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 ABSTRACT 

 A plate periodically bonded with piezoelectric patches on its surfaces is considered. The 
differential quadrature element method is used to solve the wave motion equation for the 
two-dimensional periodic structure. The method is very simple and easy to implement. 
Based on the method, band structures for in-plane wave propagating in the periodic 
piezoelectric plate are studied, from which the frequency band gap is then obtained. 
Parametric studies are also performed to highlight geometrical and physical parameters on 
the band gaps. It is found that the thickness of the piezoelectric patches have no effect on 
the upper bound frequency of the band gap. Physical mechanism is explained for the 
phenomena. Dynamic simulations are finally conducted to show how the band gap works 
for a finite quasi-periodic plate. Numerical results show that the vibration in periodic 
plates can be dramatically attenuated when the exciting frequency falls into the band gap.      

  © 2014 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 ERIODIC structures or materials, whose elastic coefficients or geometrical shapes vary periodically in space, 
have received considered attention in recent years. The interest in these materials arises mainly from the unique 

character of having frequency regions, known as absolute band gaps, over which there can be no propagation of 
elastic waves whatever their polarization and wave vector [1]. The unique character gives periodic structures 
numerous potential engineering applications, such as noise suppression and the control or isolation of vibrations [2, 
3]. Kushwaha and his co-workers firstly conducted the full band-structure calculations for periodic elastic composite 
materials and introduced the rudimentary idea of 'band-gap engineering' [3, 4]. Liu, Zhang [5] proposed the so-
called ‘local resonant’ phononic crystal, which opened a new field for low-frequency and limited size periodic 
structures. Recently, Shi and his co-workers fabricated periodic foundations to reduce the effect of earthquake waves 
on structures [6-9]. It is found that the band gap in periodic foundations can be designed in a low frequency region 
(<20Hz), which lends a new insight into seismic isolation in civil engineering. In addition to their ability to block 
wave, the periodic structures can prove particularly useful for applications requiring a spatial confinement of 
acoustic waves and can hence be used as acoustic filters or very efficient waveguides [10].  

At the same time, the use of elastic waves in piezoelectric structures is important in a variety of applications, 
including physical, chemical, and biological sensors. In addition, the piezoelectricity makes it possible to generate 
and detect waves within composite materials. As an example, this property can be used in piezocomposite acoustic 
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transducers [11]. Recently, attentions have also been paid to wave propagation in periodic structures with 
piezoelectric materials [12, 13]. Wu, Hsu [14] analyzed the phononic band structure of bulk and surface waves in a 
two-dimensional periodic structure consisting of an array of piezoelectric cylinders in an isotropic background 
material based on the plane wave expansion method. Zou, Chen [15] presented detailed calculations of the 
dispersion relations of waves propagating in two-dimensional piezoelectric composite structures consisting of 
rectangular piezoelectric ceramic placed periodically in an epoxy substrate with different polarized directions of 
piezoelectric ceramic for different phononic structures. 

There are two main types of using piezoelectric materials in fabricating periodic structures. One is to embed the 
piezoelectric materials in a substrate. Another type is to bond the piezoelectric materials on the surfaces of a 
structure. The former one has been studied in the previous studies. The purpose of this paper is to investigate the 
later one, i.e., a plate periodically bonded with piezoelectric patches. The governing equations for in-plane wave 
propagation in the plate are presented in Section 2.1. Due to its efficiency, the differential quadrature element 
method (DQEM) is introduced and used to solve the equations in Sections 2.2 and 2.3. The method had been 
successfully extended to analyze periodic beams our previous works [16, 17]. However, no publications are 
concerned with the dispersion analysis of two- or three-dimensional periodic structure using the DQEM. This paper 
is to further develop the two-dimensional DQEM for dispersion analysis of periodic plates. In Section 3, the band 
structure for wave propagation in the periodic plates is studied and parametric studies are conducted to show the 
influences of the physical and geometrical parameters on the band gaps. Numerical simulations are also conducted 
on the harmonic analysis and the transient analysis to show the effect of band gaps on a finite quasi-periodic plate in 
Section 4. Finally, some conclusions are given in Section 5. 

2    NUMERICAL FORMULATIONS  
2.1 Governing equations 

As shown in Fig.1(a), some piezoelectric patches of px pyl l  are periodically boned on an infinite homogeneous 

plate. The center-to-center distance between two adjacent patches is mxl  and myl  in x- and y-directions. The 

distances mxl  and myl  are the so-called lattice constants [18]. The thicknesses of the hosted plate and the 

piezoelectric patches are mh  and ph , respectively. The periodicity of the structure makes it possible to obtain the 

frequency band gap by studying one periodic unit or Wigner-Seitz cell [16-18] as shown in Fig.1(b). 
Let u and v be the displacements in x- and y- directions, respectively. Considering an elastic wave with 

propagation in the plane, the governing dynamic equilibrium equation is: 
 

2 2

2 2
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(1) 

 
where   is the density per area and t the time. The stress resultants ( , ,x y xyT T T ) can be computed by integrating the 

stress components ( , ,x y xy   ) over the thickness of the cell as: 

 

( , , ) ( , , )x y xy x y xyT T T dz     (2) 

 
The strains are related to the displacements by 
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(3) 

 
where , ,x y xy    are the normal strain in x- and y-directions and the shearing strain, respectively.  

For the elastic plate, the linear constitutive equations can be expressed as: 
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where , ,m m mY G   are Young’s modulus, shear modulus and Poisson ratio, respectively. For the piezoelectric 

patches, the linear constitutive equations are 
 

12 11 3111 12 31

11 12 31 31 33

, ,

, .2( )
y

xy

y y x zx x z

xy z x y z

S S d ES S d E

S S D d d E

    

   

    

    
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where zE

 
and zD  are the electric field intensity and electric displacement. ijS , 31d  and 33  are elastic compliance 

matrix of the piezoelectric material, piezoelectric constant matrix and dielectric constant matrix, respectively. Two 
cases are considered: open-circuit and closed-circuit. If the piezoelectric patches are very thin, we can take the 
electric displacement as zero for the case of open-circuit ( 0zD  ). By solving Eq. (5), the stresses are then written 

as: 
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where 111/( ),  p dY S S  11 120.5 /( )pG S S  , 1112 ( ) /( )p d dS S SS      and 

31

2
33/dS d  .  

Substituting Eq. (3) into Eqs. (4) and (6) and keeping Eq. (2) in mind, we have 
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(7) 

 
and then substituting Eq. (7) into Eq. (1), we can get the dynamic equilibrium equations as follows: 
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(8) 

 
where the coefficients aC , bC , cC  and dC  are listed in Appendix A. The dynamic Eq. (8) can be easily 

transformed into frequency space as follows: 
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(9) 

  
By taking ( , ) ( , ) i tu v u v e   where   is the angular frequency. For simplicity, we don’t distinguish the 

displacement and its amplitude. 
For the case of closed-circuit, if an external voltage V is applied on the piezoelectric patches, the electric field 

intensity is a constant, i.e., /z pE V h . Substituting Eqs. (2) and (5) into Eq. (1), we can find that the dynamic 

equilibrium equations will be independent of zE . In other words, the dynamic equilibrium equations will be the 

same as Eqs. (8)-(9), but the coefficient 0dS  .  

Due to the periodicity of the structure, the displacement and stress resultants must satisfy the following periodic 
boundary conditions according to the Block-Floquet theorem [16-18] 

 
, , ,x mx x mx x mx x mxik l ik l ik l ik lR L R L R L R L

x x xy xyu u e v v e T T e T T e      (10) 

   
Between left and right boundaries of the cell, and  



197                    H.J. Xiang et al. 

© 2014 IAU, Arak Branch 

, , ,y my y my y my y myik l ik l ik l ik lT B T B T B T B
y y xy xyu u e v v e T T e T T e      (11) 

  
Between bottom and top boundaries of the cell. kx and ky are the wave number in x- and y-directions,respectively. 

The superscripts “R”, “L”, “T” and “B” denote the right, left, top and bottom boundaries, respectively. So Ru  and 
Rv , for example, denote the displacements on the right boundary, which have been shown in Fig.2. 
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Fig. 1  
(a) Configuration of a homogeneous plate with 
externally periodically bonded piezoelectric patches, 
(b) The Wigner-Seitz cell. 
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Fig. 2 
Periodic boundary conditions. 

2.2 Solution method 

The differential quadrature element method (DQEM) is a numerical technique for initial or boundary problems, 
which combines the decomposition process and differential quadrature method [19-22]. The method is adopted to 
solve Eqs. (9)-(11). The whole solution domain, i.e., the unit cell, is divided into nine elements (or sub-domains) 
according to the material properties as shown in Fig. 3(a). Let xL  and yL  be the length of the element in x- and y-

directions, respectively. As shown in Fig. 3(b), an arbitrary rectangle element is transformed onto a normalized 
computational domain [0,1] [0,1]  by the following invertible transformation 

 

1 1,
x y

x x y y

L L
 

 
   

 
(12) 

 
where   and   are the local coordination in the normalized computational domain. ( 1 1,x y ) is the point at the lower 

left corner of the element. The governing equations for element n can be expressed in terms of   and    
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and the stress resultants can be rewritten as: 
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(15) 

 
The element is further divided into x yN N  grid points in both directions and the Gauss-Lobatto-Chebyshev 

pattern [23] is used to generate the sampling points  
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where  i = 1, 2, …, Nx  and  j = 1, 2, …, Ny. The fundamental idea behind the DQEM is to approximate an unknown 
function and its derivative at any discrete point as the linear weighted sums of its values at all of the discrete points 
chosen in the element. The functions u, v and their derivatives with respect to   or   are approximated by: 
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where n

iju  and n
ijv  are the displacements at point ( ,i j  ), ( )il   and ( )jl   are the Lagrange interpolation 

polynomials, and ( )r
ijA  and ( )r

ijA are the weighting coefficients for the r-th order partial derivatives of displacements 

with respect to the local coordinates   and  , the recursive formula for which can be found in Refs [24-27]. Using 

the DQEM rules (17)-(20), the eigenvalue Eqs. (13)-(14) can be discretized for element n into: 
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where i = 1, 2, …, Nx and j= 1, 2, …, Ny. The superscript n denotes the n-th element and n = 1, 2, …, 9.  

For the grid points at the four edges of element n, the corresponding boundary conditions described by Eqs. (10)-
(11) and (15), or compatibility conditions (will be given in detail in Section 2.3) are used. Therefore, the element 
equilibrium equation in matrix form can be written as: 
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xL

yL

 
Fig. 3 
(a) Illustration of the decomposition of the Wigner-Seitz cell, (b) Geometric transformation of an arbitrary rectangle onto a 
normalized square. 
 
 

2( , )n n n n
x yk k K d M d  (23) 

 
where nK , nd  and nM  are the element weighting coefficient matrix, the element displacement vector and the 
element consistent mass matrix, respectively. And 
 

11 11 12 12[ , , , ,..., , ]
x y x y

n n n n n n n T
N N N Nu v u v u vd  (24) 

 
From the boundary conditions (10)-(11), we find that the matrix nK  is a function of the wave vector (kx, ky). The 

frequency can be determined if the value of wave vector (kx, ky) is specified. It is unnecessary to specify all values of 
(kx, ky). Actually, owing to the high symmetry of the structure, the band gaps can be obtained by changing the wave 
vector along the boundary of the first irreducible Brillouin zone, i.e., a triangle Γ-X-M in the reciprocal space [18, 
28]. Herein Γ, X and M are three symmetry points ( 0,0 ), ( / ,0mxl ) and ( / mxl , / myl ), respectively. 

2.3 Assembly of elements and compatibility conditions 

By assembling the weighting coefficient matrices, the displacement vector and the mass matrices of all elements, the 
global system equations for all the nodal points of the plate labeled from 1 to N can be established as follows: 
 

2( , )x yk k K d Md  (25) 

  
where K , d  and M  are the overall weighting coefficient matrix, global displacement vector and overall mass 
matrix for the whole plate in the polar coordinates. And 
 

1 1 2 2[ , , , ,..., , ]TN Nu v u v u vd  (26) 

 
The displacement compatibility and the equilibrium conditions should be satisfied at the interface boundaries of 

the plate. Obviously, the displacement compatibility conditions are automatically satisfied at all the interface 
conjunction nodes since the same global nodal number is used for each conjunction node. Only the equilibrium 
conditions are needed to form the compatibility conditions, which are built up as follows. 

(1) Conjunction nodes at which two elements n1 and n2 meet. 
For the case in which two elements are connected in the x-direction as shown in Fig. 4(a), the compatibility 

conditions are expressed as: 
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For the case in which two elements are connected in the y-direction as shown in Fig. 4(b), the compatibility 
conditions are given as: 

 
1 2 1 2

, ,1 , ,1( ) ( ) , ( ) ( )
y y

n n n n
y i N y i xy i N xy iT T T T   (28) 

 
(2) Conjunction nodes at which four elements meet. 
If four adjacent elements n1, n2, n3 and n4 are connected at a node m as shown in Fig. 4(c), the compatibility 

conditions for the common node m can be expressed as: 
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(3) Conjunction nodes located at the boundaries of plate. 
Take the left and right edges of the plate as an example for illustration. Suppose that the point m1 and m2 are two 

points on the left and right edges, respectively, with the same value of y coordination. The point m1 is the 
conjunction node of elements n1 and n2 on the left boundary, and the point m2 is the conjunction node of elements n3 
and n4 on the right boundary. Besides two periodic displacement boundary conditions 

2 1

x mxik l
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2 1

x mxik l
m mv v e , the periodic boundary conditions for stress resultants at the points m1 and m2  can be expressed as: 
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The periodic boundary conditions for bottom and top edges of the plate can be obtained in a similar way. 

3    BAND GAPS IN PERIODIC PLATES 

The validation of the DQEM are conducted firstly. Parametric studies are then undertaken to investigate the 
influences of the physical and geometrical parameters on the band gaps. In what follows, we take the sampling 
points for all elements as e

x yN N N  . Comparisons of the numerical results with a varying number of sampling 

points Ne used in the DQEM approximation indicate that the present method converges well enough to produce 
convergent results when Ne ≥ 9. In what follows, therefore, the number of the sampling points will be taken as       
Ne=9. Unless otherwise stated, the lattice constants m mx myl l l   and the length of piezoelectric patch 

p px pyl l l  .  
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Fig. 4 
Conjunction nodes on the interface boundaries of elements. 
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3.1 Validation 

An infinite plate with piezoelectric patches bonded periodically is considered. The dimension of its Wigner-Seitz 
cell are that hm=hp=1.25 mm, lm=77 mm and lp=37 mm. The plate is aluminum of which the density is 2710 kg/m3, 
the Young’s modulus 69GPa and the Poisson ratio 0.33. The piezoelectric patch is BM500 of which the material 
coefficients are listed in Table 1. The coefficient Sd of BM500 is very small (1.9×10-12 m2/N), so the difference 
between the results for open-circuit and closed-circuit conditions is not obvious, and we consider the case of open-
circuit only in what follows.  

To validate the present method, a three-dimensional (3D) finite element model (FEM) is built using the 
commercial software ANSYS. Both the piezoelectric patch and the elastic plate are modeled by the element 
SOLID5. The periodic boundary conditions (10)-(11) are applied using the method introduced by Åberg and 
Gudmundson [29]. The in-plane band structure (dispersion curves) of the periodic plate by present method and FEM 
are compared in Fig.5. Excellent agreement can be observed in the first branch for shear waves. The results obtained 
by FEM are slight higher than that by DQEM in the second branch for the compression waves. It is worth to 
mention that the group velocity of waves, i.e., the slope of curves shown in Fig.5, should be zero at the high 
symmetric point X [28]. The velocity predicted by DQEM always obeys this law, which indicates that the present 
method is reliable.  

There is a frequency band gap as shown in Fig.5. The band gaps obtained by FEM and DQEM are 24.81 kHz-  
30 kHz  and 25.00 kHz-29.92 kHz, respectively, which are almost identical. For the plate, the upper bound 
frequency and the lower bound frequency of the band gap can be obtained at point A and point B, respectively.  
 
 
Table 1 
Materials coefficients of BM500 ( 12 2

0 8.85 10 F m   ) 

Density 
(kg/m3)  

Elastic compliance(10-12m2/N) 
 

Piezoelectric (10-12C/N) 
 

Dielectric  
(

0 ) 

ρ S11 S12 S13 S33 S44 S66 d31 d15 d33 ∈11 ∈33 
7650  16.26 -5.67 -7.17 18.72 47.39 44.25 -170.4 582.9 373.2  1726 1704 
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Fig. 5  
Band structure of a square-lattice two-dimensional infinite 
piezoelectric plate. Inset shows the irreducible part of the 
irreducible Brillouin zone. 

3.2 Parameter studies 

In this section, parametric studies are conducted to investigate the influences of the geometrical and physical 
parameters on the lower bound frequency (LBF), the upper bound frequency (UBF) and the width of the band gap 
(WBG). Unless otherwise stated, the units size lm = 77 mm and the thickness of the hosted plate is hm = 1.25 mm in 
what follows.  

First of all, we investigate the effect of geometrical parameters on the band gap. Two geometrical parameters are 
considered: the length ratio /p ml l   and the thickness ratio /p mh h  . The size of the elastic plate is kept 

constant but the dimension of the piezoelectric patch is varied such that the two ratios are changed. Fig. 6 
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investigates the influence of the length ratio on the band gap. The numerical results show that the band gap will 
disappear when the length ratio   is out of the range (0.362, 0.848). Actually, a very small length ratio means that 
the effect of the piezoelectric patch can be neglected. In other words, the structure can be considered as an elastic 
plate if   is closed to zero. On the other hand, when the ratio is closed to one, the piezoelectric patch will tend to 
cover the whole cell, and then the structure can be considered a multilayered composite plate. Both cases weak the 
periodicity of the structure and the band gap will not exist. Both the LBF and UBF decreases monotonically as the 
ratio   increases. The peak value of WBG is found at 0.55  . Fig. 7 shows the effect of the thickness ratio   on 
the band gap. Again, the band gap will disappear when 0.51  . The periodicity of the structure is not obvious 
when the ratio become smaller and smaller. On the other side, when the ratio becomes larger and larger, the WBG 
will be wider and wider, i.e., the periodicity is more significant. We also find that the UBF remains almost a 
constant at 30 kHz and the LBF decreases as the ratio varied from 0.51 to 2.5. In order to understand the physical 
insight of this phenomenon, we calculate the modulus of the complex displacement field of the modes at points A 
and B (see Fig. 5), at which the modes are corresponding to the UBF and LBF, respectively. The displacement 
modulus for these two modes are shown in Fig.8. For the point A, the displacement in the four corners of the cell is 
very large. However, the displacement is very small in the area within the piezoelectric patch. In other words, this 
mode is highly dependent on the elastic plate instead of the piezoelectric patch. Therefore, the thickness ratio have 
no effect on the UBF when the thickness of the patch is increased and the thickness of the elastic plate is kept as a 
constant. For the point B, we find a different map that the displacement has its largest magnitude in the most part of 
the patch and it is almost zero near the edges of the cell. We can characterize qualitatively the vibration of the patch 
as a mass-spring oscillator. As the thickness of the patch increases, the total mass is increased and then the 
frequency will be decreased.  
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Fig. 6  
Effect of the length ratio α on the band gap. 
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Fig. 7  
Effect of the thickness ratio β on the band gap. 
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Fig. 8  
The modulus of complex displacement field of the 
modes at points A (UBF) and B (LBF). 
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Fig. 9  
Effect of density of the plate on the band gap. 
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Fig. 10 
Effect of Young’s modulus of the plate on the band 
gap. 

 
Next, we are dealing with the effect of physical parameters, i.e., the density and Young’s modulus of the elastic 

plate, on the band gap. On one side, the increasing of the density m  results in the increasing total mass of the 

system, so the LBF and UBF are decreased as shown in Fig.9. The WBG is also decreased and then vanishes as the 
density m  varied from 1000 kg/m3 to 7640 kg/m3. Actually, the density of the piezoelectric patch is 7650 kg/m3. 

That is to say that the band gap vanishes when the densities of the two materials are closer and closer. It also 
indicates that the density difference between two materials plays a very important role to form the band gap. On the 
other side, as shown in Fig. 10, increasing of the modulus of the plate mY , which means increasing the total stiffness 

of the system, leads to increasing of both LBF and UBF. However, the band width is not changed monotonically as 
the modulus mY  varied. Its peak can be obtained at mY  = 30GPa. 

4    DYNAMIC RESPONSE OF PERIODIC PLATES 

In the previous sections, we focus on infinite periodic piezoelectric plate and its band gap. However, all engineering 
structures are finite dimensional, so further study on the dynamic of finite dimensional quasi-periodic plates is very 
important. For practical purpose, we will investigate two periodic piezoelectric plates, A and B, as shown in Fig.11, 
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with finite dimension of length 307 mm and width 230 mm. The two plates differ in that all piezoelectric patches in 
plate A have dimension of 25 mm × 25 mm × 0.5 mm, whereas in plate B the dimension is 37 mm × 37 mm × 1.25 
mm. The plate A was designed by Yaman, Çalışkan [30]. The plate B is the same as the plate discussed in section 
3.1 but with finite dimension. Numerical simulations using ANSYS are conducted to highlight the effect of band 
gaps on the harmonic response and the transient response of the plates.  
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Fig. 11 
Schematic diagram of two piezoelectric quasi-periodic plates (Unit: mm). 

4.1 Harmonic analysis 

Both plates are subjected to a harmonic dynamic base displacement at the clamed end 0x  . The harmonic 
dynamic base displacement is taken as 0 sin(2 )u u f t   where 0u  is its amplitude and f  is the imposed 

frequency. The average tip displacement amplitude tipu  at all nodes of the free end is calculated by ANSYS. The 

transmitting frequency response functions (FRFs) is used to represent the dynamic character of the finite periodic 
plates. The FRFs is defined as 020log( / )tipu u . Note that the value of FRFs will be zero if the displacement 0u  and 

the tip displacement tipu  are the same, and a negative value of FRFs indicates an effective reduction. The right parts 

of Figs.12 and 13 plot the frequency response function of plates A and B, respectively. If the plates are extended to 
infinite, we can calculate their band structures. For comparison, the band structures of the corresponding infinite 
plates are depicted in the left parts of the figures. Obviously, as shown in Fig.12(a), no band gap can be found in the 
considered frequency region (0-36.2 kHz). Therefore, there is no vibration attenuation as shown in Fig.12(b). As 
shown in Fig.13, it is found that the tip displacement of plate B is strongly reduced when the frequency of base 
excitation falls into the attenuation range (23.21 Hz, 27.82 Hz), which is closed to the band gap (25.00 Hz, 29.92 
Hz). The finite quasi-periodic plate is consisted of only four cells in the x-direction, so the attenuation range is not 
totally match with the band gap. The attenuation range will be closed to the band gap if more periodic cells are 
considered.  

4.2 Transient analysis 

A dynamic base displacement is applied at the clamed end of the two quasi-periodic plates and a homogenous 
aluminum plate (307 mm × 230 mm × 1.25 mm). A general base excitation can be expanded in a sine series 
 

1

( ) sin(2 )
N

n n
n

u t u f t


   
 

(32) 

 
where N is the number of frequency components, nu  are the displacement amplitude of the n-th component nf . For 

simplicity, the base excitation is considered as two harmonic vibrations of 1f  = 25 kHz, 2f =28 kHz, 1u =1 mm and 

2u =1 mm in this numerical example. Both frequencies are closed to the attenuation range (23.21 Hz, 27.82 Hz) of 

the plate B and fall into its band gap (25.00 Hz, 29.92 Hz). The time history of average displacement response of all 



205                    H.J. Xiang et al. 

© 2014 IAU, Arak Branch 

nodes at the free end are compared in Fig.14. As discussed previously, we can’t get a band gap of which frequency 
is below 36.2 kHz in the plate A. Of course, there are no band gaps in the humongous plate too. As expected, the 
displacement response of the plate B is much less than that of other two plates. 
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Fig.12 
(a) Band structure; (b) Displacement response function 
for the plate of type A. 
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Fig. 13 
(a) Band structure; (b) displacement response function 
for the plate of type B. 

0.0 0.2 0.4 0.6 0.8 1.0
-3

-2

-1

0

1

2

3

4  Homogeneous plate
 Periodic plate  A
 Periodic plate  B

A
ve

ra
ge

 d
isp

la
ce

m
en

t  
(m

m
) 

Time (0.001s)

 
 
 
 
 
 
 
 
 
Fig. 14 
Time history of average displacement of nodes at the 
free end. 

5    CONCLUSIONS 

A plate bonded periodically with piezoelectric patches is investigated in this work. Some conclusions can be given 
as follows 
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1. With introducing the periodic boundary conditions, we use the differential quadrature element method to      
analyze the band gaps in periodic piezoelectric plates. The method is simple and accurate and relative less 
sampling points are required. 

2. The physical and geometrical parameters play an important role on the band gap. The effect of the length 
ratio on the band gap is very obvious. The maximum band width can be obtained by reasonably changing 
the ratio. However, the variation of thickness ratio only changes the LBF and has no effect on the UBF. 
The larger the thickness ratio is designed, the larger the band width is obtained. Increasing the density of 
the plate will enlarge both LBF and UBF, but a high value of Young’s modulus of the plate will reduce the 
LBF and UBF of the band gap. 

3. The attenuation of vibration response of the periodic plate may exceed 40dB if the excitation frequency falls 
into the band gap of the considered plate. Transient analysis also shows that a plate with band gap can 
reduce its dynamic response. This gives a new idea in structural design for the purpose of vibration control. 
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APPENDIX A 

For the area covered a piezoelectric patch: 

2 2 2 2

2 2
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For the area without piezoelectric patch: 
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