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 ABSTRACT 

 In this paper, the present investigation has been conducted keeping in mind some of the problems 
concerning the crack propagation direction and growth under constant loading in an inclined crack 
geometry. The present studies mainly focused on the development and modifications in the crack 
growth criterion to account the biaxial, shear loading and number of stress terms. Existing criteria 
for the prediction of crack initiation direction have been modified taking higher order stress terms. 
The effective methods of experimentally determining the stress intensity factor for a body 
containing a crack is to analyze the isochromatic pattern obtained from a photoelastic model. The 
effect of biaxial load factor, crack angle, Crack length/width of specimen and length of 
specimen/width of specimen were studied and a regression model was developed for geometry 
correction to predict stress intensity factor for tearing mode and intensity factor for shearing mode. 
This approach is being used to predict crack growth trajectory under biaxial cyclic loading by 
assuming that the crack may grow in a number of discrete steps using the vectorial method.  MTS 
criterion (Maximum Tangential Stress criterion) is used for prediction of crack initiating angle. 
The crack growth trajectory has been determined by cycle simulation procedure.      
                                                                                  © 2011 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 HE strength of a structure could be severely affected by presence of crack like defects or pre-existing cracks 
and the defects are unavoidable in a cost effective manufacturing process. Since there are limitations on 

minimum size of the defects that can be detected, one needs to know the relation between the defect size and the 
strength of a structure. Fracture mechanics provide a methodology through which a quantitative relationship 
between the applied stress on a structure, defects size present, inherent properties of material and the fracture 
resistance characteristics of structure may be obtained. 

In the middle 1950 Irwin and co-workers laid the foundations for what has since become known as fracture 
mechanics [1]. The most important contribution of this development has been to introduce and experimentally 
determined material constant called the stress intensity factor (K) that characterizes the significance of the defects 
present in a material from the point of view of brittle crack growth. The effective methods of experimentally 
determining the stress intensity factor for a body containing a crack is to analyze the isochromatic pattern obtained 
from a photoelastic model. Measurements of the fringe order N and position parameters r and , which locate 
number of points on a fringe loop, are sufficient to permit the determination of KI and KII. The Irwin method for SIF 
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extraction from photoelastic patterns was the accepted method for analysis for many years. In this method, the 
positional coordinates and fringe order for a specific point that satisfies the criteria is used for evaluating KI and KII.  

The crack usually initiates at the surface of the specimen and propagate slowly at first into the interior. This is 
called as micro crack growth. The material will continue the neck down, the crack is found to nucleate at brittle 
particle. A particle is said to have nucleated, when it becomes stable and will not disappear due to thermal 
fluctuation. Once the particle has attained this stage, it can grow further with a continuous decrease in energy. If 
fracture initiate at pore in the crack region, then the voids are already present. The voids grow with increasing 
deformation and ultimately reach sizes of the order of millimeter. This is called as macro crack growth. All some 
critical stage, the crack propagation becomes rapid culminating in fracture. With the recent advances in computation 
technology, researchers around the globe are working to simulate the crack propagation under different loading 
conditions.  

One can predict the crack propagation path if crack initiation and subsequent crack extension (initiation) angles 
are known. The problem needs to be studied in mixed mode since in mixed mode loading both crack initiation angle 
and hence crack growth rate varies during subsequent growth process. Prediction of initial fracture angle of mixed 
mode problem allows for the determination of the crack trajectory based on strain energy density factor. Several 
studies related to the prediction of the initial fracture crack angle and crack trajectories under mixed mode loading 
conditions were performed for uniaxial loadings as well as for biaxial loadings. The strain energy density criterion is 
to predict the crack trajectory by approximating the developed crack by new crack angle and a fictitious crack length 
under uniaxial loading. Later, this approach is being used to predict crack growth trajectory under biaxial cyclic 
loading by assuming that the crack may grow in a number of discrete steps using the vectorial method. 

The objective and focus of the current research is to characterize the fatigue crack growth behaviour under 
different boundary conditions. Evaluation of the equations and photoelastic techniques is used for this study. The 
development of the equations used in this study will start from basic fracture mechanics, which will then be 
substituted into to photoelastic equations. An investigation into the effects of both crack length and boundary 
conditions on photoelastic materials is performed. Specimens containing various crack lengths and boundary 
conditions are analyzed using common photoelastic techniques. A new technique is developed for data collection for 
photoelastic analysis. 

2    ANALYSIS OF THE PROBLEM 

The stress optic law relates the fringe order N and principal stresses 1 and 2 as [2]: 
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where f is the material fringe value and t is the model thickness. For a plane stress problem, the principal stresses 
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For the purpose of mixed mode study, the stresses in the local neighborhood of a crack tip (r/a<1) can be 

approximated by Westergaard Stress component ij in an increasing order power series as follows [4]: 
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where  ox  and a are constant stress field and half crack length, respectively, r and  are polar co-ordinates with the 
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The maximum in-plane shear stress (m) is related to the Cartesian components of stress by [3]: 
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Eq. (6) re-writing as 
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Substituting Eq. (1) in above equation 

2

2 2( ) (2 )y x xy

Nf

t
   

æ ö÷ç ÷ = - +ç ÷ç ÷çè ø
 (8)

 

 
Substituting Eqs. (3)-(5) into Eq. (8), we get 
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The N-K relation given in Eq. (9) is non-linear in term of the three unknowns KI, KII and ox. In the present 
analysis, three points deterministic approach have been used. The Newton-Raphson-method [5] is applied to solve 
three simultaneous non-linear equations. All the experimental work has been done on photo elastic material, casted 
by using Resin (CY-230) and Hardener (HY-951). 

In this approach, data is selected from three arbitrary points (r1, 1), (r2, 2) and (r3, 3) on a fringe loop by the 
help of new developed image processing technique. To minimize the error for data collection, a new method of 
image processing for accurate measurement of the (r, ) are presented in Fig. 1. 

 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
Fig. 1 
Flow chart of image processing procedure. 
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Fig. 2 
Image processing and measurement of fringe position 
from crack tip using CAD software. 

 
 
 
For this purpose, photograph from the screen of the photoelastic bench under different loading condition were 

taken and scanned by the help of scanner. The scanned photographs were loaded in CAD software for the 
measurement of (r, ) at the different points from the crack-tip. Fig. 2 shows three points on the fringe pattern A, B 
and C, respectively. OP distance shows the half crack length ‘a’. OP is the known distance, used for making a 
conversion formula of distance measurement in the scanned photographs. 

3    THE DETERMINATION OF DIRECTION OF CRACK INITIATION 

MTS-criterion is the simplest of all, and it states that direction of crack initiation coincides with the direction of the 
maximum tangential stress along its constant radius around the crack tip. It can be stated mathematically as [6]: 
 

0
( / ) 0  
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Using the stress field in polar co-ordinates and applying the M.T.S.-criterion, we get the following Eq. (6): 
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where   is defined as, 

( / )I IIK K = (14) 
 
If the value of   is equal to the  , the solution of above equation will give the value of crack initiation angle 

0 .  

To solve the equations for the crack initiation angles defined above, we need to have expressions for the stress 
intensity factors for the angled crack problem for different loading conditions. n  and n  are the normal and 

tangential stress to the crack plane respectively. To obtain expressions for n  and n  for slant crack problem, the 

most general loading case is considered in Fig. 4. 
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2 2cos sin sin 2n x y xy      = + - (15) 
(( ) / 2)sin 2 cos2n x y xy     = - - (16) 

 
The crack growth rate da/dN can be expressed as a function of strain energy density range similar to Paris’s law 

[7] of mode I cyclic loading and is given by 
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where C and n are material properties to be determined experimentally, The strain energy density factor range,  ,S  
can be expressed as: 
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where coefficients 11 12,  b b  and 22b  are given by 

11 (1 /16 )[(1 cos )( cos )]b G K = + - (19) 

12 (1 /16 ) sin [2cos ( 1)]b G K = - -  (20) 

22 (1 /16 )[( 1)(1 cos ) (1 cos )(3cos 1)]b G K   = + - + + - (21) 
 
where G is modulus of rigidity (N/m2) and k is unit less constant. ‘K is written in terms of Poisson ratio, given as  
 

(3 5 )K = -                              for plane strain [3] (22)
 

(3 ) / (1 )K  = - +                  for plane stress [3] (23)
 

 
Strain Energy Density range was found to be a convenient parameter for predicting fatigue crack growth under 

complex loading. Using crack geometry, the crack angle and the corresponding crack length at ith state of cycle can 
be expressed in terms of initial fracture crack angle and the incremental crack length given in Fig. 4 as follows: 

New crack inclination angle (after crack propagation) 
 

1
0 0tan [(  sin )(  cos )]i a a a    -= + +  (24)

 

 
New half crack length (after crack propagation) 

 
2 2
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4    RESULTS AND DISCUSSIONS 
4.1 Stress intensity factor, KI 

The effect of biaxial load factor k, crack angle a/W ratio on stress intensity factor (KI) is shown in Figs. 5-7 for 
different crack length and crack angles. Figs. 5-7 show that KI increases as k increases. This may be due to increase 
in plastic zone size produced ahead of the crack-tip. Figs. 8-10 show that KI decreases as crack angle  increases for 
all values of k. This may be due to the change of crack position for minimum loading direction (-axis) to maximum 
loading direction (k-axis). KI increases when a/W increases shown in Fig. 7. 

The theoretical relation available for KI is written as [8]: 
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where k denotes stress ratio of maximum load to the minimum load. This relation is based on assumption of infinite 
plate with remote loading conditions, i.e. Le/We1 for all  values. So that KI is independent of (Le/We) ratio in the 
above relation. Liebowitz [9] have proposed analytically and numerically that stress intensity factor, depends on the 
(L/a) and (W/a), where L is the length of specimen and W is the width of the specimen. In the present investigation, 
it is seen that KI depends upon crack angle, biaxial load factor, constant stress term and geometry factor (a/W) and 
(a/L). Hence, an attempt has been made to correlate these parameter to KI and fallowing from is presented. 
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where LeL/2-a cos and WeW/2-a sin, and the function f1 (Le/We) is obtained from regression analysis and found 
as: 
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The coefficient (a1 to a5) are shown in Table 1 for various biaxial factor. Le and We are defined in Fig. 3. The 

correlation coefficient in all cases are found to be greater than 0.90. 

4.2 Stress intensity factor, KII 

It reveals from the Fig. 8-10 that KII depends on , k and (W and L). The magnitude obtained form experiments are 
also quite different from the theoretical solutions for same boundary conditions and loading. This is due to the 
geometry constraint. Hence, a geometry factor is derived for KII and presented in the following form [8]: 
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where the function f2 (Le/We) is obtained from regression analysis and found as: 
 
 
 
Table 1 
The coefficient of Eq. (28) obtained by regression analysis from the experimental data 

k 
Coefficients 

a1 a2 a3 a4 a5 
1.0 2958.13 -12319.36 19224.87 -13324.242 3460.51 
1.2 4537.08 18372.43 27972.43 -18972.07 4837.87 
1.4 15558.09 -64654.20 100712.02 -69686.75 18072.87 
1.6 25511.84 -105574.57 163730.04 -112775.23 29110.39 
1.8 13629.04 -56212.08 87054.91 -59991.82 15522.33 
2.0 42527.06 -175971.91 272858.97 -187899.41 48486.72 

 
 

Table 2 
Coefficient of Eq. (30) obtained by regression analysis from the experimental data 

k 
Coefficients 

a21 a22 a23 a24 a25 
1.0 0.023338 -0.006552 0.0149691 -0.103077 0.026600 
1.2 166886.09 -484369.54 751914.84 -518243.74 133810.83 
1.4 52169.22 -215980.16 334828.70 -230670.93 59558.42 
1.6 5040.72 -22239.70 36592.78 -26637.27 7234.41 
1.8 8273.014 -34264.72 53203.89 -36704.137 9492.012 
2.0 2974206.00 -12400926.00 19376463.00 -13446820.00 3497075.30 
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The coefficients a21 to a25 are shown in Table 2 for various biaxial factor. 
 

 

 Fig. 3 
Effective length and effective width in the specimen. 

                   
Fig. 4 
Direction and crack growth. 

  
  

 

 
 
 
 
 
 
Fig. 5 
Effect of biaxial factor on stress intensity factor KI for 
a/W=0.08. 

 

 
 
 
 
 
 
 
Fig. 6 
Effect of crack angle on stress intensity factor KI for 
a/W=0.06. 
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Fig. 7 
Effect of (a/W) ratio on stress intensity factor KI, for =60°. 

 

 
 
 
 
 
 
 
 
 
Fig. 8 
Effect of biaxial factor on stress intensity factor KII for 
a/W=0.08. 

  
 

 

 
 
 
 
 
 
 
 
Fig. 9 
Effect of a/W on stress intensity factor KII for  = 450. 

  

 

 
 
 
 
 
 
 
 
Fig. 10 
Effect of crack angle on stress intensity factor KII for 
a/W=0.08. 
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Fig. 11 
Variation of crack growth rate with number of cycles under 
different crack length at inclination angle 300. 

 
 
A detailed analysis has been done under fatigue loading. Maximum Tangential Stress (MTS) criterion has been 

used for the prediction of crack initiating angle. The crack growth trajectories have been determined by cycle 
simulation procedure. For determination of instantaneous crack angle and instantaneous crack length, Eq. (24) and 
Eq. (25) has been used. A computer programme in C++ has been developed to solve the various equations to find 
out the life and to study the effect of various parameters on fatigue life. The results obtained from the simulation are 
presented in Fig. 11. Fig. 11 shows a graph between crack growth rate and number of cycles for a constant 
inclination angle (300) at different initial crack length. Figure shows that for crack length, initially crack grows 
slowly and beyond a cycle of 5x104 it increases rapidly. It is observed that as the crack length increases the growth 
rate also increases beyond the cycle of 5×104. It is concluded that the life of component depends upon the initial 
crack length and crack inclination angle and stress intensity factors. According to the Eq. (17) and Eq. (18) crack 
growth rate increases as the stress intensity factors increases. Stress intensity factors are depended upon the initial 
crack length, crack angle, biaxial factor k and a/W as shown in Figs. 5-7 and Figs. 8-10. It is concluded that the life 
of component depends upon the initial crack length, crack inclination angle biaxial factor k and a/W. As the crack 
inclination angle increases the crack growth rate increases and the life of component becomes less. Similarly, as the 
crack length increases the crack growth rate increases and the life of components decreases. On increasing the value 
of crack inclination angle the value of new crack length increases for a constant initial crack length. 
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