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 ABSTRACT 

 In this paper, the active buckling control of smart functionally graded (FG) plates using 
piezoelectric sensor/actuator patches is studied. A simply supported FG rectangular plate which is 
bonded with piezoelectric rectangular patches on the top and/or the bottom surface(s) as 
actuators/sensors is considered. When a constant electric charge is imposed, the governing 
differential equations of motion are derived using the classical laminated plate theory (CLPT). The 
solution for the equation of motion is obtained using a Fourier series method and the effect of 
feedback gain on the critical buckling load for PZT-4 is studied .The buckling behavior of smart 
plate subjected to compressive load is also investigated. The sensor output is used to determine the 
input to the actuator using the feedback control algorithm. The forces induced by the piezoelectric 
actuators under the applied voltage field, enhance the critical buckling load. 
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1    INTRODUCTION 

HE coupling of the elastic and electric fields in piezoelectric materials is used in smart plates and shells by 
bonding piezoelectric patches for sensing and control. A foundation work on the buckling of structures is 

presented by Brush and Almoroth [1]. They examined the effect of initial imperfection on the critical loads. Turvey 
and Marshall [2] studied the buckling and postbuckling of composite plates due to the mechanical and thermal loads. 
Many investigations are conducted on the stability analysis of imperfect structures. Elastic, plastic and creep 
buckling of imperfect cylinders under mechanical and thermal loads is studied by Eslami and Shariyat [3]. 
Mossavarali and Eslami [4] studied the thermoelastic buckling of isotropic and orthotropic plates with imperfection. 
Murphy and Ferreira [5] investigated thermal buckling analysis of clamped rectangular plates based on energy 
consideration. The first application of piezoelectric material is referred to the experimental work of Bailey and 
Hubbard [6], in which this material was used as actuators for the vibration control. Recently, several attempts are 
made to overcome these problems by using Functionally Graded Materials (FGMs) [7]. FGMs are novel and 
microscopically inhomogeneous in which the mechanical properties vary smoothly and continuously from one 
surface to another. It has many favorable performances in engineering application such as high resistance to large 
temperature gradient and reduction of stress concentration. Comprehensive works on the post-buckling of structures 
of purely FGM or FG laminated plates have been reported in the literatures. Feldman and Aboudi [8] studied the 
elastic bifurcation buckling of FG plate under in-plane compressive load and presented the buckling loads of 
rectangular plates with both simply supported and clamped edges. Woo and Meguid [9] derived an analytical 
solution expressed in terms of Fourier series for large displacement of FG plates and shallow shells under both 
transverse mechanical loading and temperature rise fields. Javaheri and Eslami [10] investigated the thermal 
buckling of rectangular FG plate based on classical as well as higher-order shear deformation theories and obtained 
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the closed form solution of the problem under several types of thermal loadings. From the various kinds of materials 
available for use in the smart structures, only piezoelectrics have the unique capability to be used effectively as both 
actuator and sensor elements. Still various different piezoelectric materials like PZT-2, PZT-4, PZT-5, PVDF and 
PMN are under investigation for aerospace and other applications. Moreover, since the PZT has higher piezoelectric, 
dielectric and elasticity coefficients it is widely used in different industrial applications.  

The fundamental work of Tiersten [11] gave much of the necessary theoretical development for the static and 
dynamic behavior of a single-layer piezoelectric plate. Lee and Moon [12], and Lee [13] used the assumption of 
Classical Laminated Plate Theory (CLPT) to derive a simple model for analysis of piezoelectric laminates, used 
primarily in designing the piezoelectric laminates in bending and torsional control. In the work of Thompson and 
Loughlan [14], the active buckling control is examined using an analytical model and experimental procedure. In the 
work of Varelis and Saravanos [15], the initial buckling of smart beams and plates is studied using an 
electromechanically coupled formulation in combination with an 8-node FE and the critical buckling load is 
examined by altering the electrical conditions. The issue of active buckling compensation is also tackled for smart 
plates, however, the thermal effects are not incorporated. More recently, Yang [16] included higher order (quadratic) 
electric potential variation through the thickness of the actuators and obtained a two-dimensional equation for 
bending motion of an elastic plate with partially electroded piezoelectric actuators attached to the top and the bottom 
surfaces of a thick plate. Due to the added weight effect and the difficulties in the fabrication considerations instead 
of covering the entire surface in the form of layers, a discrete monolithic type of piezoelectric material can also be 
used for sensing and control purposes. In other words, when a single piece of fully distributed piezoelectric sensor-
actuator is used, there are some observability and controllability deficiencies in monitoring and controlling the plate 
and the shell responses [17]. Spatial shaping of distributed sensor and actuator, for example by segmenting them into 
a number of smaller pieces, can improve the controllability and observability. The effectiveness of distributed 
piezoelectric sensor and actuators in the form of rectangular patch, bonded on simply supported rectangular thin 
composite plates and circular cylindrical shell have been investigated by Tzou and Fu [18]. Kargarnovin et al. [19] 
investigated the vibration control of a FG plate patched with piezoelectric actuators and sensors under a constant 
electric charge. 

In this paper, the active buckling of smart FG plates using piezoelectric sensor/actuator patches is studied. The 
plate is simply supported and is bonded with piezoelectric rectangular patches on the top and/or the bottom surfaces 
as actuators or sensors. The classical plate theory is used to derive the governing differential equations of motion. 
The solution is obtained by Fourier series and the effect of feedback of FG plate on the critical buckling load for 
PZT-4 piezoelectric patches is studied. The sensor output is used to determine the input to the actuator using the 
feedback control algorithm. 

2    MATHEMATICAL FORMULATION AND MATERIAL DESCRIPTION 
2.1 Strain-displacement relations 

The displacement field is based on classical laminated composite plate theory and is expressed as follows [20] 
 

x

w
ztyxutzyxu
∂
∂

−= 0
0 ),,(),,,(                   (1) 

y

w
ztyxvtzyxv
∂
∂

−= 0
0 ),,(),,,(                   (2) 

),,(),,,( 0 tyxwtzyxw =                   (3) 
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2.2 FG plates 

FGMs are microscopically inhomogeneous materials with the mechanical properties vary smoothly and 
continuously through the thickness. FGMs are typically made from a mixture of ceramics and metals or a 
combination of different metals. The ceramic constituent of the material provides the temperature resistance due to 
its low conductivity and the metal parts prevents fracture caused by stresses due to high temperature gradient in very 
short period of time [21]. Furthermore, a mixture of a ceramic and a metal with a continuously varying volume 
fraction can be easily manufactured. The coordinate system and definition of the FG plate with piezoelectric patches 
are shown in Fig. 1. In this work, it is possible to consider the FGM properties, E, varies according to the following 
expressions [22] 
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where 1E and 2E are the value of elastic modulus at x=0 and x=b , respectively, where b is the width of the FG 
plate. The Poisson’s ratio υ , is considered to be constant. 

2.3. Stress–strain relation in FG plate  

The stress-strain relations for the FG plate are similar to those of orthotropic plates. The only difference is related to 
the elasticity modules which is no longer constant. Hence, the constitutive relations for the FG laminate are [21] 

Fig. 1 
Coordinate system and definitions of FG plate with piezoelectric patches as sensor and actuator fixed to the lower and upper sides 
along with the controlling circuit. 
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, ijτ  are the shear stresses and ijε are the corresponding strains. 

2.4 Piezoelectric materials stress–strain relations 

The constitutive relations in terms of non-zero stress and strain components for the attached piezoelectric patches 
are [23] 
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in which { }σ  represents the column of stress components, { }ε  the column of strain components, { }E  the column 

of electrical field components, { }D  the column of the electrical displacement components, [C] the matrix of elastic 

constants, [ ]e the piezoelectric stress coefficient  matrix and [ ]∈  the dielectric permittivity matrix in which  
 

][][][ Cde =                   (11) 
 
where [d] is the piezoelectric strain coefficient matrix. 

2.5 Actuator and sensor’s constitutive relations 
2.5.1 Actuator’s constitutive relation  

For a piezoelectric actuator patch the Maxwell’s equations are [25] 
 

0.. =∇⇒=∈ DED                (12) 
 
in which D , ,∈  and E are electric displacement, dielectric constant and electric field, respectively. If the patch is 
thin, then it can be assumed that x and y components of the electric displacement field are constant within the patch 
along x and y directions, hence the charge Eq. (12) reduces to [24] 
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Moreover, it is assumed that the electric potential inside the actuator patch varies quadratically in the z-direction, 

i.e. 
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Furthermore, it is assumed that the electric boundary conditions for the actuator patch are 
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Using these conditions in Eq. (14) yields to 
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By substituting Eqs. (16) and (17) into Eq.(14) , the electric field inside the actuator patch becomes 
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2.5.2. Sensor constitutive relation 

From the reduced charge equation, the z component of the electric displacement of the sensor patch should be 
constant along the thickness (z-direction, see Eq. (14)). On the other hand, since there is no external supply of 
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electric charge to the patch, the total charge which appears on the sensor patch electrode surfaces should be zero. 
This condition can be represented as 0||

21
=+ == zzzzzz DD . From this condition and the reduced charge equation 

which is zero i.e. 0zD = , everywhere inside the patch, it is possible to get 
 

13 13 33
s

z xx yy zD e e Eε ε= + +∈                 (20) 
 
Then, the electric field in the sensor can be obtained as 
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Now by substitution Eq. (21) into constitutive Eq. (10a), the stress-strain relation for the sensor patch can be 

obtained as 
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The average sensor potential (the voltage that appears between sensor electrodes) is 
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When the structure oscillates, a real-time voltage (Va) signal will be generated in the sensor. The signal is fed to the 
control algorithm that determines the power input of the distributed actuator on the top plate as shown in Fig. 1. If 

aV  is the actuating voltage as determined by the control algorithm, and the sensor signal is sV  for the constant gain 
control algorithm, then, aV  is obtained by the following 
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3    GOVERNING EQUATIONS OF EQUILIBRIUM 

The equation of motion for a FG rectangular plate with an actuator and a sensor patches bonded to the upper and 
lower faces, respectively and under distributive load of q, can be obtained using the classical plate theory and Navier 
equation. The motion equations are (see Fig. 1) 
 

, , ,xx x xy y xz z uσ σ σ ρ+ + =  

, , ,yx x yy y yz z vσ σ σ ρ+ + =                 (25) 

, , ,zx x zy y zz z wσ σ σ ρ+ + =  
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Now, by integrating through the thickness of each laminate, the equilibrium equations can be obtained 
 

, ,xx x xy yN N uρ+ =  

, ,yy y xy xN N vρ+ =                      (26) 

, , ,2xx xx xy xy yy yyM M M w qρ+ + = −  
 
in which q represents the applied uniform distributed load over the plate surface. Collection of the equilibrium 
equations of actuator and sensor patch and rearranging them gives 
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and the equilibrium equations for FG plat (Host plat) are 
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and the equilibrium equations for smart plat are 
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Furthermore, the membrane resultant forces can be found as 
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Here a

ijσ , s
ijσ and H

ijσ indicate the stress components of the, actuator, sensors and FG plate, respectively. R represents 
the location function (Box car function) defined as [26] 
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in which, H  is the Heaviside function. In addition, ,A sh h  and La and Lb are the thicknesses of the actuator and the 
sensor patches, the length and width of the sensor and actuator patches, respectively. Note that 

/2

0 / 2
( ) d

h H
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I z zρ

−
= ∫ is the mass density of FG plate and h  represents the thickness of the FG plate and a and b are 

the length and the width of FG plate, respectively. 

4    EQUILIBRIUM EQUATION OF SMART PLATE  

By substituting Eqs. (4a), (4b) and (4c) into the stress-strain relation of the actuator, the sensor and FG plate i.e.  
Eqs. (8), (19) and (22) the stress components of the actuator, the sensor and the FG plate will be obtained. Then, by 
substituting the stress components of the smart plate into Eq. (31) the moment resultant equations as given as below 
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in which ic , ib  and ik  components are 
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(34) 
 

By substituting Eq. (33) into Eq. (29) and by further simplifications, the equilibrium equation of the smart plate 
is obtained and then for the rectangular FG plate with sensor and actuator patches, the general equilibrium equation 
reduces to the following 
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5    SOLUTION METHODOLOGY 

To obtain the critical buckling load of the smart plate, the feedback gain is set to be zero. The Navier solution for the 
simply supported rectangular FG plate with actuator and sensor patches can be obtained by expanding the 
displacement in a Fourier series. Assume a double Fourier series for the lateral displacement as follows [24] 
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in which a and b  are the length and width of FG plate. Substituting expression (37) into Eq. (35), the critical 
buckling load of the FG smart plate with piezoelectric patches, where the in-plane forces are 0xxN N= −  can be 
obtained as 
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and by further simplifications, it is obtained as 
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and R represents the location function (Boxcar function). 

6    RESULTS AND DISCUSSION  

In the present smart FG plate, a piezoelectric patch fixed to the bottom surface is considered to sense the strain and 
generates the electrical potential field and a piezoelectric patch fixed to the top surface, works as an actuator and 
controls the buckling of the structure. For this FG plate, the material and the geometrical properties are given in 
Table 1. The material and geometrical properties of piezoelectric patches for two types of PZT are given in Table 2. 
Further, it is assumed that eij=eji for i ≠ j. It should be noted that the first derivation of R, with respect to x or y yields 
to the delta function, i.e. [ ( ) ( )][ ( ) ( )]xR x La x La H y Lb H y Lbδ δ= − + + − + +  and since, 

( ) ( ) 0y Lb x Laδ δ− = − =  then 0x y xxR R R= = = . 
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Table 1 
Material properties of the FG plate 
FGM )/( 2mNE  Total Thickness(m) Size(m) 
Aluminum oxide(ceramic) 3.202e11 1.6e-3 0.50 × 0.50 Ti-6A1-4V(metal) 1.057e11 

 
Table 2 
Material properties of the piezoelectric patches (PZT) [26, 27] 

Piezoceramic 11C  21C  33d  31d  32d  33e  31e  32e  33∈  υ  Thickness 
(m) 

PZT-4 1.38e11 77.8e10 289 -123 -123 15.08 -5.2 -5.2 1.15e-8 0.3 0.5e-3 
 

 
To obtain the buckling load for an isotropic plate under uniaxial compressive force, values of β  in the model of 

FGM and R in Eq. (39) should be equal to zero ( 0Rβ = = ). In this way, the piezoelectric and the FGM effects on 
the plate are ignored. By doing so, the buckling load can be obtained as follows 
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in which 
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Eq. (41) in the non-dimensionalized form can be written as 

 
)/( 22

0 DbNN π=                  (43) 
 

After simplification and reduction of the model for isotropic plate, Eq. (41) agrees well with the result given in 
Ref. [20]. Fig. 2 shows the variation of non-dimensionalized buckling load for an isotropic plate vs. aspect ratio S 
(a/b). The trend of variation is again similar to the result obtained by Ref. [20]. In Fig. (3), the variation of the 
buckling load vs. feedback gain for different aspect ratio S is illustrated for PZT-4. By increasing S, the plate 
dimensions increases, which means that the plate tends to become more flexible and as it can be observed, the 
feedback gain is more dominant in increasing the critical buckling load. Fig. 4 shows the effect of feedback gain on 
buckling load of FG plate. It can be seen that for higher control gain, the buckling load of the plate is increased. 
 
 

Fig. 2 
Non-dimensionalized buckling load of an isotropic plate vs. S 
(a/b) for a simply supported plate (m=1, m=2, m=3), (β=0, R=0).
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7    CONCLUSION 

In this paper, FG rectangular plate which is bonded with piezoelectric rectangular patch on the top and the bottom 
surface(s) as actuator/ sensor is considered. Under a constant electric charge, the governing differential equations of 
the motion for the plate are derived using classical laminated plate theory (CLPT). The solution for the motion 
equation is obtained using a Fourier series method and the effect of feedback gain and aspect ratio S on the critical 
buckling load is studied. Based on parametric study performed on this smart FG plate, it is concluded that: 

1-The variation of critical buckling load vs. feedback gain indicates that by increasing the feedback gain, the 
buckling load increases. 

2-By increasing S, the plate dimensions increases. It means that the plate is more flexible and the feedback gain 
is more dominant in increasing the critical buckling load. 
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