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 ABSTRACT 

 Seth’s transition theory is applied to the problems of thickness variation parameter 

in a thin rotating disc by finite deformation. Neither the yield criterion nor the 

associated flow rule is assumed here. The results obtained here are applicable to 

compressible materials. If the additional condition of incompressibility is imposed, 

then the expression for stresses corresponds to those arising from Tresca yield 

condition. It has observed that for rotating disc made of compressible material 

required higher angular speed to yield at the internal surface as compare to disc 

made of incompressible material and a much higher angular speed is required to 

yield with the increase in radii ratio. With the introduction of thermal effects, lesser 

angular speed is required to yield at the internal surface. Thermal effect in the disc 

increase the value of circumferential stress at the internal surface and radial stresses 

at the external surface for compressible as compare to incompressible material. 

                                                 © 2016 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 N annular disk mounted on a circular shaft rotating at high speed is widely used in engineering applications. In 

the case of elastic/plastic disks, the study of stress and strain fields in rotating disks has begun with models 

based on the Tresca yield criterion. Rotating discs are form an essential part of the design of rotating machinery, 

namely rotors, turbines, compressors, flywheel and computer’s disc drive etc. The analysis of thin rotating discs 

made of isotropic material has been discussed extensively by Timoshenko and Goodier [1] in the elastic range and 

by Chakrabarty [2] and Heyman [3] for the plastic range. Their solution for the problem of fully plastic state does 

not involve the plane stress condition, that is to say, we can obtain the same stresses and angular velocity required 

by the disc to become fully plastic without using the plane stress condition. Parmaksigoglu, et al. [4] found the 

Plastic stress distribution in a rotating disc with rigid inclusion under a radial temperature gradient under the 

assumptions of Tresca’s yield condition, its associated flow rule and linear strain hardening. To obtain the stress 

distribution, they matched the plastic stresses at the same radius r = z of the disc.  Perfect elasticity and ideal 

plasticity are two extreme properties of the material and the use of an ad-hoc rule like yield condition amounts to 

divide the two extreme properties by a sharp line which is not physically possible. When a material passes from one 

state to another qualitatively different state, transition takes place. Since this transition is non-linear in character and 

difficult to investigate, workers have taken certain ad-hoc assumptions like yield condition, incompressibility 

condition and a strain law, which may or may not valid for the problem. Seth’s transition theory [5] does not 
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required any assumptions like an yield condition, incompressibility condition and thus poses and solves a more 

general problem from which cases pertaining to the above assumptions can be worked out. This theory utilizes the 

concept of generalized strain measure and asymptotic solution at critical points or turning points of the differential 

equations defining the deformed field and has been successfully applied to a large number of   problems [5, 6, 8 - 

20]. 

The plastic stresses have been derived through the asymptotic solution of principal stress respectively. Results 

have been discussed and presented graphically. 

2    FORMULATION OF THE PROBLEMS    

Consider a circular disc of isotropic material with central bore of radius a  and external radius b. The disc, produced 

of material of constant density, is mounted on a load. The disc is rotating with angular speed   about a central axis 

perpendicular to its plane. The thickness of disc is assumed to be constant and is taken sufficiently small so that the 

disc is effectively in a state of plane stress, that is, the axial stress zz  is zero. The temperature at the central bore of 

the disc is . The displacement components in cylindrical polar co-ordinate are given by [6]:  

 

(1 ), 0,u r v w dz     (1) 

 

where   is position function, depending on 2 2r x y   only, and d is a constant. The generalized  components 

of strain are given by Seth’s [6]:  

 

 
1 1 1

1 , 1 , 1 (1 ) , 0
n n n

rr zz r z zre r e e d e e e
n n n

                   
    

 
 

(2) 

 

where / .d dr   The  thermal stress–strain relations are given by [7]: 

 

 2 , ,   1,  2,  3ij i j ij ije i j          (3) 

 

where ij  is the stress components,   and   are Lame’s constants and kke   is the  first  strain invariant, ij  is  

the  Kronecker’s delta and  3 2 ,        being the coefficient of thermal expansion and   is the temperature 

Further,   has to satisfy 
2 0.     
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(4) 

 

where 1k  and 2k are constant of integration and can determined from the boundary condition.                       

 Substituting Eq. (2) in Eq. (3), we get 
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(5) 

 

where c  is compressibility factor of the material in term of Lame’s constant, there are given by  
2

2
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Equations of equilibrium are all satisfied except 
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  2 2 0rr

d
r r

dr
      

 

(6) 

 

where  is the density of the material. The temperature satisfying Laplace Eq. (4) with boundary condition 0   

at , 0r a   at ,r b  where 0  is constant, given by [7]; 
 

1
ln

k
a b


  and 2 ln .k b   Substituting 1k  and 2k  

form Eq. (4), we get 
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Using Eqs. (5) and (7) in Eq. (6), we get a non- linear differential equation in   as: 
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(8) 

 

where
 

0
0

ln a b


   and r P   (P is function of   and   is function of r). From Eq. (8), the critical points of 

  are 1P    and   . The boundary conditions are: 

 

00 ,rr rrat r a T at r b      (9) 

3    SOLUTION THROUGH THE PRINCIPAL STRESS DIFFERENCE  

It has been shown [5, 6, 8 - 20] that the asymptotic solution through the principal stress leads from elastic state to the 

plastic state at the transition point P  . The transition function   is defined as: 
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(10) 

 

Taking the logarithmic differentiating of Eq. (10) with respect to r, and using Eq. (8), we gets: 
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(11) 

 

Taking the asymptotic value P   from Eq. (11) and integrating, we get 
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Integrating Eq. (12), we get: 
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where 1 / 2c c     be Poisson’s ratio in terms of compressibility factor and 3k  is a constant of integration, 

which can be determine by boundary condition. From Eqs. (10) and (13), we have 
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Substituting Eq. (14) in Eq. (6) and integrating, we get 
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where 4k  is a constant of integration, which can be determined by boundary condition. By applying boundary 

condition (9) in Eq. (15), we get  
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By substituting the value of 3k and 4k  into Eqs. (14) and (15), we get: 
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where  2 .c E c    It is seen from Eq. (17) that T  is maximum at the internal surface, therefore, yielding 

will take place at the internal surface and Eq. (17) become: 
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and angular speed i necessary for initial yielding is given by: 
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where 0 0 /T Y  and  
1

2
1

/i i Y
b

   . We introduce the following non-dimensional components are 

2 2 2
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and (18) become: 
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where  
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      . Eqs. (19), (20) and (21) give thermo elastic-plastic 

transitional stresses and angular speed for thin rotating disc with loading edge. Stresses and angular speed given by 

Eqs. (19), (20) and (17) for fully plastic state 1/ 2 0or c   becomes 
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where    
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      . From Eq. (17) the angular speed required for fully 

plastic state ( 0.5   or 0c  ) at the external surface is given by 
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where  
1

2
1

f f Y
b

   . 

4    NUMERICAL ILLUSTRATION AND DISCUSSION   

For calculating the stresses and angular speed based on the above analysis, the following values have been taken 

0c   (incompressible material), 0.25 (compressible material), 0.5 (compressible material); 0 0,1,1.5  and  

0 0,5000   and 7000°F, 
55.0 10   deg F

–1
 (for methyl methacrylate) [21], 1 0 / 0,0.25E Y    and 0.35, 
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respectively. In Fig. 1, curves have been drawn between angular speed 
2
i

 
required for initial yielding of the 

rotating disc with loads 0 0,1,1.5   for different values of temperature along the radii ratios 0 .R a b  It has been 

observed that for rotating disc made of compressible material required higher angular speed to yield at the internal 

surface as compare to disc made of incompressible material and a much higher angular speed is required to yield 

with the increase in radii ratio. With the introduction of thermal effects, lesser angular speed is required to yield at 

the internal surface. Figs. 2, 3, curves have been drawn for thermal stresses distribution at elastic-plastic transitional 

state and fully plastic state of rotating disc with respect to radius ratio .R r b  It has been seen that the 

circumferential stresses has maximum value at the internal surface and radial stresses is maximum at the external 

surface of the rotating disc made of compressible material as compare to incompressible material. With thermal 

effect it, increases the value of circumferential stress at the internal surface and radial stresses at the external surface 

for compressible as compare to incompressible material. Whereas from Fig. 3, it can be seen that thermal effect 

increases the value of circumferential and radial stresses at the internal and external surface for fully-plastic state. 

 

1 0   1 0.25   1 0.35   
  0 0  (Without Load)  

  
 

 0 1    

   

 0 1.5    

   

Fig.1 

Angular speed required for initial yielding of the rotating disc with load having different temperature along the radii ratio 

0R a b . 
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1 0   1 0.25   1 0.35   
  0 0  (Without Load)  

   

 0 1    

   

 0 1.5    

   

Fig.2 

Stresses at the elastic-plastic transition state along the radius R r b  for different temperature. 

 

1 0   1 0.25   1 0.35   

   

Fig.3 

Stresses for fully-plastic state along the radius R r b for different temperature. 
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5   CONCLUSIONS 

It has been observed that for rotating disc made of compressible material required higher angular speed to yield at 

the internal surface as compare to disc made of incompressible material and a much higher angular speed is required 

to yield with the increase in radii ratio. Thermal effect in the disc increase the value of circumferential stress at the 

internal surface and radial stresses at the external surface for compressible as compare to incompressible material. 
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