that the amplitude of deflection increases when the nonlocal 

parameter increases. It is need to point out that the zero value for nonlocal parameter (i.e., µ=0) denotes the results 

obtained by the local elasticity theory which has the lowest deflection. It is also observed that non-dimensional 

maximum deflection decreases with the increase in aspect ratio. Furthermore, it can be seen that the small scale 

parameter has a slight effect on the deflection as the length to thickness ratio increases. Finally, it can be observed 

that deflection for uniform loading is obtained more than sinusoidal loading. 

 
 

Table 3 

The non-dimensional deflections of orthotropic nanoplate under sinusoidal and uniform loads for various values of the aspect 

ratio, length to thickness ratio and nonlocal parameter. 

a/b  a/h μ(nm2)                  Loading 

UL SL 

1 10 0 4.3733 2.7744 

  1 11.1239 7.5119 

  2 17.8745 12.2494 

 100 0 4.1848 2.6447 

  1 4.2503 2.6899 

  2 4.3158 2.7350 

2 10 0 0.7469 0.4884 

  1 3.5732 2.5733 

  2 6.3994 4.6582 

 100 0 0.6787 0.4393 

  1 0.7051 0.4581 

  2 0.7316 0.4768 

 

Table 4., explains the non-dimensional central deflection of isotropic and orthotropic graphene sheet with or 

without elastic foundation for various values of nonlocal parameter subjected to sinusoidal loading. As can be seen, 

considering elastic medium decreases deflection of nanoplate. It is due to the fact that considering elastic medium 

leads to stiffer nanoplate. Furthermore, the effect of the Pasternak foundation (i.e. 0
W

K   and 0
G

K  ) is higher than 

the Winkler foundation (i.e. 0
W

K   and 0
G

K  ) for decreasing of the nanoplate. It is because Winkler foundation is 

capable to describe just normal load, while the Pasternak medium describes both normal and transverse shear loads. 

It is also concluded that with increasing the value of nonlocal parameter, the difference between the deflection of 

with and without foundation becomes more obvious. Consequently, existence of elastic foundation is an important 

factor for decreasing the deflection of the nanoplate and must be considered, especially in the higher nonlocal 

parameters. Further, from this table, it is found that the deflection of the isotropic nanoplate is always greater than of 

orthotropic one. 
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Table 4 

The non-dimensional central deflection of isotropic and orthotropic graphene sheet with or without elastic foundation for 

different values of nonlocal parameter subjected to sinusoidal loading. 

KW KG μ (nm2)  

1 2 3 4 

0 0 8.2290 13.4187 18.6084 23.7981 

100 0 4.7526 6.1195 7.0112 7.6388 

100 10 2.5915 2.9509 3.1437 3.2640 

0 0 7.5119 12.2494 16.9869 21.7244 

100 0 4.2752 5.4818 6.2636 6.8113 

100 10 2.3103 2.6222 2.7887 2.8922 

6.2.2 Dynamic analysis of viscoelastic nanoplate resting on the visco-Pasternak foundation 

In this section, dynamic response of viscoelastic orthotropic SLGS resting on orthotropic visco-Pasternak foundation 

is investigated graphically.  

Fig. 3 demonstrates the effect of different elastic medium on the dynamic response of the orthotropic SLGS 

under sinusoidal load for µ=1 nm
2
. As seen, when an elastic foundation is present, the dynamic response of the 

nanoplate is diminished in comparison without the foundation condition. Furthermore, it is observed that the effect 

of the Pasternak foundation is higher than the Winkler foundation for decreasing the deflection amplitude of the 

nanoplate. It is also seen that the orthotropic Pasternak foundation is more effective than the isotropic Pasternak type 

to reduce the dynamic response of the nanoplate due to considering an arbitrarily oriented foundation.  
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Fig.3 

Effect of the elastic foundation type on dynamic response 

of an orthotropic SLGS under sinusoidal load for µ=1 nm2. 

 

The effect of orthotropy angle on the dynamic response of orthotropic nanoplate resting on orthotropic Pasternak 

foundation subjected to sinusoidal load is depicted in Fig. 4 for λ=2 in which G G
K K

 
  . However, it should be 

noted that for λ=1 the foundation becomes isotropic Pasternak. The spring and η-shear constants are assumed as 

100
W

K   and 10
G

K

 , respectively, and the nonlocal parameter µ is considered to be 2 nm

2
. Since the orthotropy 

angle of foundation can be affected the deflection of nanoplate, it is a significant factor. From this figure, it can be 
concluded that θ=45° is the best angle to obtain the minimum deflection among others. 
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Fig.4 

Effect of orthotropy angle on the dynamic response of 

orthotropic SLGS resting on orthotropic Pasternak 
foundation under sinusoidal load for λ=2. 
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For numerical calculations in the following figures, it is considered 100
W

K  , 10
G

K

 , 20

G
K


 and θ=45°. 

Moreover, the non-dimensional structural damping coefficient G and the non-dimensional damping constant of 

foundation CD are taken to be 0.01 and 1, respectively (unless otherwise stated). 

To show the effect of the damping coefficient of the orthotropic visco-Pasternak foundation on the dynamic 

response of viscoelastic orthotropic SLGS, three different values of the damping constant have been plotted in Fig. 5 

under sinusoidal load for 3 nm
2
. As seen, it is apparent that the deflection of nanoplate are strongly influenced by the 

damping coefficient of the medium CD. Increasing the damping constant decreases the deflection and causes the 

response to reach the static response much faster.  
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Fig.5 

Deflection history of viscoelastic orthotropic SLGS for 

various values of the damping coefficient of foundation 

under sinusoidal load for µ=3 nm2. 

 

Fig. 6 indicates the effect of the different viscoelastic structural damping coefficients on the dynamic response of 

viscoelastic orthotropic nanoplate resting on orthotropic visco-Pasternak foundation subjected to sinusoidal load for 

3 nm
2
. It can be observed that the dynamic response is significantly influenced by the structural damping coefficient 

G. As expected, the deflection of the nanoplate decreases with increasing the structural damping coefficient.  
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Fig.6 

Effect of structural damping on the dynamic response of 

orthotropic SLGS resting on orthotropic visco-Pasternak 

foundation under sinusoidal load for µ=3 nm2. 

 

To clarify the influences of damping coefficient of viscoelastic foundation and structural damping of the 

nanoplate on the dynamic response of the SLGS under a sinusoidal load, Fig. 7 is presented with µ=4 nm
2
. It can be 

observed that the dynamic response is significantly influenced by the structural damping coefficient G and the 

damping coefficient of the foundation CD. It is interesting to note that since increasing the structural and foundation 

damping causes more absorption of energy by the system, the dynamic response decreases.  
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Fig.7 

Coupled effects of the damping coefficient of visco-

Pasternak foundation and structural damping of the 

nanoplate under sinusoidal load on the dynamic response 

for µ=4 nm2. 
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Finally, Fig. 8 illustrates the influence of modulus ratio Er on the dimensionless deflection of viscoelastic 

orthotropic SLGS resting on orthotropic visco-Pasternak medium subjected to sinusoidal for µ=4 nm
2
. The used 

material properties are taken as: Er =E1/E2 varied, G12=G13=0.6 E2, G23=0.5 E2, ν12=0.25. It is seen that when the 

modulus ratio Er increases, the deflection decreases and consequently the viscoelastic nanoplate reaches the 

equilibrium state much faster.  
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Fig.8 

Influence of modulus ratio on the dimensionless deflection 

of viscoelastic orthotropic SLGS resting on orthotropic 

visco-Pasternak medium subjected to sinusoidal for µ=4 

nm2. 

7    CONCLUSIONS 

The present research was concerned with the size-dependent static and dynamic response of viscoelastic orthotropic 

SLGS embedded in an elastic medium under uniform and sinusoidal loads, for the first time. The kelvin-Voigt 

model was considered to describe the nanoplate viscoelasticity. The surrounding medium is simulated by orthotropic 

visco-Pasternak model. Based on the Mindlin plate theory, the nonlocal motion equations were derived via 

Hamilton’s principle and then were solved analytically using Fourier series-Laplace transform technique for simply-

supported boundary conditions. The total conclusions can be summarized as follows: 

 The nonlocal parameter effect decreased extremely as length to thickness ratio increases. 

 The presence of the elastic foundation increases the stiffness of the SLGS and therefore is a remarkable 

factor for decreasing the static deflection and dynamic response particularly in the higher nonlocal 

parameters.  

 The orthotropic Pasternak medium with θ=45° is more effective than others for decreasing the deflection.  

 Increasing modulus ratio leads to decreasing the static deflection and dynamic response of the orthotropic 

SLGS. 

 Increasing the values of structure damping and foundation damping coefficients causes an obvious decrease 

of amplitude and time interval of response.  

Finally, it is hoped that the results presented here can be utilized as benchmarks for verifying results obtained 

from the other mathematical approaches and also would be beneficial for the design of NEMS devices. 
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APPENDIX B 
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