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 ABSTRACT 

 The present paper concerns with the effect of initial stress on the propagation of plane 
waves in a rotating transversely isotropic medium in the context of thermoelasticity theory 
of GN theory of type-II and III. After solving the governing equations, three waves 
propagating in the medium are obtained. The fastest among them is a quasi-longitudinal 
wave. The slowest of them is a thermal wave. The remaining is called quasi-transverse 
wave. The prefix ‘quasi’ refers to their polarizations being nearly, but not exactly, parallel 
or perpendicular to the direction of propagation. The polarizations of these three waves are 
not mutually orthogonal. After imposing the appropriate boundary conditions, the 
amplitudes of reflection coefficients have been obtained. Numerically, simulated results 
have been plotted graphically with respect to frequency to evince the effect of initial stress 
and anisotropy.                                                  

  © 2014 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 N the last three decades, widespread attention has been given to thermoelasticity theories, which admit a finite 
speed for thermal signals (second sound). In contrast to the conventional coupled thermoelasticity theories based 

on a parabolic heat equation, this theories are referred to as generalized theories. Among these generalized theories, 
the first generalization is proposed by Lord-Shulman [20], which involves one relaxation time. The second 
generalization to the coupled thermoelasticity theory is developed by Green and Lindsay [11], which involves two 
relaxation times.  

Experimental studies indicated that the relaxation times can be of relevance in the cases involving a rapidly 
propagating crack tip, shock wave propagations, laser techniques, etc. because of the experimental evidence in 
support  of fitness of heat propagation speed, the generalized thermoelasticity theories are considered to be more 
realistic than the conventional theory in dealing with the practical problems involving very large heat fluxes at short 
intervals like those in laser units and energy channels. The third generalization is known as low-temperature 
thermoelasticity introduced by Hetnarski and Ignazack [19] . Most engineering materials such as metals possess a 
relatively high rate of thermal damping and thus are not suitable for use in experiments concerning second sound 
propagation. But, given the state of recent advances in material science, it may be possible in the foreseeable future 
to identify an idealized material for the purpose of studying the propagation of thermal waves at finite speed.  

______ 
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In the 1990s, Green and Naghdi [12-13-14] proposed three new thermoelastic theories based on entropy equality 
rather than the usual entropy inequality. The constitutive assumptions for the heat flux vector are different in each 
theory. Thus, they obtained three theories that they called thermoelasticity of type I, type II and type III. When the 
theory of type I is linearized, we obtain the classical system of thermoelasticity. The theory of type II (a limiting 
case of type III) does not admit energy dissipation. In the context of the linearized version of this theory, theorems 
on uniqueness of solutions have been established by Hetnarski and Ignazack [19] and Green and Naghdi [14]. 
Boundary-initiated waves in a half-space and in an unbounded body with cylindrical cavity have been studied by 
Green and Naghdi [12] and Chandrasekharaiah and Srinath [3-4]. Also plane waves thermal shock problems have 
been studied by Othman et al. [26] and Othman and Song [25] . Gupta [15-16] analyzed the problem of wave 
propagation in the transversely isotropic thermoelastic and reflection in the transversely isotropic thermo-visco-
elastic half-space under GN theory of type II and type III. 

The development of initial stresses in the medium is due to many reasons, for example resulting from differences 
of temperature, process of quenching, shot pinning and cold working, slow process of creep, differential external 
forces, gravity variations etc. The earth is assumed to be under high initial stresses. It is therefore of much interest to 
study the influence of these stresses on the propagation of stress waves. Biot [1] showed the acoustic propagation 
under initial stress which is fundamentally different from that under stress-free state. He has obtained the velocities 
of longitudinal and transverse waves along the co-ordinate axis only.  

The wave propagation in solids under initial stresses has been studied by many authors for various models. The 
study of reflection and refraction phenomena of plane waves in an unbounded medium under initial stresses is due to 
Chattopadhyay et al. [6], Sidhu and Singh [30] and Dey et al. [9]. Montanaro [22] investigated the isotropic linear 
thermoelasticity with a hydrostatic initial stress. Singh et al. [32], Singh [31] and Othman and Song [23] studied the 
reflection of thermoelastic waves from a free surface under a hydrostatic initial stress in the context of different 
theories of generalized thermoelasticity. Gupta and Gupta [17-18] investigated the wave motion and then discussed 
the reflection of waves in an anisotropic initially stressed fiber-reinforced thermoelastic medium.  

Some researchers in past have investigated different problem of rotating media. Chand et al. [5] presented an 
investigation on the distribution of deformation, stresses and magnetic field in a uniformly rotating homogeneous 
isotropic, thermally and electrically conducting elastic half-space. Many authors (Schoenberg and Censor [28]; 
Clarke and Burdness [7]; Destrade [8] studied the effect of rotation on elastic waves. Sharma [29] discussed effect of 
rotation on waves propagating in a thermoelastic medium. Othman [24] investigated plane waves in generalized 
thermoelasticity with two relaxation times under the effect of rotation. Othman and Song [26-27] presented the 
effect of rotation in magneto-thermoelastic medium. Mahmoud [21] discussed the effect of Rotation, Gravity Field 
and Initial Stress on Generalized Magneto-Thermoelastic Rayleigh Waves in a Granular Medium.  

In this article, effect of initial stress on the plane wave reflection in rotating transversely isotropic medium in the 
context of thermoelasticity with GN theory of type II and III has been investigated. A cubic equation resulting in the 
three values of phase velocities and attenuation quality factor has been obtained. Furthermore, the expressions for 
the amplitude ratios of the reflected wave corresponding to the three incident waves have been obtained. These 
expressions are then evaluated numerically and plotted graphically to manifest the effect of initial stress and 
anisotropy. 

2    FORMULATION OF THE PROBLEM    

In the context of thermoelasticity based on Green-Naghdi theory of type II and type III, the equation of motion for 
the initially stressed transversely isotropic medium, taking the rotation term about y-axis as a body force is  
 

, , [ ( ) (2 ) ]ij j ij j i i it P u u u        
     (1) 

     

where 


is the uniform angular velocity and  is the density of the medium. The generalized energy equation can 

be expressed as:  
  

* *
, , 0 ,( ), , 1, 2,3,ij ij ij ij ij i jK T K T T u c T i j       (2) 

 
The constitutive equations have the form  
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,ij ijkl kl ijt C e T   (3) 

 

where the deformation tensor is defined by , ,( ) / 2,ij i j j i ije u u t  are components of stress tensor, iu  the mechanical 

displacement, ije  are components of infinitesimal strain, P is the normal initial stress, , ,( ) / 2,ij j i i ju u    T the 

temperature change of a material particle, 0T  the reference uniform temperature of the body, ijK is the thermal 

conductivity, *
ijK  are the characteristic constants of the theory, ij ijkl klC   are the thermal elastic coupling tensor, 

kl  are the coefficient of linear thermal expansion, c the specific heat at constant strain, ijklC  are characteristic 

constants of material following the symmetry properties * *, , , .ijkl klij jikl ij ji ij ji ij jiC C C K K K K        The 

comma notation is used for spatial derivatives and superimposed dot represents time differentiation. 
Following Slaughter [33] , the appropriate transformations have been used on the set of Eq.(3), to derive 

equations for transversely isotropic medium. We restrict our analysis for two dimensions, in which we consider the 
component of the displacement vector in the form  

 

1 3( ,0, )u u u


 (4) 

 
Here,we consider plane waves propagating in plane such that all particles on a line parallel to 2x -axis are 

equally displaced. Therefore, all the field quantities will be independent of 2x  coordinate, i.e. 2/ 0.x    

Thus the field equations and constitutive relations for such a medium reduces to: 
 

255 55
11 1,11 1,33 13 3,13 3,13 1,33 1 ,1 1 1 3( ) ( ) 2 ,

2 2 2

C C P
C u u C u u u T u u u                

 
(5) 

255 55
3,11 33 3,33 13 1,13 1,31 3,11 3 ,3 3 3 1( ) ( ) 2 ,

2 2 2

C C P
u C u C u u u T u u u                

 
(6) 

* * *
1 ,11 3 ,33 1 ,11 3 ,33 1 1,3 3 3,1( ),oK T K T K T K T c T T u u             (7) 

       
where 1 11 1 13 3 3 31 1 33 3,C C C C          and we have used the notations 11 1,13 5,33 3,   for the 

material constants. 
It is convenient to change the preceding equations into the dimensionless forms. To do this, the non-dimensional 

parameters are introduced as: 
 

' ' '

11

, , , ' , ' ,iji i
i i ij

o o

tx u t T
x u t t T

L L C t T
      

 
(8) 

        
where , ,o oL t T  are parameters having dimension of length, time and temperature respectively. 

3    PLANE WAVE PROPAGATION AND REFLECTION OF WAVES   

Let 1 3( ,0, )p p p


denote the unit propagation vector, c and   are respectively the phase velocity and the wave 

number of the plane waves propagating in 1 3x x  plane. For plane wave solution of the equations of motion of the 

form 
 

1 1 3 3( )
1 3 1 3( , , ) ( , , ) i p x p x ctu u T u u T e    . (9) 

 
with the help of Eqs.(8) and (9) in Eqs.(5) and (7), three homogeneous equations in three unknowns are obtained. 
Solving the resulting system of equations for non-trivial solution results in 
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6 4 2 0Ac Bc Cc D    , (10) 

 
where 
 

10 5 10 1 10 6 8 3 7 9 1 5 9 2 4 9

5 9 1 10 3 7 1 9 6 8 2 4 10 6 7 3 4 8

2 2 2
1 1 1 3 3 13 3 2 1 3 3 13 1 3 3 1 4 4 1 3 2 13 1 3

2 2
5 1 3 3 5 13

, , ,

( ) ( ) ( ) ,

/ 2, / 2, , / 2,

A f B f f f f f f f f f D f f f f f f

C f f f f f f f f f f f f f f f f f f

f p d p d d Pp f p p d d Pp p f ip d f p p d d Pp p

f p d p d d P

        
        

       

   2 2 2 2 2
1 6 3 6 7 7 11 8 3 12 9 1 8 1 3 9 3

2 2 2 2 2 2
11 13 55 55 1 33 3

10 1 1 2 3 4 5 62 2 2 2 2 2

* * *
3 1 3

7 8 9 1 10
1 1 1

/ 2, , , ,

( / 2)
, , , , , , ,

2

, , ,

o o o o o o o o

o o

p f ip d f ip d f ip d f i p d p i kp d p

C t C C t C t T t C t T t
f d d d d d d
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
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1 1 0 1 0
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o

L tLL
d d d

k t k t k t L


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  

 

 

 
The roots of this equation give three values of 2c . Three positive values of c will be the velocities of propagation 

of three possible waves. The waves with velocities 1 2 3, ,c c c  correspond to three types of quasi waves. We name 

these waves as quasi-longitudinal displacement (qLD) wave, quasi thermal wave (qT) and quasi transverse 
displacement (qTD) wave. 

4    REFLECTION OF WAVES 

Consider a homogeneous transversely isotropic half-space in the context of thermoelasticity (as shown in Fig. 1) 

with GN theory of type II and III, rotating with angular velocity 


occupying the region 3 0x  . Incident qLD or 

qT or qTD wave at the interface will generate reflected qLD, qT and qTD waves in the half space 3 0x  . 

 
 
  X3 =0                                                                                     X1       

Rotating transversely  
isotropic thermoelastic 
half-space                                                                                                

                                                                                                            
                                                                                     qLD      

                                                  X3             qT          qTD          

  
 
 
 
 
 
 
 
Fig. 1 
Geometry of the problem. 
 

 
The total displacements and temperature distribution are given by:  

 
6

1 3
1

( , , ) (1, , ) ,jiB

j j j
j

u u T A r s e


   
 

(11) 

     
where 
 

1 3

1 3

( sin cos ) / , 1, 2,3,

( sin cos ) / , 4,5,6,
j j j

j
j j j

t x e x e c j
B

t x e x e c j





      
 

 
(12) 

  is the angular frequency. Here subscripts 1,2,3 respectively denote the quantities corresponding to incident 
qLD, qT and qTD wave whereas the subscripts 4,5 and 6  respectively denote the corresponding reflected waves and  
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2 2
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( )
, , ,

( )

( )
, .

( )

jj j
j j j

j j j j

j

j j
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f c f
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c f f f c
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c f f f c c f c f

 

 

  

   

 
   
  


   



 

 
 

 
For incident: 

 
qLD-wave: 1 1 3 1sin , cos ,p e p e   

qT-wave: 1 2 3 2sin , cos ,p e p e   

qTD-wave: 1 3 3 3sin , cos ,p e p e    

 
 

 
For reflected: 

 
qLD-wave: 1 4 3 4sin , cos ,p e p e   

qT-wave: 1 5 3 5sin , cos ,p e p e    

qTD-wave: 1 6 3 6sin , cos .p e p e    

 
 

 
Here 1 4 2 5 3 6, , ,e e e e e e    i.e. the angle of incidence is equal to the angle of reflection in generalized 

thermoelastic transversely isotropic, so that the velocities of reflected waves are equal to their corresponding to their 
corresponding incident wave’s i.e. 1 4 2 5 3 6, , .c c c c c c    

5    BOUNDARY CONDITIONS    

The boundary conditions at the thermally insulated surface 3 0x   are given by  

 

33 31 ,30, 0, 0,t t T    (13) 

        
where 
 

55
33 13 1,1 33 3,3 3 31 1,3 3,1, ( ).

2

C
t C u C u T t u u      

(14) 

            
The wave numbers , 1, 2,.....6j j   and the apparent velocity , 1, 2,.....6jc j   are connected by the relation 

 

1 1 2 2 6 6............ ,c c c        (15) 
     

 
at the surface 3 0x  . Relation (15) may also be written in order to satisfy the boundary conditions (13) as: 

 

61 2

1 2 6

sinsin sin 1
.......................... .

ee e

c c c c
     

 
(16) 

 
Making use of Eqs. (8), (11), (14) and (15) into thermally insulated boundary conditions (13), we obtain 
 

6

1

0, 1, 2,3,ij j
j

A A i


   
 

(17) 
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where 
 

1 2 3 1 2 1

1 2 31 2 3 1 2 1

, 1, 2,3, , 1, 2,3, , 1, 2,3,
, ,

, 4,5,6, , 4,5,6, , 4,5,6,

j j j j j j j j j j

j j j

j j j j j j j j j j

a r a t a j b r b j t c j
A A A

a r a t a j b r b j t c j

             
           

 
 
 

 
where 
 

3 0 55 551 2 3 1 2 113 33

11 11 11 11 11

sin cos cos sin cos
, , , , ,

2 2
j j j j j j

j j j j j j
j j j j j

e e i T s i C e i C e ei C i C
a a a b b c

C c C c C C c C c c

    
        

 
 

Incident qLD-wave: 

In case of incident qLD- wave, 2 3 0A A  . Dividing set of Eq. (17) throughout by 1A , we obtain a system of three 

non-homogeneous equations in three unknowns which can be solved by Gauss elimination method and we have  
 

1
3

1

, 1,2,3.i i
i

A
Z i

A
 

  


 
 

(18) 

Incident qT-wave: 

In case of incident qT- wave, 1 2 0A A  and thus we have 

 
2

3

2

, 1,2,3.i i
i

A
Z i

A
 

  


 
 

(19) 

Incident qTD-wave: 

In case of incident qTD- wave, 1 2 0A A  and thus we have 

 
3

3

3

, 1,2,3,i i
i

A
Z i

A
 

  


 
 

(20) 

   

where 3 3 3i iA  
   and ( 1, 2,3, 1, 2,3, )p

i i p    can be obtained by replacing, respectively, the 1st , 2nd , 3rd  

column of   by 1 2 3 .
T

p p pA A A      

6    NUMERICAL RESULTS AND DISCUSSION     

To illustrate the theoretical problem numerical results are presented. The Cobalt material was chosen for the purpose 
of numerical computation, whose physical data is given in Dhaliwal et al. [10]   

11 2 11 2 11 2 11 2
11 12 13 33

11 2 6 2 6 2 3 3
55 1 1

3.071 10 , 1.650 10 , 1.027 10 , 3.581 10 ,

1.51 10 , 7.04 10 , 6.98 10 , 8.836 10 ,

C Nm C Nm C Nm C Nm

C Nm Nm K Nm K Kgm  

   

   

       

       
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2 1 2 1 * 2 * 2
1 3 1 3

* 2

6.90 10 , 7.01 10 , 1.313 10 sec, 1.54 10 sec,

4.27 10 , 298 .

K Wm K K Wm K K W K W

c J Kg K T K

        

  
 

 
 

 
The physical quantities displacement, temperature, amplitude ratios depend not only on time ‘t’ and space 

coordinates but also on the characteristic parameter of the Green-Naghdi theory of type II and type III. Here, all 
variables are taken in non-dimensional form. Figs. 2-10 exhibits the variations of amplitude ratio of reflected qLD, 
qTD and qT waves, for incident qLD, qTD and qT waves for rotating transversely isotropic under GN type II and 
type III (RTI) and rotating isotropic thermoelastic (RI) at three different values of initial stress INT(0, 2, 4). In Figs. 
2-4, the graphical representation is given for the variation of amplitude ratios 1 2,Z Z  and 3Z for incident qLD 

wave. Figs. 5-7 and 8-10, respectively represent the similar situation, when qTD and qT waves are incident. In these 
figures the solid curves lines correspond to the case of RTI, while broken curves correspond to the case of RI. The 
curves without center symbol represent the case without initial stress (i.e., INT=0), curves with center symbol 
( 0 0 )    represents the variation corresponding to INT=2 and curves with center symbol ( )  represents the 

variation corresponding to INT=4. 
Incident qLD-wave: 
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Fig. 2  
Illustration of the variation of amplitude ratios of 

, 1,2,3,iZ i   with frequency for incident qLD-wave.   
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Fig. 3 
Illustration of the variation of amplitude ratios of 

, 1,2,3,iZ i   with frequency for incident qLD-wave.   
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Fig. 4 
Illustration of the variation of amplitude ratios of 

, 1,2,3,iZ i   with frequency for incident qLD-wave.   

 
 

Fig. 2 shows that the values of amplitude ratios for all the cases, initially oscillates and then attain a steady value. 
From Figs. 3 and 4, it can be depicted that the amplitude of waves gets increased due to anisotropy (can be seen in 
the inset).  
Incident qTD-wave: 
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Fig. 5 
Illustration of the variation of amplitude ratios of 

, 1,2,3,iZ i   with frequency for incident qT-wave. 
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Fig. 6 
Illustration of the variation of amplitude ratios of 

, 1,2,3,iZ i   with frequency for incident qT-wave. 
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Fig. 7 
Illustration of the variation of amplitude ratios of 

, 1,2,3,iZ i   with frequency for incident qT-wave. 

Incident qT-wave: 
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Fig. 8  
Illustration of the variation of amplitude ratios of 

, 1,2,3,iZ i   with frequency for incident qTD-wave. 
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Fig. 9 
Illustration of the variation of amplitude ratios of 

, 1,2,3,iZ i   with frequency for incident qTD-wave. 
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Fig. 10 
Illustration of the variation of amplitude ratios of 

, 1,2,3,iZ i   with frequency for incident qTD-wave. 

7    CONCLUSIONS 

Effect of initial stress and anisotropy on the reflection of waves from the free surface of rotating transversely 
isotropic medium in the context of thermoelasticity with GN theory of type-II and III has been discussed. It is 
depicted from the graphical results that anisotropy and initial stress play an important role on amplitude ratios of 
reflected waves. It can be concluded from the graphs that, in most of the cases, the values of amplitude ratio get 
increased due to the effect of anisotropy.  
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