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 ABSTRACT 

 In this study, a realistic model for dynamic instability of embedded single-walled 

nanotubes (SWCNTs) conveying pulsating fluid is presented considering the 

viscoelastic property of the nanotubes using Kelvin–Voigt model. SWCNTs are placed 

in longitudinal magnetic fields and modeled by sinusoidal shear deformation beam 

theory (SSDBT) as well as modified couple stress theory. The effect of slip boundary 

condition and small size effect of nano flow are considered using Knudsen number. The 

Gurtin–Murdoch elasticity theory is applied for incorporation the surface stress effects. 

The surrounding elastic medium is described by a visco-Pasternak foundation model, 

which accounts for normal, transverse shear and damping loads. The motion equations 

are derived based on the Hamilton's principle. The differential quadrature method 

(DQM) in conjunction with Bolotin method is used in order to calculate the dynamic 

instability region (DIR) of visco-SWCNTs induced by pulsating fluid. The detailed 

parametric study is conducted, focusing on the combined effects of the nonlocal 

parameter, magnetic field, visco-Pasternak foundation, Knudsen number, surface stress 

and fluid velocity on the dynamic instability of SWCNTs. The results depict that 

increasing magnetic field and considering surface effect shift DIR to right. The results 

presented in this paper would be helpful in design and manufacturing of nano/micro 

mechanical systems.                                 © 2017 IAU, Arak Branch.All rights reserved. 

 Keywords : Dynamic instability; Pulsating fluid; Visco-SWCNTs; Surface effect;  

Modified couple stress theory. 

1    INTRODUCTION 

 ARBON nanotubes (CNTs) are allotropes of carbon with a cylindrical nanostructure. Nanotubes have been 

constructed with length-to-diameter ratio of up to 132,000,000:1 [1]. significantly larger than for any other 

material. These cylindrical carbon molecules have unusual properties, which are valuable for nanotechnology, 

electronics, optics and other fields of materials science and technology. In particular, owing to their extraordinary 

thermal conductivity and mechanical and electrical properties, carbon nanotubes find applications as additives to 

various structural materials. For instance, nanotubes form a tiny portion of the material(s) in some (primarily carbon 

fiber) baseball bats, golf clubs, or car parts [2].  

Nanotubes are members of the fullerene structural family. Their name is derived from their long, hollow 

structure with the walls formed by one-atom-thick sheets of carbon, called graphene. These sheets are rolled at 

specific and discrete ("chiral") angles, and the combination of the rolling angle and radius decides the nanotube 
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properties; for example, whether the individual nanotube shell is a metal or semiconductor. Nanotubes are 

categorized as SWNTs and multi-walled nanotubes (MWNTs). 

Sometimes, the classical theory cannot describe some phenomena of the material at atomic level. The classical 

(local) theory assumes that the stress at a defined point depends uniquely on the strain at the same point. But there 

are theories that are capable for considering small scale effects such as Eringen, couple stress, and modified couple 

stress and strain gradient. The modified couple stress has been used by many researchers in order to analyze size-
dependent structures. For instance, Simᶊek and Reddy [3] investigated the bending and vibration of functionally 

graded micro beams using a new higher order beam theory and the modified couple stress theory. Wang et [4] 

presented the Size-dependent vibration analysis of three-dimensional cylindrical micro beams based on modified 

couple stress theory:A unified treatment.  

In present, the mechanical behaviors of beams are being studied by applying various beam theories. It should be 

noted that the Euler-Bernoulli theory (EBT) is only applicable for slender beams and the shear deformation effect is 

not considered. The Timoshenko beam theory (TBT) accounts for the shear deformation effect for short beams by 

assuming a constant shear strain through the height of the beam. To avoid the use of shear correction factor, higher-

order shear deformation theories were developed based on the assumption of the higher-order variation of axial 

displacement through the height of the beam such as sinusoidal shear deformation theory [5]. 

The vibration behavior of nano-tubes conveying fluid is one of the main problem of nano-tube structure, 

especially in targeted drug delivery systems. Kiani [6] studied the effects of small-scale parameter, inclination angle, 

speed and density of the fluid flow on the maximum dynamic amplitude factors of longitudinal and transverse 

displacements. Khodami  Maraghi et al. [7] presented the nonlocal vibration and instability of embedded double-

walled boron nitride nanotubes (DWBNNTs) conveying viscose fluid. They indicated that increasing flow velocity 

decreases system stability. As a matter of fact, the fluid velocity that is passing through the tube has not steady speed 

due to power systems. Therefore the flow inside the pipes and tubes becomes pulsative type and dynamic analysis 

must be considered in this situation. Based on nonlocal TBT, buckling analysis of a SWCNT embedded in an elastic 

medium was reported by Murmu and Pradhan [8]. Results show the dependency of critical dynamic load on 

nonlocal parameter and surrounding medium. Exact solution for nonlocal axial buckling of linear carbon nanotube 

hetero-junctions was presented by Ghorbanpour Arani et al. [9] based on Eringen’s nonlocal theory. Ghorbanpour 

Arani et al. [9] carried out the nonlocal surface piezoelasticity theory for dynamic stability of DWBNNTs conveying 

viscose fluid based on different theories. In this study DIR of EBT, TBT and cylindrical shell theory are compared 

to each other. Numerical results indicate that neglecting the surface stress effects, the difference between DIR of 

three theories becomes remarkable. The stability analysis of a SWCNT conveying pulsating and viscous fluid with 

nonlocal effect was investigated by Liang and Su [10]. They showed that decrease of nonlocal parameter and 

increase of viscous parameter both increases the fundamental frequency and critical flow velocity.  

The flow behavior at nano-scale is significantly different from those of macro/meso scales. Consequently, the 

assumption of no-slip boundary conditions between the flow and nanotube walls is no longer valid and a model 

should be presented to study the small-size effects of the flow field. Mirramezani et al. [11] showed that based on 

their result, they could have developed an innovative model for one dimensional coupled vibrations of CNTs 

conveying fluid using slip velocity of the fluid flow on the CNT walls as well as utilizing size-dependent continuum 

theories to consider the size effects of nano-flow and nano-structure. Kaviani and Mirdamadi [12] showed that 

considering the small-size effects of the flow field on the dynamic characteristics of CNTs conveying fluid is 

essential. They investigated wave propagation analysis of CNTs conveying fluid including slip boundary condition 

and strain/inertial gradient theory.  

The effect of the surface free energy in nano scale structure is undeniable while in macro structures, the surface 

free energy is neglected in comparison with the bulk energy. Lee and Chang [13] carried out the surface effects on 

frequency analysis of nanotubes using nonlocal Timoshenko beam theory. Gheshlaghi and Hasheminejad [14] 

investigated the surface effects on nonlinear free vibration of nano beams. Malekzadeh and Shojaee [15] presented 

the surface and nonlocal effects on the nonlinear free vibration of non-uniform nano beams. They found that 

increase of the amplitude ratio causes reduction of the surface effects.  

It has been proved that the CNTs deform when subjected to the magnetic field due to changes in their magnetic 

state. Kiani [16] investigated the vibration and instability of a SWCNT in a three-dimensional magnetic field. The 

obtained results reveal that the critical transverse magnetic field increases with the longitudinally induced magnetic 

field. Wang et al. [17] carried out the influences of longitudinal magnetic field on wave propagation in CNTs 

embedded in elastic matrix. The results obtained show that wave propagation in CNTs embedded in elastic matrix 

under longitudinal magnetic field appears in critical frequencies at which the velocity of wave propagation drops 

dramatically. Ghorbanpour Arani et al. [18] presented that the magnetic field is fundamentally an effective factor on 

increasing resonance frequency leading to stability of system.  
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http://en.wikipedia.org/wiki/Carbon_nanotube#Multi-walled


                                                                             Dynamic Instability of Visco-SWCNTs Conveying Pulsating….                        227 

© 2017 IAU, Arak Branch 

In spite of many researches about behavior of CNTs using non-local elasticity theory, there are limited studies 

that consider non-local visco-elastic systems. Lei et al. [19] carried out the vibration of nonlocal Kelvin–Voigt 

viscoelastic damped Timoshenko beams. Ghorbanpour and Amir [20] investigated the electro-thermal vibration of 

visco-elastically coupled BNNT systems conveying fluid embedded on elastic foundation via strain gradient theory. 

Lei et al. [21] presented the Dynamic characteristics of damped viscoelastic nonlocal EBT. 

However, to date, no report has been found in the literature on dynamic stability of viscoelastic SWCNTs 

conveying pulsating fluid based on surface sinusoidal modified couple stress theory. Motivated by these 

considerations, in order to improve optimum design of nanostructures, we aim to investigate pulsating fluid induced 

dynamic stability of visco-SWCNTs subjected to longitudinal magnetic field. The visco-SWCNTs are embedded in 

a realistic visco-Pasternak medium. Motion equations of system are derived using Hamilton’s principal based on 

SSDBT and modified couple stress theory. The surface stress effects are also considered using Gurtin–Murdoch 

piezoelasticity theory. DQM and Bolotin method are applied for obtaining DIR of visco-SWCNTs. The influences 

of the nonlocal parameter, magnetic field, visco-Pasternak foundation, Knudsen number, surface stress and fluid 

velocity on the DIR of visco-SWCNTs are discussed in details. 

2    BASIC EQUATIONS 

A schematic of visco-SWCNT conveying pulsating fluid embedded in visco Pasternak foundation under longitudinal 

magnetic field is shown in Fig. 1. 

 

 

 
(a) 

 
(b) 

Fig.1 

(a) A SWCNT conveying pulsating fluid embedded in visco Pasternak foundation under longitudinal  magnetic field. (b) 

Schematic view of nanobeam with surface layers, coordinate system and geometrical parameters. 

2.1 Viscoelastic SSDBT 

The displacement fields of SWCNTs based on SSDBT can be described  as [3]: 
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where u and w are the axial and the transverse displacement of any point on the neutral axis, t denotes time.
 
and 

 are the transverse shear strain of any point on the neutral axis and the total bending rotation of the cross-sections 

at any point on the neutral axis. (z)
 

is a function of Z, that characterizes the transverse shear and stress 

distribution along the thickness of the beam. 

A material is usually thought of as just a solid or just a liquid. One that is visco-elastic may have both properties 

to some extent. According to Kelvin–Voigt [19] at real life, nano structure mechanical properties depend on the time 

variation. The Kelvin–Voigt model, consists of a Newtonian damper and Hookean elastic spring connected in 

parallel.  This model represents, as the stress is released, the material gradually relaxes to its undeformed state. By 

considering this model, Young’s modulus,E ,shear modulus,G and Young’s modulus of surface, sE are as follows: 
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2.2 The modified couple stress theory 

By considering the modified couple stress theory, the strain energy density is relate to the strain tensor and the 

curvature tensor. Thus the strain energy of bulk 
b
sU  in a deformed isotropic linear elastic material occupying region 

  is given by [4]: 
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where ij and ij represent the strain and the symmetric rotation gradient tensors, respectively, which are defined 

by: 
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where iu and ijke are the displacement vector and the alternate tensor. The classical stress tensor, ij  the higher-

order stresses, ijm is given by: 
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where E  and G  are the bulk modulus and the shear modulus, 0l  is independent material length scale parameter. 
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2.3 Surface effect theory 

The stress and deformation properties of nanostructures can be affected by surface effects. Actually at nano structure 

the surface to volume ratio is very large, therefore considering the effects of surface parameters is necessary. 

The classical constitutive relation of the surface boundaries ( 2, 2)y b z h     as given by Gurtin and 

Murdoch [22,23] and also the classical constitutive relations for the internal material of the beam 

( 2 2, 2 2)b y b h z h   as follows. Therefore, the constitutive equations for surface layers can be 

written as [24]: 
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where s  is the residual surface tension in the axial direction, s and s are the Lame parameters of surface layers.  

The strain energy of surface, s
sU  is given by [25]: 
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 where ,A dS are the cross-sectional area of the beam and the line element, respectively. 

2.4 Strain energy 

The total strain energy is come to result by combining the modified couple stress theory and the surface effect theory 

as follows: 
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Total strain energy is came into result step by step as follows: 

By substituting Eq. (1) into Eq. (4), the strain is 
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And by substituting Eq. (11) into Eq. (5) gives the symmetric rotation gradient tensor as: 
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According to Gurtin–Murdoch model, 
zz is not equal to zero on the inner and outer surfaces unlike classical 

beam theories. 
zz varies linearly through the beam thickness and satisfies the balance conditions on the upper and 

lower surfaces and its defined as follows [24,26]: 
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where 
s is mass density of surface layers and by substituting Eq. (8b) into Eq. (13a) yields the following relation 

as: 
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Hence, by using Eqs. (13b), (11), (6) and (2) the stresses of bulk are 
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where v is the poisson ratio of nanotube. Moreover, Using Eqs. (8), the surface stresses are derived as follows: 
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Substituting Eqs. (11)- (15) into Eq. (10), leads to 

 



                                                                             Dynamic Instability of Visco-SWCNTs Conveying Pulsating….                        231 

© 2017 IAU, Arak Branch 

22 2 22 2 2

1 2 3 4 5 6 72 2 20 0

2 2
2

8 9 10 11 12 132 2
        

1

2

( )

 
       

 
      

                     
                                            

       
     

     

 
L L

s

u w w w u w w
U

x x x x x xx x x

u u w w

x x x xx x

2 2

142 2




     
           

w w
dx

xt t

 

 

 

 

(16a) 

where 

 

       

 

     

1

2
2 2 2 1

2 0 0 0 0 1 2

2 2
0

3 0 4 0 02

2
2 2 1

5 0 0 0 1 12

2 2
0

6 2

,

1
2 2 2 ,

4

1
, 2 ,

4

1
2 2 2

2

1
2

2



 


 


  






 




 

 
            

 

    

 
        

 

  

s

s s
s s s s

s s

s
s s s

EA E S

v I v Ph h
l GT l GO l GA EI EI EP E P EL E L

h

l GL h
GO T EP E P

h

v Ph h
l GO l GT EL E L EP E P

l GL
GO

h
   

2
2

0 7 0 8 0 02

2 2
0 0 0 1 1

9 10 11 12 13 142

1
, , 2 ,

4

1
, , , , 2 2 , 2

4

  


     
      

   

 
       

 

       

s s s s

s s s s s
s

h h
T l GO EL E L EP E P

l GL hP hP v I v P v P
GO S

hh

 

 

 

 

 

 

 

(16b) 

 

 where the following integrals are defined 

 

0 1 0

,0 1 0

( , , , , , , ) 0

( , , , , , , ) 0





    
    

   
A Ss s s

A I P P T L O dA

S I P P T L O dS
 

 

(16c) 

 

where 
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The total kinetic energy nanotubes can be expressed as: 
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(17) 

 

where t is the mass density of nanotubes. 

2.5 Longitudinal magnetic field and elastic medium 

Maxwell's equation are given by [17]: 
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where, , ,J e  and h represent the current density, strength vectors of electric field, is the magnetic field 

permeability and disturbing vectors of magnetic field respectively. ( , , ) x y zD u u u  is the displacement vector and
 

( ,0,0) xH H  is the magnetic field vector.  

By using Eq. (18) h  and J  are describe: 
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(19) 
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(20) 

 

The Lorentz force in three directions is: 

 

( , , ) ( )  x y zf f f f J H   (21) 

 

Introducing Eq. (20) to Eq. (21), the Lorentzian forces are obtained as: 
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(22) 

 

Eventually, Lorentz work is written as [16]: 
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The external work due to visco-Pasternak foundation is written as: 
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where ,w dK C and PG Winkler’s spring modulus, damper and Pasternak’s shear modulus of elastic medium, 

respectively. 

2.6 Virtual work of pulsating nano-flow 

According to the reference [11], the viscosity parameter could not appear in the fluid–structure interaction(FSI) 

equation. So the force exerted due to the fluid flow on the nanotube can be obtained as follows: 
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(25) 

 

where 
fF is the exerted force by fluid to the nanotube. , ,f fA V and  denote the cross sectional area of the internal 

fluid, the fluid density, the velocity of the fluid flow in the longitudinal direction on the CNT wall and the viscosity 

of the flowing fluid, respectively. 

Based on Kn , four flow regimes may be identified and for ( . .0.01 0.1)i e Kn the slip flow regime could be 

considered. For CNTs conveying fluid, the Kn  may be larger than 210 ; consequently, the assumption of no-slip 
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boundary condition should be no longer valid and the  fluid slip  velocity should be modified. The slip velocity is 

presented as follows [11]: 

 

, ( )
1







avg slip avg no slipV V  

  

(26a) 

 

where 

 

2
4

1






   
   

  

v

v

Kn

Kn
 

  

(26b) 

 

Here 
v  is tangential moment accommodation coefficient and is considered to be 0.7 for most practical purpose.  

The case of pulsating internal flow is assumed harmonically fluctuating ,as follows [10]: 

 

 ,( ) 0 1 cos( )   f avg no slipV V V t  (27) 

 

where 
0V  is the mean flow velocity,  is the amplitude of the harmonic fluctuation (assumed small) and  its 

frequency.  

The total virtual work of pulsating nano-flow is 
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It is noticed that 
1

f fU V



 


 

in the governing equations. 

2.7 Hamilton’s principle 

The energy method is applied to derive equations of motion, in this study. Total potential energy П , is given by: 

 

( )   sU K W  (29) 

 

,sU K and  W denote total strain energy, total kinetic energy and  the total external work in SWCNTs system. 

Hamilton’s principle is used to derive the motion equations of embedded SWCNTs conveying pulsating viscose 

fluid as follows: 
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According to this principal, the motion equations are obtained as follows: 
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Furthermore, the essential boundary conditions at 0x   and x L  may be obtained as: 
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(34) 

3    SOLLUTION PROCEDURE 

3.1 DQM 

DQM is employed in this section which in essence approximates the partial derivative of a function, with respect to 

a spatial variable at a given discrete point, as a weighted linear sum of the function values at all discrete points 

chosen in the solution domain of the spatial variable [7, 18]. Let F be a function representing 1 2 1 2, , ,u u w w  and 

1 2,   with respect to variable x in the domain of (0 )x L  having 
xN  grid points along these variable. The n

th
-

order partial derivative of ( )F x  with respect to x may be expressed discretely as: 
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(35) 

 

where ( )n

ikA  is the weighting coefficient, whose recursive formula are described in [7]. Chebyshev polynomials [7, 

18] was used to determine the positions of the grid points. 

Combining all the motion equations along with the corresponding boundary conditions using DQM and rewritten 

them in matrix form yields 

 

              2

0 0 0 0( cos( )) ( cos( )) 0
f f

M d C V V t C d K V V t K d           
(36) 

 

where   M C and  K  are the mass, damping and stiffness matrixes, respectively;  
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respectively, damping and stiffness matrixes related to pulsating fluid;  d is the displacement vector 
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3.2 Bolotin method 

In order to determinate the DIR of visco-SWCNTs, the method suggested by Bolotin [27] is applied. Hence, the 

components of  d  can be written in the Fourier series with period 2T as: 
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(37) 

 

According to this method, The first instability region is usually the most important in studies of structures. It is 

due to the fact that the first DIR is wider that other DIRs and structural damping in higher regions becomes 

neutralize [28]. Substituting Eq. (37) into Eq. (36) and setting the coefficients of each sine and cosine as well as the 

sum of the constant terms to zero, yields 
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(38) 

 

Solving the above equation based on eigenvalue problem, the variation of   with respect to   can be plotted as 

DIR. 

4    RESULTS AND DISCUSSION 

In this approach, the effects of nonlocal parameter, magnetic field, visco-Pasternak foundation, Knudsen number, 

surface stress and fluid velocity on the DIR of simply supported visco-SWCNTs are investigated. The material 

properties of the SWCNTs related to bulk are: Young’s modulus of 1E Tpa , Poisson’s ratio of 0.27v  , density 

of 32300Kg m  and thickness of 0.34h nm [29]. Generally, the surface material properties can be calculated 

by atomic simulations. However, the material properties of the SWCNTs related to surface are: surface Young’s 

modulus of, 35.3sE N m  and residual surface stress of, 0.31s N m  [29]. 

Fig. 2 illustrates the effect of various surrounding foundation on the dimensionless pulsation frequency. Four 

different elastic medium are considered namely as visco-Pasternak
17( . . 1 10 , 4, 10)w p di e K G C    ,Pasternak 

17( . . 1 10 , 4, 0)w p di e K G C    ,visco-Winkler
17( . . 1 10 , 0, 10)w p di e K G C    and Winkler

17( . . 1 10 , 0, 0)w p di e K G C     

mediums. It is understood that elastic foundation increases the dimensionless pulsation frequency and DIR shifts to 

right. It is due to the fact that putting SWCNT in an elastic medium makes the system more stable and stiffer. It is 

also concluded that the DIR of Pasternak or visco-Pasternak model is higher than Winkler or visco-Winkler one. It is 

because Pasternak model considers not only the normal stresses but also the transverse shear deformation and 

continuity among the spring elements. Furthermore, the DIR predicted by visco-Pasternak and visco-Winkler 

mediums is lower than Pasternak and Winkler models, respectively. 

Fig. 3 shows the dimensionless pulsation frequency with respect to the dimensionless pulsation amplitude for 

different values of fluid velocities and Knudsen numbers. Increasing the fluid velocity generates compressive axial 

load, thus the dimensionless pulsation frequency and DIR will decrease. As we know when the Knudsen- number 

increases, the mean free path of liquid molecules increases and results in lower stiffness, so by enhancing Kn, DIR 

and the dimensionless pulsation frequency shift to left and decrease.    

Fig. 4 depicts the surface stress effect and magnetic field intensity on the dimensionless pulsation frequency with 

respect to the dimensionless pulsation amplitude. In this figure, SE and WSE means that with surface effect and 

without surface effect, respectively. It is obvious that increasing magnetic field intensity and considering surface 

effect cause the DIR and dimensionless pulsation frequency shifts to right and increases, respectively. This is due to 

the fact that considering surface effect and increment magnetic field intensity make the system more stable.  

Fig.5 demonstrates variations of the dimensionless pulsation frequency versus the dimensionless pulsation 

amplitude for different nonlocal parameter. It can be observed that increment of nonlocal parameter in modified 

couple stress theory makes the DIR and dimensionless pulsation frequency shift to right and increase. This is 

because the modified couple stress theory expresses the one additional rotation gradient tensor. 
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Fig.2 

Dimensionless pulsation amplitude versus dimensionless 

pulsation frequency for different elastic medium. 
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Fig.3 

Dimensionless pulsation amplitude versus dimensionless 

pulsation frequency for different values of Knudsen 

number and fluid velocities. 
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Fig.4 

Dimensionless pulsation amplitude versus dimensionless 

pulsation frequency for different values of magnetic field 

and surface effect parameters.  
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Fig.5 

Dimensionless pulsation amplitude versus dimensionless 

pulsation frequency for different values of nonlocal 

parameter.  
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5    CONCLUSIONS 

Dynamic responses of SWCNTs have applications in designing many NEMS/MEMS devices such as sensors, 

actuators, fluid storage and solar cell. However, dynamic stability of SWCNTs conveying pulsating fluid subjected 

to longitudinal magnetic field was studied in this paper. This work furthers previous studies in four aspects; 

considering fluid as pulsating with small size effect of nano flow, assuming SWCNTs as viscoelastic based on 

Kelvin-Voigt model, modeling of visco-SWCNTs using SSDBT and modified couple stress theory, applying 

Gurtin–Murdoch theory for surface stress effects. DIR of the visco-SWCNT was obtained using Bolotin method in 

conjunction with DQM. The effects of nonlocal parameter, magnetic field, visco-Pasternak foundation, Knudsen 

number, surface stress and fluid velocity were shown in dynamic response of system. The following conclusions 

may be made from the results: 

1. Regarding fluid flow effects, it has been concluded that the fluid flow is basically an effective factor on 

decreasing DIR of visco-SWCNTs. 

2. The DIR of visco-SWCNTs was strongly dependent on the imposed magnetic field so that increasing the 

imposed magnetic field significantly increases the DIR of visco-SWCNTs. In this case the DIR of the 

system can be controlled by imposing magnetic field and the visco-SWCNTs can behave as an actuator. 

3. The DIR predicted by the modified couple stress theory was higher than the classical one.  

4. By enhancing Kn, DIR and the dimensionless pulsation frequency shift to left and decrease. 

5. Considering surface effect, it causes the DIR and dimensionless pulsation frequency shift to right and 

increase. 
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