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 ABSTRACT 
 In this paper, the generalized coupled thermoporoelasticity model of hollow and solid spheres 

under radial symmetric loading condition (r, t) is considered. A full analytical method is used and 
an exact unique solution of the generalized coupled equations is presented. The thermal, 
mechanical and pressure boundary conditions, the body force, the heat source and the injected 
volume rate per unit volume of a distribute water source are considered in the most general forms 
and where no limiting assumption is used. This generality allows simulate varieties of applicable 
problems. At the end, numerical results are presented and compared with classic theory of 
thermoporoelasticity. 
                                                                                      2010 IAU, Arak Branch. All rights reserved.  
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1    INTRODUCTION 

HE classical theory of thermoelasticity is based on the conventional heat conduction equation. The conventional 
heat conduction theory assumes that the thermal disturbances propagate at infinite speeds. This prediction is 

unrealistic from a physical point of view, particularly in simulations like those involving very short transient 
duration, sudden high heat flux situations, and/or for very low temperatures near the absolute zero [1]. Thus, some 
modified dynamic thermoelastic models are proposed to analyze the problems with the second sound effects, such as 
the Lord-Shulman (LS) [2], the Green-Lindsay [3], and the Green-Naghdi [4] theories. These nonclassical theories 
are referred to as the generalized thermoelasticity theories with finite thermal wave speed, or thermoelasticity with 
the second sound effect. For the generalized thermoporoelasticity problems, coupled thermal and poro-mechanical 
processes play an important role in a number of problems of interest in the geomechanics such as stability of 
boreholes and permeability enhancement in geothermal reservoirs. A thermoporoelastic approach combines the 
theory of heat conduction with poroelastic constitutive equations and coupling the temperature field with the stresses 
and pore pressure. 

There are a limited numbers of papers that present the closed-form or analytical solution for the coupled 
porothermoelasticity problems. Youssef [5] derived the governing equations, which describe the behavior of 
thermoelastic porous medium in the context of the theory of generalized thermoelasticity with one relaxation time 
(Lord-Shulman). Bai [6] investigated the response of saturated porous media subjected to local thermal loading on 
the surface of semi-infinite space. He used the numerical integral methods for calculating the unsteady temperature, 
pore pressure and displacement fields. This author also studied the fluctuation responses of saturated porous media 
subjected to cyclic thermal loading [7]. In the mentioned paper, an analytical solution was deduced which was 
proposed by using the Laplace transform and the Gauss-Legendre method and Laplace transform inversion. 
Droujinine [8] investigated dispersion and attenuation of body waves in a wide range of materials representing 
realistic rock structures. He used the time-domain asymptotic ray theory to a new generalized coordinate-free wave 
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equation with an arbitrary tensor relaxation function. Using Laplace transform and numerical Laplace transform 
inversion, Bai and Li [9] found a solution for cylindrical cavity in saturated thermoporoelastic medium.a 

The number of papers that present the closed-form or analytical solution for the coupled thermoelasticity 
problems is also limited. Hetnarski [10] found the solution of the coupled thermoelasticity in the form of a series 
function. Hetnarski and Ignaczak presented a study of the one-dimensional thermoelastic waves produced by an 
instantaneous plane source of heat in homogeneous isotropic infinite and semi-infinite bodies of the Green-Lindsay 
type [11]. Also, these authors presented an analysis for laser-induced waves propagating in an absorbing 
thermoelastic semi-space of the Green-Lindsay theory [12]. Georgiadis and Lykotrafitis obtained a three-
dimensional transient thermoelastic solution for Rayleigh-type disturbances propagating on the surface of a half-
space [13]. Wagner [14] presented the fundamental matrix of a system of partial differential operators that governs 
the diffusion of heat and the strains in elastic media. This method can be used to predict the temperature distribution 
and the strains by an instantaneous point heat, point source of heat, or by a suddenly applied delta force. 

A full analytical method is used here to obtain the response of the governing equations and an exact solution is 
presented. The method of solution is based on the Fourier’s expansion and eigenfunction methods, which are 
traditional and routine methods in solving the partial differential equations. Since the coefficients of equations are 
not functions of the time variable (t), an exponential form is considered for the general solution matched with the 
physical wave properties of thermal and mechanical waves. For the particular solution, that is the response to 
mechanical and thermal shocks, the eigenfuncion method and Laplace transformation is used. This work is 
following the previous works for coupled problems [15-18]. 

2   GOVERNING EQUATIONS 

A hollow porous sphere with inner and outer radius ri and ro, respectively, made of isotropic material subjected to 
radial-symmetric mechanical, thermal and pressure shocks is considered. 

The Navier coupled thermoelastic equation in spherical coordinate is [16] 
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Heat conduction equation based on LS theory is obtained as [4] 
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According to Darcy’s law and continuity condition of seepage, the equation of mass conservation can be written 

as [16] 
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where (,) denotes partial derivative, u is the displacement component in the radial direction, p is the pore pressure, 
  is bulk mass density, 1 /sC C    is the Biot’s coefficient, 0t  is relaxation time, 3(1 2 )s s sC E   is the 

coefficient of volumetric compression of the solid grains, with sE  and s  being the elastic modulus and Poisson’s 

ratio of solid grains and 3(1 2 )C E   is the coefficient of volumetric compression of solid skeleton, with E  and 

  being the elastic modulus and Poisson’s ratio of solid skeleton, T   is initial reference temperature, 3 /s C   is 

the thermal expansion factor, s  is the coefficient of linear thermal expansion of solid grains, 

3( ( ) )w sY n n      and ( )p w s sn C C C    are coupling parameters, w  and wC  are the coefficients of 
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linear thermal expansion and volumetric compression of pure water, n is the porosity, k  is the hydraulic 

conductivity, w  is the unit of pore water and ((1 ) )
3s s w w

s
n c n c

Z
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 is coupling parameter, w  and s  are 

the densities of pore water and solid grains and wc  and sc   are the heat capacities of pore water  and solid grains and 

K  is the coefficient of heat conductivity. Here, F(r, t), Q(r, t) and W(r, t) are the body force, heat generation and the 
injected volume rate per unit volume of a distribute water source, respectively. The mechanical, thermal and 
pressure boundary conditions are 
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where ijC  are the mechanical, thermal and pressure coefficients, and by assigning different values for them, 

different types of mechanical, thermal, and pressure boundary conditions may be obtained. These boundary 
conditions include the displacement, strain, stress(for the first and second boundary conditions), specified 
temperature, convection, heat flux condition (for the third and forth boundary conditions), and  pressure (for the fifth 
and sixth boundary conditions). 1( )f r  to 6 ( )f r  are arbitrary functions which show mechanical, thermal and pressure 

shocks, respectively. The initial boundary conditions are assumed in the following general form 
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where 7 ( )f r  to 11( )f r  are arbitrary function which show  initial distributions of displacement, temperature and 

pressure, respectively. 

3    SOLUTION 

The Eqs. (1)-(3) are the system of non-homogeneous partial differential equations with non-constant coefficients 
(functions of radius variable r only) has general and particular solutions. 

3.1 General solution with homogeneous boundary conditions 

Since the coefficients of these equations are independent of time variable (t), the exponential function form of time 
variable may be assumed for the general solution as 
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Substituting Eq. (6) into homogeneous parts of Eqs. (1) to (3), yields 
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Eqs. (7) are system of ordinary differential equations, where the prime symbol (') shows differentiation with 

respect to the radius variable (r) and 1d  to 9d  are constant parameters given in the appendix. 

3.2 Change in dependent variables 

To obtain a solution for Eq. (7), the dependent variables are changed as 

 
1 1 1

* * *2 2 2( ) ( ) ( ) ( ) ( )U r r U r r r r P r r P r 
  

    (8) 

 
Substituting Eq. (8) into Eq. (7) gives 
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3.3 Solution  

The first solutions of 1U  , 1  and 1P  are considered as 
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Substituting Eqs. (10) into Eqs. (9) yields 
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Eqs. (11) show that 1U  , 1  and 1P can be the solutions of Eqs. (9), if and only if 

 
2 2

3 2 1 1
2 2 2

6 4 5 1

2
19 8 7

0

( ) ( ) 0

0

d d d A

t d t d d B

Cd d d

   

      

    

                      
            

   (12 ) 

 
The non-trivial solution of Eq. (12) is obtained by equating the determinant of this equation to zero as 
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Eq. (13) is the first characteristic equation. Thus, it is concluded that 1U  , 1  and 1P  satisfy the system of 

equations (9) and they are the first solution of the system. The second solutions of 2U  , 2  and 2P  are considered as 
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Substituting Eqs. (14) to Eqs. (9) yield 
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The expressions for 2U  , 2  and 2P  can be the solutions of Eqs. (9), if and only if 
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The non-trivial solution of Eqs. (16) is obtained by equating the determinant to zero as 
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Eqs. (17) to (19) give the relations between 2 3 2 3 2, , , ,A A B B C  and 3C  and they play as the balancing ratios that 

make Eq. (14) to be the second solution of the system of Eqs. (9). The third solution of the system of the ordinary 
differential equations with non-constant coefficients (9) must be considered as 
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Substituting Eqs. (21) into Eq. (9) yield 
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 (22) 

The expressions for 3U  , 3  and 3P  can be solutions of Eq. (9), if and only if 
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The non-trivial solution of Eq. (23) is obtained by equating the determinant of this equation to zero as 
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The characteristic equation (30) is the same as the characteristic equations (13) and (20). This equality is 

interesting as it prevents mathematical dilemma and complexity and a single value for the eigenvalue   

simultaneously satisfies three characteristic equations (13), (20) and (30). Equations (24) to (29) gives the relations 
between 4 5 6 4 5 6 4 5, , , , , , ,A A A B B B C C and 6C . These relations play as the balancing ratios that help Eq. (21) to be the 

third solution of the system of Eqs. (9). The complete general solutions for the solid sphere are 
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and for hollow sphere are 
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 (32) 

 
where 1  to 15  are ratios obtained from Eqs. (23) to (29),(16) to (19) and(12) and are given in the appendix. 

Substituting gU , g  and gP  in the homogeneous form of the boundary conditions (4), three linear algebraic 
equations are obtained. They are the coefficients depending on   and  . Setting the determinant of the coefficients 

equal to zero, the second characteristic equation is obtained. Simultaneous solution of this equation and Eq. (11), 
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results into infinite number of two eigenvalues n  and n . n  are eigenvalues in time domain and are mechanical-

thermal-pressure natural frequencies and n  are eigenvalues in space and determine mode shapes. Therefore, gU  

, g  and gP for solid sphere are rewritten as 
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where 16  and  17  are presented in the appendix. Let us show the functions in the brackets of Eq. (33) by functions 

0 1,H H  and 2H  as 

 
2

0 3 16 1 3 5 17 2 3 3 5 7

2 2 2 2 2 2

2
1 4 1 16 5 1 6 3 17 7 1 8 3 9 5

2 2 2 2 2 2

2 10 1 16 11 1 12 3 17 13 1

2 2 2 2

( ) [ ( ) ( )] [ ( ) ( ) ( )]

( ) [ ( ) ( )] [ ( ) ( ) ( )]

( ) [ ( ) ( )] [ (

H J r J r rJ r J r rJ r r J r

H J r J r rJ r J r rJ r r J r

H J r J r rJ r J

          

             

         

     

     

    2
14 3 15 5

2 2

) ( ) ( )]r rJ r r J r    

 (34) 

 
According to the Sturm-Liouville theorem, these functions are orthogonal with respect to the weight function 

p(r)r such as 
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where ( )nH r  is norm of the H function and equals 
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Due to the orthogonality of function H, every piece-wise continuous function, such as f(r), can be expanded in 

terms of the function H (either 1,H H  or 2H  ), and is called the H-Fourier series as 
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where ne  equals 

   
2

1
( ) ( ) d

( )

o

i

r

n r
n

e f r H r r r
H r

   (38) 

 
Using Eqs. (6), (33) and (34) the displacement and temperature distributions due to the general solution become 
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where Nmn and Mnm are ratios obtained by substituting Eqs. (39) into Eq. (1) to (3). Using the initial conditions (5) 
and with the help of Eqs. (36), (37) and (38), four unknown constants are obtained.  

3.4 Particular solution with non-homogeneous boundary conditions 

The general solutions may be used as proper functions for guessing the particular solution adapted to the non-
homogeneous parts of the Eqs. (1) to (3) and the non-homogeneous boundary conditions (4) as 
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For the solid sphere, the second type of Bessel function Y is excluded. It is necessary and suitable to expand the 

body force 
1

2r F(r, t), heat source 
1

2r Q(r, t) and porosity function 
1

2r W(r, t) in H-Fourier expansion form as 
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where Fn(t) , Qn(t) and Pn(t) are 
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Substituting Eqs. (40) and (41) into non-homogeneous form of equations (1) into (3) yield 
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where 10d  to 27d  are the coefficients of the H-expansion and constant parameters presented in the appendix. By 

taking Laplace transform of Eq. (43) and using three boundary conditions of Eq. (4) (for solid sphere only second, 
forth and sixth boundary conditions are applicable), a system of algebraic equations is obtained and solved by 
Cramer’s methods in the Laplace domain, where by the inverse Laplace transform the functions are transformed into 
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the real time domain and finally 1 ( )nG t  to 12 ( )nG t  are calculated. In this process it is necessary to consider the 

following points: 
1. The initial conditions (5) are considered only for the general solutions and the, initial conditions of 1 ( )nG t  to 

12 ( )nG t  for the particular solutions are considered equal to zero. 

2. Laplace transform of Eqs. (43) is in terms of polynomial function form of the Laplace parameter s (not the Bessel 
functions form of s). Therefore, the exact inverse Laplace transform is possible and somehow simple. 
3. For the hollow Sphere it is enough to include the second type of Bessel function Y(r) in a sequence of the 
particular solution as 
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By substituting Eq. (44) in Eqs. (1) to (3), eighteen equations are obtained, where using the six boundary 

conditions (4) twenty four functions 1 ( )nG t  to 24 ( )nG t  are obtained for the hollow sphere. 

4    RESULTS AND DISCUSSIONS 

As an example, a solid sphere with 0ir   , 1or  m is considered. The material properties are listed in Table 1. To 

give clear explanation, numerical results have been considered and the radial distributions of displacement, 
temperature and pressure for two cases (Classic coupled theory and Lord-Shulman's theory) computed. An 
instantaneous hot spot 3(1, ) 10 ( )T t T t  , where ( )t  is unit dirac function, is considered and the outside radius of 

the sphere is assumed to be fixed (u(1, t)0). For plotting the graphs a nondimensional time ˆ /t Vt r   is considered 

where (1 ) / (1 )(1 2 )V E         is the dilatational wave velocity. 

 
Table1 
Material Parameters 

Unit Value Parameters Unit Value Parameters 
o1/ C  51.5 10-´  s  - 51 10-´  t   

o1/ C  42 10-´  w  Pa 56 10´  E 

oJ/g C  0.8 sc  - 0.3 υ 
oJ/g C  4.2 wc  K  293 T  

3g/m  62.6 10´  s  Pa 102 10´  sK  

3g/m  61 10´  w  Pa 95 10´  wK  

- 1   oW/m C  95 10´  K  
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Figs 1-3 show the wave-front for the displacement, temperature, and pressure (Classic coupled theory and Lord-
Shulman's theory). As a second example, mechanical shock wave is applied to the outside surface of the sphere 
given as 12(1, ) 10 ( )u t u t   and the surface is assumed to be at zero temperature (T(1, t)0). Figs. 4-6 show the 

wave fronts for the displacement and temperature distributions versus the nondimensional radius(Classic coupled 
theory and Lord-Shulman's theory). The convergence of the solutions for these examples is achieved by 
consideration of 1200 eigenvalues used for the H-Fourier expansion. By choosing more than this number for 
eigenvalues, round-off and truncation errors increases and the quality of the graphs are affected. The convergence of 
the solution is better for the displacement result in comparison with the temperature. The small oscillations in Figs. 
3-5 are due to the convergence errors of solutions. 

 

 

 
 
 
 
 
 
 
 
 
 
Fig. 1 
Non-dimensional displacement distribution due to input T(1, 

t) = 3
010 ( )T t  at non-dimensional time ˆ 0.65t  . 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 
Non-dimensional temperature  distribution due to input T(1, 

t) = 3
010 ( )T t  at non-dimensional time ˆ 0.65t  . 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 
Non-dimensional Pressure distribution due to input T(1, t) 

= 3
010 ( )T t  at non-dimensional time ˆ 0.65t  . 
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Fig. 4 
Non-dimensional Displacement  distribution due to input 

u(1, t) = 12
010 ( )u t  at non-dimensional time ˆ 0.4t   

  

 

 
 
 
 
 
 
 
 
 
 
 
Fig. 5 
Non-dimensional Temperature  distribution due to input u(1, 

t) = 12
010 ( )u t  at non-dimensional time ˆ 0.4t  . 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 
Non-dimensional Pressure distribution due to input u(1, t) 

= 12
010 ( )u t  at non-dimensional time ˆ 0.4t  . 

5    CONCLUSIONS 

In the present paper, an analytical solution for the generalized coupled thermoporoelasticity of thick spheres under 
radial temperature is presented. Figs (1) to (6) show relaxation time effect on variation of displacement, temperature 
and pressure. It is observed that the peak value of Lord-Shulman ‘theory for displacement, temperature and pressure 
increases. The method is based on the eigenfunctions Fourier expansion, which is a classical and traditional method 
of solution of the typical initial and boundary value problems. The non-competetive strength of this method is its 
ability to reveal the fundamental mathematical and physical properties and interpretations of the problem under 
studying. In the coupled thermoporoelastic problem of radial-symmetric sphere, the governing equations constitute a 
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system of partial differential equations with two independent variables, radius (r) and time (t). The traditional 
procedure to solve this class of problems is to eliminate the time variable using the Laplace transform. The resulting 
system is a set of ordinary differential equations in terms of the radius variable, whose solution falls in the Bessel 
functions family. This method of the analysis brings the Laplace parameter (s) in the argument of the Bessel 
functions, causing hardship or difficulties in carrying out the exact inverse of the Laplace transformation. As a 
result, the numerical inversion of the Laplace transformation is used in the papers dealing with this type of problems 
in literature. In the present paper, to prevent this problem, when the Laplace transform is applied to the particular 
solutions, it is postponed after eliminating the radius variable r by H-Fourier Expansion. Thus, the Laplace 
parameter (s) appears in polynomial function forms and hence the exact Laplace inversion transformation is 
possible. 
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