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 ABSTRACT 

 The reflection and transmission of thermoelastic plane waves at an imperfect boundary of 

two dissimilar fibre-reinforced transversely isotropic thermoelastic solid half-spaces under 

hydrostatic initial stress has been investigated. The appropriate boundary conditions are 

applied at the interface to obtain the reflection and transmission coefficients of various 

reflected and transmitted waves with incidence of quasi-longitudinal (qP), quasi-thermal 

(qT) & quasi- transverse (qSV) waves respectively at an imperfect boundary and deduced 

for normal stiffness, transverse stiffness, thermal contact conductance and welded 

boundaries.The reflection and transmission coefficients are functions of frequency, initial 

stress and angle of incidence. There amplitude ratios are computed numerically and 

depicted graphically for a specific model to show the effect of initial stress. Some special 

cases are also deduced from the present investigation. 

                                               © 2015 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 IBRE-REINFORCED are widely used in engineering structures, due to their superiority over the structural 

materials in applications requiring high strength and stiffness in lightweight components. Consequently, 

characterization of their mechanical behavior is of particular importance for structural design using these materials. 

Fibres are assumed an inherent material property, rather than some form of inclusion in models as Spencer [1]. In 

the case of an elastic solid reinforced by a series of parallel fibres it is usual to assume transverse isotropy. 

Lord and Shulman [2] introduced a theory of generalized thermoelasticity with one relaxation time for an 

isotropic body. The theory was extended for anisotropic body by Dhaliwal and Sherief [4]. In this theory, a modified 

law of heat conduction including both the heat flux and its time derivatives replaces the conventional Fourier’s law. 

The heat equation associated with this theory is hyperbolic and hence eliminates the paradox of infinite speeds of 

propagation inherent in both coupled and uncoupled theories of thermoelasticity. Erdem [5] derived heat conduction 

equation for a composite rigid material containing an arbitrary distribution of fibres. Recently, Kumar [6] discussed 

the wave motion in an anisotropic fibre-reinforced thermoelastic solid. 
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Many authors have studied the wave propagation in isotropic thermoelasticity. For example, Deresiewicz [7] 

studied the effects of boundaries on the waves in a thermoelastic solid and reflection of plane waves from a plane 

boundary. Sinha and Sinha [8] and Sinha and Elsibai [9] discussed the reflection of thermoelastic waves at a solid 

half-space in context of the Lord and Shulman [2] and Green and Lindsay [3] theories. 

Sinha and Elsibai [10] studied the reflection of thermoelastic waves at the interface of two semi-infinite media 

being in welded contact. Singh [11] and Abd-Alla et al. [12] discussed some problems concerning reflection of the 

generalized magneto-thermo-viscoelastic plane waves from a stress-free surface. Singh [13] discussed the reflection 

of SV waves from the free surface of an elastic solid with generalized thermoelastic diffusion. Song et al. [14] 

studied the wave propagation at interface between two half-spaces of micropolar viscoelastic media. Singh and 

Khurana [15] studied reflection and transmission of P and SV waves at the interface between two monoclinic elastic 

half-spaces. Kumar and Singh [16] discussed the reflection and transmission at an imperfectly bounded interface 

between two orthotropic, generalized thermoelastic half-spaces. 

The study of wave propagation in a generalized thermoelastic media with additional parameters like prestress, 

porosity, viscosity, microstructure, temperature and other parameters provide vital information about existence of 

new or modified waves. The Earth is assumed to be under high initial stresses.  Such information may be useful for 

experimental seismologists in correcting earthquake estimation. It is therefore of much interest to study the influence 

of these stresses on the propagation of stress waves. Biot [17] showed the acoustic propagation under initial stresses 

which was fundamentally different from that under stress-free state. He has obtained the velocities of longitudinal 

and transversal waves along the co-ordinate axis only. Some problems of reflection and transmission phenomena of 

plane waves in unbounded medium under initial stresses were investigated by Chattopadhyay et al. [18], Sidhu and 

Singh [19], Dey et al. [20] and Selim [21]. 

Montanaro [22] investigated the isotropic linear thermoelasticity with hydrostatic initial stress. Singh et al. [23], 

Singh [24] and Othman and Song [25] used the theory given by Montanaro [22] to study the reflection of 

thermoelastic waves from a free surface under hydrostatic initial stress, in context of different theories of the 

generalized thermoelasticity. [26] Abd-Alla and Alsheikh showed the effect of the initial stresses on the reflection 

and transmission on plane quasi vertical transverse waves in piezoelectric materials.  Chattopadhyay [27] 

investigated reflection and transmission of quasi P and SV waves at the interface of fibre-reinforced media. 

Recently, Singh and Zorammuana [29] studied the reflection of plane waves at a plane free fibre-reinforced 

thermoelastic half-space.  

In the present paper, the governing equations of fibre-reinforced transversely isotropic thermoelastic solid 

medium are formulated to study the problem of reflection and transmission at the boundary surface. The boundary 

conditions at the interface are formulated and the expressions of reflection and transmission coefficients are obtained 

and computed for a particular model. Numerical results are shown graphically to show the effect of initial stresses 

on the reflection and transmission coefficients of various reflected and transmitted waves. 

2    BASIC EQUATIONS 

The basic equations in a homogeneous thermally conducting fibre-reinforced medium with an initial hydrostatic 

stress without body forces and heat sources are given by Lord and Shulman [2], Othman & Abbas [28] as: 

 

, ,
, , 1,2,3

ij j ij j i
P u i j                (1) 

                                                                                                                      

and heat conduction equation is given by 

 

, ,
, , 1,2,3

ij ij o ij i j e
k T T u C T i j               (2) 

 

The constitutive equations for thermally conducting transversely isotropic, fibre-reinforced linearly elastic 

medium [4, 5] are 

 
2 ( ) 2( )( )
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where 
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   , , , ,

1 1
, , , 1,2,3

2 2
ij i j j i ij j i i j

e u u u u i j                
 

(4) 

 

and  is the mass density ,
ij

 are components of stress tensor, 
i

u are displacement components, 
ij

e are components 

of infinitesimal strain, T the temperature change of a material particle, 
o

T  the reference uniform temperature of the 

body, 
ij

k are coefficients of thermal conductivity, 
ij

  are thermal elastic coupling tensor, 
e

C the specific heat at 

constant strain,
ij

  is the kronecker delta, P is component of the initial stress, The comma in subscript notation is 

used for spatial derivatives and superimposed dot represents time differentiation. 
j

a  are components of a, all 

referred to Cartesian coordinate. The vector a may be a function of position. We choose a so that its components are 

(1, 0, 0). 

3    FORMULATION OF THE PROBLEM 

We consider fibre-reinforced transversely isotropic thermoelastic media M1 & M2 with different elastic and thermal 

properties. Rectangular Cartesian coordinate system is taken as
1 2 3

Ox x x ,O is the origin at the interface of two media 

M1 & M2 and 
2

x is pointing vertically downward in the medium. All quantities with superscript ‘m’ correspond to 

medium M2. 

The displacement components for medium M1 are taken as: 

 

1 2
( , ,0)u u u            (5) 

 

Eqs .(1) and (2) with the help of Eqs .(3), (4) and (5), take the form 

 
2 2 2 2

1 2 1 1
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,
2 2

u u u uP P T
C C C C

xx x x x t
 

      
         

       
           

 

(6) 

 
2 2 2 2

2 1 2 2

22 12 0 0 222 2 2

22 1 2 1

,
2 2

u u u uP P T
C C C C

xx x x x t
 

      
         

       
           

 

(7) 

 
2 3 2 32 2 2

1 1 2 2

2 2 2 2 2

11 1 21 2 1 2

e

o o o

C u u u uT T T T
k

k t x t x tx x t x t x t


    

            
           

                 

  
 

(8) 

 

where 
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(9) 

 

and , , , ,
L T

     are material constants, 
11 22

,  are components of linear thermal expansion, 
o
 is thermal 

relaxation time. 

To facilitate the solution, the following dimensionless quantities are introduced 

 

       
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(10) 
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where    * 211 11

1

11

,e
C C C

v
k




   

4    SOLUTION OF THE PROBLEM 

We assume the solutions of the form 

 

      1 2 1 2 1 1 2 2
, , , , expu u T Ad Ad B i x p x p vt     (11) 

 

where  1 2
, ,0p p p denote the unit propagation vector,  1 2

, ,0d d d  is the unit displacement vector, v    is the 

non-dimensional phase velocity, A,B are the arbitrary constants,   is the frequency and   is the wave number of 

the plane waves propagating in 
1 2

x x  plane. Substituting the values of 
1 2
,u u and T from the Eq. (11) in Eqs .(6), (7) 

and (8), we obtain 

 

   
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
2
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1 *

11

,oT

k
the system of Eqs. (12)-(14) has a non-trivial solution if the determinant of the coefficients 

 1 2, ,
T

d d B vanishes, which yields to the following polynomial characteristic equation  
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and, 
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The characteristic Eq. (15) is cubic in 2v  and hence possesses three roots  2 , 1,2,3pv p . Therefore, there exist 

three types of quasi-waves in transversely isotropic thermoelastic half-space namely quasi-longitudinal waves (qP), 

quasi-thermal waves (qT) and quasi-transverse waves (qSV). 

5    REFLECTION AND TRANSMISSION 

5.1 Incident qP waves 

Consider homogeneous fibre-reinforced transversely isotropic thermoelastic half-spaces occupying the regions  

2 0x   (lower medium M1) and 
2 0x   (upper medium M2). We consider the incidence of qP wave passing through 

medium M1, at interface
2 0x  , resulting to this incident wave, we get three reflected wave (i) qP , (ii) qT  and (iii)  

qSV in lower medium M1 and  three transmitted wave (i) qP , (ii) qT  and (iii)  qSV in upper medium M2 

respectively. We label these waves (i) incident as (n=0), three reflected waves as (n=1, 2, 3) and three transmitted 

waves as (n=4, 5, 6) respectively. The complete geometry showing the angle of incidence, angles of reflection and 

angles of transmission are shown in Fig.1. 
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where 

 

   1 1 2 2 , 0,1,2,3,4,5,6j j

j j jx p x p v t j      (19) 

 

The expression for displacements and temperature field for the medium M1 and M2 are 
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For incident qP waves 
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For reflected qP waves 
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(1) (1) (1) (1)

1 1 2 1 1 1 2 1 1 1sin , cos , sin , cos , pp p d d v v         (22) 

 

For reflected qT waves 

 
(2) (2) (2) (2)
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For reflected qSV waves 
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For transmitted qP waves 

 
(4) (4) (4) (4)
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For transmitted qT waves 
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For transmitted qSV waves 
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Fig.1 

Geometry of the Problem. 

 

5.1 Incident qt & qsv waves 

This case is similar to the earlier case 4. In this case, n=0 to be considered for incident qT & incident qSV waves 

respectively. In the Eq. (21), 
0v  is to be replaced by 

2pv  to get incident qT and 
3pv  to get incident qSV waves 

respectively. All the calculations are similar to incident qP waves. 

6    BOUNDARY CONDITIONS 

The appropriate boundary conditions at imperfect boundary surface 
2

0x  are given by: 

 

qP Reflected 

qP .Incidence 

qT Reflected 

qSV Reflected 

qSV Transmitted 

qT Refraected 

qP Transmitted 

0

 

1x

 

2 0x 

 

1 2( 0)M x 
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where the component of stresses are given by      
22 12 1,1 22 2,2 22 21 0 1,2 2,1

,t C u C u T t C u u and , &
n t

K K K are 

normal force stiffness, transverse force stiffness of dimension 3N m  and thermal contact conductance with 

dimension 2 sec.W m K  respectively.    * 2 4
e

K C  and      * 2 4
m

m m m

e
K C  are the material 

characteristic constant. 

The boundary conditions given by (28)-(33) must be satisfied for all values of 
1

x  , so we have 

 

                        
0 1 1 1 2 1 3 1 4 1 5 1 6 1

,0, ,0, ,0, ,0, ,0, ,0, ,0,x t x t x t x t x t x t x t  (34) 

 

Then from (19) and (34), we have 

 

     
      0 3 5 61 2 4

0 1 2 3 4 5 6

sin sin sin sinsin sin sin 1

v v v v v v v v
 

 

 

which corresponds to the Snell’s law in this case, 

Substituting the value of 
1 2 1 2
, , , , &m m mu u T u u T  from Eq. (20) in (28)-(33) and with the aid of (5) & (10), after 

simplification we obtain 

 

 


  
6

0

1

, 1,2...6 ,
ij j i

j

a Z a i  
(35) 

 

where 
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11
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a j

C
 

 






      
          
       

1122 22 11
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a p d p d F d K d j
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
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2

0

, ( 0,1,2,3)
j

t
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d K T
a j

C
 

 

  
     
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11
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    
3 1

, ( 0,1,2,3)j

j j j
a K F d j   
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3 2 1
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j j j
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
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j
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*
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, ( 4,5,6)j j

j j j

K
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K
 

 

 

and   
0

, ( 1,2,3,4,5,6)
j

j

A
Z j

A
 

Here,
1 2 3
, &Z Z Z are real-values of reflection coefficients (or amplitude ratio) of reflected , &qP qT qSV waves 

respectively and 
4 5 6
, &Z Z Z  are reflection coefficients (or amplitude ratio) of transmitted , &qP qT qSV waves 

respectively. 

7    PARTICULAR CASES 

7.1 Normal force stiffness  

In this case (   0, ,
n t

K K K ), we have a boundary with normal stiffness and obtain a system of six non-

homogeneous equations as given by (35) with the changed values of 
ij

a  as: 

 


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7.2 Transverse force stiffness  

In this case (   , 0,
n t

K K K ), the imperfect boundary reduces to the transverse stiffness and we obtain a 

system of six non-homogeneous equations as given by (35) and modified values of 
ij

a  are 

 







 
    

 

   

1 11

1 1 2

0

3

3 3 1

, ( 0,1,2,3)  ; , ( 4,5,6)

,( 0,1,2,3)  ; , ( 4,5,6)

j jO

j j

n

j j

j j j j

a T
a j a d j

k C

a
a j a F d j

K
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7.3 Thermal contact conductance  

In this case (
  , , 0

n t
K K K  ), the imperfect boundary reduces to  a thermally conducting imperfect 

surface, getting system of six non-homogeneous equations given by (35) with the changed values of 
ij

a  as: 

 





 
    

 
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1 11
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2 11

2 2 1
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j jO

j j

n

j jO

j j

t
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a j a d j
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a T
a j a d j

k C

 

 

7.4 Welded contact   

In this case (   , ,
n t

K K K ), a system of six non-homogeneous equations given by (35) with the 

modified values of 
ij

a  as: 
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8    NUMERICAL RESULTS AND DISCUSSION 

With the view of illustrating theoretical results obtained in the preceding sections, we now present some numerical 

results. For computation, we take the following values of the relevant parameters for fibre-reinforced transversely 

isotropic generalized thermoelastic solid: 

For medium M1 as: 
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e
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For medium M2  as: 
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with non-dimensional interface parameters as   1.8, 2.0, & 1.2

n t
K K K  .Using the above parameters for two 

different medium in contact, the system of Eqs. (35) are solved with the help of MATLAB PROGRAM. The 

absolute values of amplitude ratios (or reflection and transmission coefficients) of reflected and transmitted qP, qT 



 232         R. Kumar et al. 
 

© 2015 IAU, Arak Branch 

 

and qSV waves are computed numerically with the range  0 00 60 of angle of incidence of qP, qT and qSV 

waves. The variations of these amplitude ratios are shown graphically in Figs. 2 - 19. The solid curves with square 

symbol in these figures correspond to the amplitude ratios in fibre reinforced transversely isotropic thermoelastic 

material with initial stress(FTTIIS), solid line with round symbol corresponds to fibre reinforced transversely 

isotropic thermoelastic material without initial stress(FTTIWIS) and solid line with triangular symbol represents the 

fibre reinforced  isotropic thermoelastic material with initial stress(FTISIS). 

8.1 Incident qP-wave 

It is noticed that the amplitude ratio 
1

z of reflected qP wave first increase sharply to peak value at an angle   05  

for the values of FTTIIS, FTTIWIS & FTISIS, then decrease sharply for the range  0 06 12 and attain its 

minimum value at   012 . Fig.3  indicates the variations of amplitude ratio 
2

z  of reflected qT-wave which shows 

that 
2

z  has certain maxima, particularly at   05 and at   055 for FTTIIS and FTTIWIS respectively. Behavior 

of FTTIWIS is just opposite to other two cases within the range  0 020 60 .The amplitude ratio 
3

z  shows 

similar behavior with 
1

z  , but difference in their magnitude value. Moreover, small variations are noted between 

the values for FTTIIS and FTISIS. 

The amplitude ratio 
4

z of the transmitted P-wave w.r.t. the angle of incidence is shown in Fig.5 which indicates 

that 
4

z attains maximum value at   06 and minimum value at   011 for the case FTTIWIS. On the other hand, 

the magnitude of values for FTTIIS  is almost zero within the whole range. Fig.6 shows the variations of amplitude 

ratio 
5

z of transmitted qT-wave which indicates that magnitude of 
5

z  for FTTIWIS is  more as compared to 

FTTIIS and FTISIS. A sudden increment in the values of 
5

z at the points   05 ,  030 and   055 are noted for 

the FTTIWIS, at these values of  , magnitude of 
5

z increases sharply to peak values and decreases smoothly 

towards minima at   0 012 , 25 and   038  respectively. In Fig.7, the behavior of the curve FTISIS is almost 

similar to the curve FTTIWIS in Fig.6. 
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Fig.2 

Reflection coefficient of qP waves due to incidence of qP 

wave. 
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Fig.3 

Reflection coefficient of qT waves due to incidence of qP 

wave. 
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Fig.4 

Reflection coefficient of qS waves due to incidence of qP 

wave. 
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Fig.5 

Refrection coefficient of qP waves due to incidence of qP 

wave. 
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Fig.6 

Refrection coefficient of qT waves due to incidence of qP 

wave. 
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Fig.7 

Refrection coefficient of qS waves due to incidence of qP 

wave. 

8.2 Incident qT-wave 

The variations of amplitude ratios of various reflected and transmitted waves when qT-wave is incident on the 

interface are shown in Figs.8-13. All the three curves show similar behavior of amplitude ratio 
1

z .The values of 

amplitude ratio 
1

z  first strictly increase within the range  0 00 5 and then show a sudden fall within the range 
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 0 05 10 , which oscillates within rest of the range. Fig.9 indicates that amplitude ratio 
2

z  for FTTIIS and 

FTISIS have small variation in their magnitude as compared to FTTIWIS. Near the end of the range at angle 

  060 , the behavior of all three cases are almost different and FTTIWIS shows a great variation in the values 
2

z  

as compared to the presence of initial stress. The amplitude ratio 
3

z  shows similar behavior for all three cases as 

the amplitude ratio 
1

z  shows in Fig.8, but the values are different in magnitude within the whole range of angle of 

incidence. 

Fig.11 indicates the amplitude ratio
4

z of transmitted qP-wave due to incidence of qT-wave. The effect of initial 

stress is more in isotropic case as compared to transversely isotropic case within the range  0 00 10 . For the 

amplitude ratio 
5

z of transmitted qT-wave, the observed FTISIS reveals great impact as compared to FTTIIS within 

the whole range, which indicates that magnitude of 
5

z in isotropic case is much more then transversely isotropic 

case. The amplitude ratio 
6

z indicates that variation in the magnitude of 
6

z for isotropic case is much more than 

transversely isotropic case. The behavior of all three curves is similar, but more variations in their magnitude of 

6
z can be observed within the range  0 00 45  in Fig.13. 
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Fig.8 

Reflection coefficient of qP waves due to incidence of qT 

wave. 
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Fig.9 

Reflection coefficient of qT waves due to incidence of qT 

wave. 
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Fig.10 

Reflection coefficient of qS waves due to incidence of qT 

wave. 
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Fig.11 

Refrection coefficient of qP waves due to incidence of qT 

wave. 
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Fig.12 

Refrection coefficient of qT waves due to incidence of qT 

wave. 
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Fig.13 

Refrection coefficient of qS waves due to incidence of qT 

wave. 

8.3 Incidence qSV-wave 

In Fig.14, the variations of amplitude ratio 
1

z shows an oscillating behavior attaining certain maxima & minima 

within the range  0 00 35 and then the values of 
1

z increase strictly with increasing the value of angle of 

incidence within the range  0 036 40 but decrease monotonically from  0 041 48 . Fig. 15 indicates that the 

curve for 
2

z shows similar behavior to the curves of Fig. 14, but the corresponding value of amplitude ratio 
2

z  are 

different in magnitude for all three cases. For the amplitude ratio 
3

z  of reflected qSV-wave, curves show that 

impact of initial stress is more within the range  0 00 10 and  0 027 37 . Although a non-overlapping but 

oscillating behavior of curves is noticed due to relevant difference in the magnitude of
3

z  in Fig.16. 

It is noticed that within the range  0 00 35 , the presence or absence of initial stress in both isotropic and 

transversely isotropic cases doesn’t put any impact for the amplitude ratio 
4

z but the curve FTTIWIS increase 

strictly within the range  0 036 40 and then fall sharply from  0 041 46 by gaining its maxima at 
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  040 which then leads towards zero near the end of the range. The behavior of curves for Fig.18 and Fig. 19 are 

almost same for FTTIWIS AND FTTIIS, but the corresponding values of amplitude ratios are different in 

magnitude. In both figures, it is evaluated that within the whole range, the value of isotropic case in the presence of 

initial stress have more impact and curves show an oscillating behavior by attaining a number of maxima and 

minima in the corresponding range. The significant effect of initial stress can be noted for isotropic case at   030  

which is a very good difference in the magnitude of amplitude ratio
6

z . 
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Fig.14 

Reflection coefficient of qP waves due to incidence of qS 

wave. 
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Fig.15 

Reflection coefficient of qT waves due to incidence of qS 

wave. 
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Fig.16 

Reflection coefficient of qS waves due to incidence of qS 

wave. 
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Fig.17 

Refrection coefficient of qP waves due to incidence of qS 

wave. 
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Fig.18 

Refrection coefficient of qT waves due to incidence of qS 

wave. 
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Fig.19 

Refrection coefficient of qS waves due to incidence of qS 

wave. 

9    CONCLUSIONS 

The analytic behavior of amplitude ratio for various reflected and transmitted waves are obtained at the boundary 

surface between two different media. The expressions of reflection and transmission coefficients of various reflected 

and transmitted  waves have been obtained for  normal stiffness, transverse stiffness, thermally conducting and 

welded boundaries. An appreciable effect of initial stress and transversely isotropy is observed on amplitude ratio of 

various reflected and transmitted waves.It is observed from the above figures that the behavior of the amplitude 

ratios is oscillatory in nature and very much influenced with the effect of initial stress and anisotrophy near the 

beginning of the range i.e.  0 00 10  with the incidence of qP and qT waves and near the end of the range with 

the incidence of qSV wave respectively. The model adopted in this paper is most realistic forms of the earth model 

and have the great importance for experimental seismologists. 
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