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 ABSTRACT 

 In this paper, a nonlocal foundation model is proposed to analyze the vibration and 

instability of a Y-shaped single-walled carbon nanotube (Y-SWCNT) conveying fluid. 

In order to achieve more accurate results, fourth order beam theory is utilized to obtain 

strain-displacement relations. For the first time, a nonlocal model is presented based on 

nonlocal elasticity and the effects of nonlocal forces from adjacent and non-adjacent 

elements on deflection are considered. The Eringen’s theory is utilized due to its 

capability to consider the size effect. Based on Hamilton’s principle, motion equations 

as well as boundary conditions are derived and solved by means of hybrid analytical-

numerical method. It is believed that the presented general foundation model offers an 

exact and effective new approach to investigate vibration characteristics of this kind of 

structures embedded in an elastic medium. The results of this investigation may provide 

a useful reference in controlling systems in nano-scale. 

                                                 © 2016 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 VARIETY of multi-terminal junctions of carbon nanotubes, including Y, T and X types were generated by 

connecting individual single-walled carbon nanotubes with different size and helicity[1], [2].Y-junction 

SWCNTs have a potential to utilize in the nano-scale three-terminal devices for controlling the switching, power 

gain or other transiting applications which are needed in a molecular electronic circuit[3], [4]. Y-junction SWCNTs 

are a novel structures composed of three terminals with different chiralities which is shown various electrical 

properties. The electrical characteristic of Y-SWCNTs provides insights to research into CNT networks (known as 

CNT mats) that are expected to have immediate application in nano-electro-mechanical system (NEMS) and 

sensors[5]. Carbon nanotube based electronics offers significant potential as a nano-scale alternative to silicon-based 

devices for molecular electronics technologies. The mutual interaction of the electron currents in the three branches 

of the Y-junction is shown to be the basis for a potentially new logic device. These nanotubes have been found to 

exhibit both electrical switching and logic behavior. Tiny tubes of carbon, crafted into the shape of a Y,could 

revolutionize the computer industry, suggests new research. The paper has shown that Y-shaped carbon nanotubes 

are easily made and act as remarkably efficient electronic transistors - the toggles used to control the flow of 

electrons through computer circuits. 
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Through this paper, we are enabling and adding a new functionality to nanotube electronics that is, switching 

making an overall CNT-based nano-electronic architecture more complete and feasible. The detailed nature of the 

abrupt electrical switching behavior is not completely understood but can be a fertile ground for future research, for 

example, in defect engineering where one can intentionally modify, mechanically or chemically, the paths of 

electronic conduction in the Y-junction. The brief exceptional properties which are cited above show the complexity 

and interesting of this research. In this regard, some published papers done by researchers have been collected to 

review before introducing present work Biro et al. [6] presented a paper including available data about carbon 

nanotube Y junctions along with the structural models and the transport calculations on it. Also, they studied the 

different methods, which is successfully produced these junctions and the available experimental transport and 

tunneling data of the grown junctions. They analyzed the common features of the various growth methods and 

proposed particularities of branched nano-objects. 

Recently, some experimental works are performed to investigate properties of Y-SWCNT. Bandaru et al.[4] 

observed an abrupt modulation of the current form an on-to an off-state, presumably mediated by defects and the 

topology of the junction. In this paper is shown that the mutual interaction of the electron currents in the three 

branches of the Y-junction to be the basis for a potentially new logic device. Choi and Choi [7] investigated the 

synthesis of a Y-junction SWCNTs and its electrical characterization. They found that the catalyst composition, 

which is related to the Gibbs free energy of metal carbide formation, is a significant parameter in formation of Y-

junction branches. Based on MD simulation, Park et al. [8] showed the capability of Y-junction carbon nano-tube to 

separate K+ and Cl− ions from a KCl solution. Zhang et al. [9] researched on the piezoelectric pump with its Y-

shape pipes. They obtained the relation between the frequencies of the piezoelectric vibrator and the mean pressure 

in the chamber and compared the theoretical results with experimental tests. 

As mentioned, due to exceptional properties of carbon nanotube junction in nano devices, it has attracted a lot of 

scientists. In this regard, Filiz and Aydogdu [10] researched into axial vibration of carbon nanotube heterojunctions 

based on nonlocal theory. They found that the frequency of heterojunction is dependent upon length and cross 

section of each segment of CNTs. 

In recent years, various researches have been carried out to analyzing the buckling, dynamic stability and free 

vibration of beams and CNTs embedded in elastic medium. In this regard, Avramidis and Morfidis [11] introduced 

Kerr-type three-parameter elastic foundation for bending analysis of a Timoshenko beam. They solved governing 

equations analytically and indicated that the Kerr-type three-parameter elastic foundation is much superior to one or 

two parameter models. Challamel et al. [12] employed nonlocal Reissner foundation model to study buckling of 

elastic beams. They found that size effect is an important parameter and nonlocal foundation model should be used 

to achieve more accurate results. Based on nonlocal elasticity theory Failla et al. [13]  presented a two-dimensional 

foundation model that is of as an ensemble of soil column elements resting on an elastic base. A two-parameter 

elastic foundation for analysis of beam was presented by Shen[14]. He revealed that the foundation stiffness has a 

significant effect on the nonlinear behavior of Euler- Bernoulli beams. 

Vibration and instability analysis of pipes and CNTs conveying fluid is conducted by many researches. 

Ghorbanpour Arani et al. [15] investigated the nonlinear nonlocal vibration and buckling of fluid-conveyed micro-

tube reinforced by Boron-Nitride nanotubes (BNNTs) under electro-thermo-mechanical loadings embedded in an 

elastic medium. The effect of temperature on wave propagation in double-walled carbon nanotubes (DWCNTs) 

embedded in a polymer matrix was carried out by Besseghier et al.[16]. They used nonlocal elasticity theory and 

demonstrated that a temperature change is a key factor on transverse vibrations of DWCNT. Ghorbanpour Arani and 

Roudbari[17] studied the wave propagation of fluid- conveying single-walled Boron Nitride nanotubes (SWBNNTs) 

embedded in a vicsoelastic medium which is simulated as visco- Pasternak foundation by using Euler–Bernoulli 

beam (EBB) model. Ghorbanpour Arani et al. [18] presented the nonlinear vibration of DWCNTs embedded on 

Pasternak elastic medium and subjected to an axial fluid flow. Pak et al.[19]investigated vibrations of three 

dimensional angled pipe systems conveying fluid. They used Extended Hamilton's principle to derive motion 

equations and solved them by means of finite element method. They demonstrated that increasing the flow velocity 

leads to decrease the natural frequency of the system. This behavior can be seen especially as the geometry of the 

system is similar to the straight pipe.  

In this paper, a novel approach is generalized to develop a corresponding nonlocal foundation. Based on this 

method, all of the elements have an important role to determine the displacement of elastic medium and the 

influences of nonlocal forces from adjacent and non-adjacent elements on deflection are also considered.  
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2    FORTH ORDER BEAM THEORY 

Y-SWCNT consists of three separate CNTs which are jointed together at the end of first CNT. As shown in Fig.1, 

iR and ( 1,2,3)iL i  denote the internal radius and length of CNTs. It’s assumed that CNTs are connected together 

at the one junction point. In fact, it is considered that the continuity assumption is valid at the junction of CNTs. A 

triangle area in Figs.1 represents the two-dimensional area of junction point. In this paper, asymmetric Y-SWCNT 

has been considered in which  and   are the angle of second and third CNTs, respectively. Also, the coordinate 

system for each CNT has been considered, separately. It is worth to mention that 1z  axis is identical for three CNTs. 

 

 
(a) 

 
(b) 

Fig.1 

(a) View of  Y-SWCNTs (b)  Simulation of Y-SWCNTS by three beams. 

 

According to [20], in the fourth order beam theory it is assumed that the cross section is remained straight after 

applying loads. In the other word, the shear strain is negligible. The strain-displacement relationships are expressed 

as: 
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(1) 

 

where x is the longitudinal coordinate, z is the coordinate measured from the mid-plane of the beam. The 

terms ( , ), ( , )u x t v x t , and ( , )w x t are the longitudinal and transverse components of the displacement in the mid-plane 

of the beam, respectively. Also, ( , )x t denotes the torsional deformation of cross section. 

3    THE EFFECT OF FLOW SEPARATION AT THE JUNCTION 

Changing in motion direction of fluid at junction point causes to create forces. When the fluid reaches to the end of 

the first nanotube, it is divided into two parts. One part flows into second nanotube with    angle to the horizon in a 

clockwise direction and another part with   angle to the horizon in a counterclockwise direction flows into third 

nanotube. 

 

 

 

 

 

 

 

Fig.2 

Created forces by divisions of fluid in Y-SWCNT. 

 

At the junction point, the fluid velocity is not zero and the pressure is not high, so the forces due to change in 
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momentum are slowly distributed and forces equilibrium conditions are govern. So for control volume exhibited in 

Fig. 2, the applied forces on the main nanotube in 
1x and 

1y  directions can be expressed as: 

 

1

2 2 2

1 1 2 2 3 3 1 1 2 2 3 3cos cos cos cos ,xF p A p A p A AU A U A U             (2) 
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Assuming no pressure drop at junction point and according to Bernoulli's equation, the fluid velocity of each 

nanotubes are equal at junction point; thus, the continuity equation is written as follows: 

 
1 2 3

1 2 3 1 2 3.
U U U

Q Q Q A A A
 

      (4) 

 

Using Eqs. (2) to (4) the resultant force caused by the change in fluid's momentum in the y junctions is follow: 
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(5) 

 

where 
2 1/ .A A q  The tensile forces along the axial and transverse directions exert to the Y-SWCNT due to the 

fluid flow at the Y-junction can be obtain by writing force equilibrium equations in the 
2x  and 

3x  directions: 
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(6) 

4    INFLUENCES OF SLIP CONDITIONS ON THE VELOCITY PROFILE 

For solving the problem of micro-nano-flows a dimensionless parameter Knudsen number (Kn) is defined and used 

to correcting the velocity profile of fluid. Kn may change from zero to infinitive value where zero value corresponds 

to Euler equations in which the variation of flow fluid is disregarded. Since the Navier-stokes equations are valid 

for 0.01Kn  , it is necessary to modify this equation for slip boundary conditions.  

On the other hand, the slip boundary condition is considered for the fluid flow regime inside the nanotube and 

following assumption is considered: 

 The fluid flow obeys the continuum mechanics (i.e. the fluid is continuous). 

 The fluid is incompressible,  

 The sliding layer thickness between the nanotube and fluid is assumed to be much close to zero. 

In this regard, the profile of fluid velocity is amended to obtain the modified Navier-stokes equation which is 

valid in 
2 110 10Kn   as follows: 
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Solving Navier-Stokes equation along the longitudinal direction yields the following fluid velocity distribution 

as: 
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where r is the radial distance from the center line of the nanotube, 1C  and 2C  are the integration constants. Since at 

the center line of the nanotube ( 0r  ) the fluid velocity is limited, 1C  is equal to zero. The velocity profile is 

obtained by applying both slip and no-slip boundary conditions at the Y-SWCNT wall as follows: 
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(9) 

 

The accommodation coefficient is considered as 1v  . The relationship between the bulk viscosity and 

effective viscosity is [1 ]
o

e
aKn




   and 

1 0.40.864tan (4 )a Kn [21]. 

Considering velocity profiles obtained from Eqs. (9), the velocity correction factor   can be defined as follows: 
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(10) 

 

Therefore, the corrected velocity of fluid in the whole equations is considered with the form of no slipU U  . 

5    NONLOCAL ELASTICITY THEORY 

In this paper the nonlocal theory [20] is employed to deriving equations of motion. Unlike the Hooke’s law, in 

nonlocal elasticity theory, the stress field at a reference point x depends on the strain at all other points in the body. 

The singularity of stress field near a dislocation core and a crack tip can be avoided by means of this theory. In 

addition, some phenomena related to atomic and molecular scale such as high frequency vibrations and wave 

dispersion can be justified in this proposed theory. Therefore, in the absent of body force, the constitutive equation 

includes stresses  and strains ε tensors can be expressed as follows: 
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where superscript l and nl denote the local and nonlocal parameters. o oe a  is the nonlocal parameter. The strain 

energy of an elastic body is expressed as:  
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The kinetic energy of CNT includes two discrete parts given as follows: 
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Also, the boundary forces acting on the beginning and end of nanotube ( 0, )x x L   must be considered as 

follows: 
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(14) 

 

where
t  is the virtual paper due to small displacement and , ,x z yN V M and tM  are the boundary forces and 

boundary momentums and J
zq  is change of fluid momentum force at junction point. 

6    NONLOCAL FOUNDATION MODEL 

In the present paper, the asymmetric Y-SWCNT is surrounded by elastic medium. The force applied on asymmetric 

Y-SWCNT due to elastic foundation is 
mq and the motion equation in the transverse direction expressed 

as ( , ) 0mF x t q  .In this model, all of the elements have an important role to determine the displacement of elastic 

medium. Fig. 3 shows the schematic of elastic medium with the force due to adjacent and non-adjacent for four 

elements. 

 

 
(a) 

 
(b) 

Fig.3 

(a) Schematic view of the nonlocal elastic medium (b) Vertical equilibrium of the proposed nonlocal elastic model. 

 

The constitutive relation of the presented model of foundation interactions is obtained by vertical equilibrium of 

the layer element m

jV A x  at located ( 1)jx j x   ,so ( ,..., 1,0,1,..., )j     , x is size of each element 

and mA is the cross section of elastic medium. In the nonlocal elastic model the foundation element is in equilibrium 

under the external load 
m

jq ,the reaction of the local spring element ,
w

k x the contact shear forces 1jT   and ,
j

T the 

resultant of long-range forces exerted by surrounding volumes, on the left and on the right of volume jV that follow  

as: 
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where jlQ  and jrQ are the differences forces between volume elements j,l and j,r. 
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In this context, the nonlocal interactions between elements j,l and  j,r  are expressed as follows: 
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where ( )j lG x x is the green function which is called nonlocal stiffness. Therefore, the force applied on the whole 

elements due to adjacent and non-adjacent can be written as: 
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If 0x  , the constitutive equation for the nonlocal foundation interactions is obtained in the integral form as 

follows:  
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Therefore, the equilibrium of forces on the whole domain can be written as: 
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where, the first term is related to the vertical force in Winkler model. The second term includes nonlocal force and 

third term is local shear force. The schematic of elastic medium with the force due to adjacent and non-adjacent for 

four elements is presented in Fig. 4. 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 

The schematic of elastic medium with the force due to 

adjacent and non-adjacent for four elements. 

 

Based on Green function and applying nonlocal theory, the lateral motion equation can be determined:  
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(20) 

 

where nlk and cl denote the nonlocal stiffness of medium and the internal length of each elements, respectively, and 

ok  is 2o w nlk k k  . As can be seen, when 0c nl sl k G    Winkler model is obtained and the Pasternak model 

is calculated when 0c nll k  .Results reveal that present nonlocal elastic foundation model can be a general 

model so that it is included other models. 
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7    EQUATIONS OF MOTION 

The equations of motion and boundary conditions can be derived by Hamilton’s variational principle that can be 

formulated as [22]: 

 
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Substituting Eqs. (12), (13) and (14) into Eq. (21) and setting the coefficients of ,k ku w  and k to zero and 

considering the linear terms leads to the following differential equation of motion for nonlocal elastic foundation as 

follows: 
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Above equations developed to nine linear equations for 1,2,3k   where ,nk nka b and nkc are cited in Appendix 

A. It is worth to mention that none of motion equations are coupled together, so the natural and geometric boundary 

conditions are obtained in order to create coupling among motion equations and maintain continuity condition which 

presented in Appendix B. It is convenient to introduce the following non-dimensional parameters for generality of 

the solution as: 
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8   NUMERICAL SOLUTIONS 

In order to solve motion equations, following functions are defined to separate time and space variables: 
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where   is non-dimensional frequency which is introduced in form of 
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frequency. By considering above relations the time variable is omitted in the governing equations. Therefore, the 

equations of motion can be written as: 
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where ,nk nka b  and nkc are cited in Appendix B. For the sake of the brevity of this paper, boundary conditions aren 

not mentioned here. 

The solutions of Eqs. (27) to (29) are assumed as the following forms: 
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Based on the order of differential Eqs. (30), 4, 6L M   and 2N   are selected. In addition, 

( ), ( )
nk nk

p s  and ( )
nk

r   are the roots of characteristic equation. ,nk nku w and  nk are constants that obtained by 

boundary conditions which generate a 36
th

 order matrix as follows: 
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In order to calculate frequencies of system, it is enough to solve following matrix relation: 

 

 det 0 .ijD   
(33) 

 

It is should be noted that the presented method in this study is adopted from [23]. For the sake of the brevity of 

this paper, Here the references are made to already mentioned ones for more clarity.  

9    RESULTS AND DISCUSSION 

In nanostructures like Y-SWCNTs, the small scale becomes significant and the nonlocal continuum model must be 

used to consider small scale effects in the motion equation, boundary conditions and forces between atoms and 

internal length scale in the construction of equations generated by the elastic foundation. Therefore, the equilibrium 

of each element is achieved due to a local reaction force, to contact forces exerted by the adjacent elements, nonlocal 

forces exerted by non-adjacent elements so that the local reaction force is simulated as in the Winkler and Pasternak 

models. 

The analysis of frequency and critical fluid velocity of Y-SWCNT conveying fluid embedded in a general 

nonlocal elastic medium includes Winkler and Pasternak foundation are investigated in this paper. The geometrical 

and mechanical properties of Y-SWCNT are presented in Table 1. 

 
Table1  

The geometrical and mechanical properties of Y-SWCNT. 

The geometrical and mechanical properties of Y-SWCNT [24] 

1E TPa  1 3.4R nm  2 10.6L L  3 10.8L L  0.34th nm  1 0.5   1/ 2q   

 

Fig. 5 shows the variation of dimensionless frequency versus fluid velocity for different nonlocal or small scale 

parameters. It is evident from this figure that the value of dimensionless frequency is maximum for local vibration 

(i.e. 0oe a  ). With increasing small scale parameter, the dimensionless frequency decreases and the rate of this 

reducing grows at higher nonlocal parameters. Accordingly, it can be said that Y-SWCNT have very high detection 

sensitivity so that the frequency of oscillation can be increased due to molecular adsorption, therefore the difference 

between the top and bottom of non-dimensional frequencies can help to identify different molecules.   
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Fig.5 

Effect of nonlocal parameter on vibration frequency of 

conveying Y-SWCNT at 90   2 10.6L L , 3 10.8L L  

1

2
q . 

    

In Fig. 6, the result of present paper which is done by forth order beam theory has been compared with both 

Euler-Bernoulli and Rayleigh theories. The beam theory can be used to analyze of nanotubes when aspect 

ratio  / 5d L . From this figure can be found that the difference between the obtain result from Euler-Bernoulli 

and Rayleigh beam theories is considerable in zero flow velocity. Due to negligible effect of rotational inertia of the 

fluid in comparison with centrifugal force, the results of both theories are converged with increasing fluid velocity. 

Fig. 6 shows that the percent difference of result for Euler-Bernoulli and Rayleigh theories by present work are 

21.37%  and 17.45% , respectively. 
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Fig.6 

Comparison the results using three models. 

 

Fig. 7 displays the effect of separation angle on the stability of Y-SWCNT conveying fluid. As can be seen, by 

increasing   and   the critical flow velocity increases which cause to more stable system. It is found that the 

fluid-conveying Y-SWCNT is always stable for 90   or T-shaped case. Also, increasing  and   lead to 

increase growth rate of fluid critical velocity.  
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Fig.7 

Effect of fluid separation angle on dimensionless frequency of 

conveying Y-SWCNT at 2 1 3 10.6 , 0.8 L L L L . 

 

 

In this paper a general nonlocal elastic foundation is investigated. Fig. 8 describes the effect of this model on 

stability of system. Figs. 8(a) and 8(b) show the effect of spring constant on imaginary and real parts of frequency, 

respectively. These figures demonstrate that with increasing spring constant nlk the stiffness and stability of system 

increases. It is concluded that in the nonlocal model the stability of Y-SWCNT is stiffer than local model (Winkler 

type). 
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Dimensionless flow velocity
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Fig.8 

Influence of spring coefficient of the nonlocal elastic model on the vibration frequency and system stability (a) damping 

frequency (b) vibration of frequency. 
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The comparison between the results of local and nonlocal elastic models is shown in Fig. 9. Fig. 9(a) and 9(b) 

present the damping and oscillation parts of frequency versus flow velocity for different internal length parameters. 

As can be observed, the stiffness and stability of nonlocal elastic model ( 0cl  ) is higher than local elastic model 

( 0cl  ). In addition, dimensionless critical velocity for local model is 6.83 which increased with increasing internal 

length parameter. 
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Fig.9 

Influence of the characteristic length of the  nonlocal elastic model on the vibration frequency and system stability (a) damping 

frequency (b) vibration of frequency. 

 

Dimensionless natural frequencies with respect to dimensionless average flow velocity for different Knudsen 

numbers are plotted in Fig. 10. It can be found that the dimensionless critical average flow velocities of the system 

decreases with increasing Knudsen number in both first and second modes. Also it is seen from Fig. 10 that the 

dimensionless natural frequency is decreased as the Knudsen number is increased. Hence, the frequency is 

significantly influenced by the Knudsen number and the small-size effects of the flow field on the stability 

characteristics of the nanotubes cannot be ignored. 
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Fig.10 

Influence of Knudsen number on the vibration frequency and 

system stability in two modes. 

10    CONCLUSIONS 

In this paper, a general nonlocal foundation model include Winkler and Pasternak elastic models was proposed and 

used to analyze the vibration and instability of a Y-SWCNT conveying fluid. It was assumed that the fluid is 

incompressible and irrotational and the fluid continuous equation with considering the slip boundary condition on 

the nanotube wall is used to obtain the velocity profile while the pressure at the junction is zero. Fourth order beam 

theory was employed to obtain strain-displacement relations where the Y-junction SWCNT is continuous and the 

nonlinear deformations are ignored. The effects of nonlocal forces from adjacent and non-adjacent elements on 

deflection were also considered. Utilizing Hamilton’s principle, motion equations as well as boundary conditions 

were derived and solved by means of hybrid analytical-numerical method. Considering local and nonlocal 

foundation models, the influences of various parameters on vibration characteristics of Y-SWCNT conveying fluid 
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were discussed in details. Results revealed that increasing small scale parameter leads to decrease dimensionless 

frequencies. Moreover, the fluid conveying Y-SWCNT was always stable for 90   or T-shaped case. It has 

been concluded that the stiffness and stability of nonlocal elastic model ( 0, 0 c nll k ) was higher than local elastic 

model ( 0, 0 c nll k ). Results of this investigation can be used in controlling systems such as power gain, or other 

transiting applications in nano-scale. 
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